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Abstract. Extending description logics with so-called nominal schemas
has been shown to be a major step towards integrating description logics
with rules paradigms. However, establishing efficient algorithms for rea-
soning with nominal schemas has so far been a challenge. In this paper,
we present an algorithm to reason with the description logic fragment
ELROVn, a fragment that extends EL++ with nominal schemas. We
also report on an implementation and experimental evaluation of the
algorithm, which shows that our approach is indeed rather efficient.

1 Introduction

Nominal schemas have been introduced in [18] based on prelminary ideas in
[15,17] and, essentially, as a generalization of the idea of DL-safety for rules
[5,19]. Essentially, nominal schemas are a kind of variable nominals, i.e. they are
variables which can be bound to known individuals only. A typical example for
the use of nominal schemas (taken from [14]) would be

∃hasReviewAssignment.(({x} u ∃hasAuthor.{y}) u ({x} u ∃atVenue.{z}))
u ∃hasSubmittedPaper.(∃hasAuthor.{y} u ∃atVenue.{z})
v ∃hasConflictingAssignedPaper.{x}.

In this case, think of the three nominal schemas {x}, {y} and {z} as placehold-
ers for nominals—in fact this axiom can be translated into n3 axioms without
nominal schemas by fully grounding the axiom, where n is the number of known
individuals in the knowledge base (see [14]). Full grounding eliminates nominal
schemas and thus can be used, in principle, for reasoning over nominal-schema-
extended knowledge bases. However, as the example indicates, fully grounding
an axiom with k nominal schemas results in nk new axioms without nominal
schemas, i.e. the size of the input knowledge base to a reasoning algorithm be-
comes unmanageable for current algorithms (see [4] and Section 4 below).

The rationale for introducing nominal schemas lies in bridging the gap be-
tween description-logic-based and rule-based approaches for ontology modeling



[5,14]. Indeed, the example above arises from the rule

hasReviewAssignment(v, x) ∧ hasAuthor(x, y) ∧ atVenue(x, z)

∧ hasSubmittedPaper(v, u) ∧ hasAuthor(u, y) ∧ atVenue(u, z)

→ hasConflictingAssignedPaper(v, x)

if x, y and z are considered to be DL-safe variables,1 i.e., they bind only to
constants present in the knowledge base. In [18] it was shown that DL-safe binary
Datalog is completely subsumed by nominal-schema-extended description logics,
and in [12] this was lifted to n-ary DL-safe Datalog. This means that nominal
schemas allow for an incorporation of DL-safe SWRL [8,19] into the description
logic paradigm. It was also shown in [12] that the use of nominal schemas together
with autoepistemic operators yields a description logic which encompasses most
of the major paradigms in non-monotonic logic programming and in local-closed-
world-extended description logics (see also [11]), thus consituting a major step
towards establishing a unifying logic for major Semantic Web languages around
the W3C standards OWL [6] and RIF [10].

It was shown in [18] that extending SROIQ with nominal schemas does
not result in an increase of worst-case complexity, and it was also shown that
a tractable fragment can be obtained which encompasses both OWL EL and
the DL-safe version of OWL RL [6] (and, more generally, Datalog under the
Herbrand semantics provided there is a global bound on the number of vari-
ables per rule). However, despite this, first attempts to arrive at an efficient
algorithmization of reasoning with nominal schemas have had limited success:
[13] reported on a corresponding extension of tableaux algorithms, while [21]
reported on a resolution-based algorithm for the tractable fragment—but nei-
ther of these algorithms looks promising enough in terms of scalability to even
attempt an implementation.

In this paper, we therefore present an algorithm for OWL EL (more precisely,
for ELROVn) based on an algorithm for OWL EL presented in [16] which uses
a transformation into Datalog. We also report on an implementation and on
corresponding experimental evaluations based on the IRIS Datalog reasoner [3],
which show that our approach is feasible in terms of scalability.

The plan of the paper is as follows. In Section 2, we recall preliminaries on the
description logic ELROVn. In Section 3 we describe our algorithm. In Section 4
we present our implementation and evaluation. We conclude in Section 5.

Acknowledgements. This work was supported by the National Science Foun-
dation under award 1017225 III: Small: TROn – Tractable Reasoning with On-
tologies.

2 The Logic ELROVn

In this section we define the syntax and semantics of ELROVn, which extends
EL++ [2] with nominal schemas and subsumes OWL EL [6]. We assume that

1 This notion was introduced in [17].



Name Syntax Semantics

Concept A AI ⊆ ∆I

Role R RI ⊆ ∆I ×∆I

Individual a aI ∈ ∆I

Variable v Z(x) ∈ ∆I

Concept Constructor Syntax Semantics

Concept Conjunction C uD CI,Z ∩DI,Z

Existential Restriction ∃R.C {x | y ∈ ∆I s.t. (x, y) ∈ RI,Z , y ∈ CI,Z}
Self Restriction ∃R.Self {x | (x, x) ∈ RI,Z}
Nominal (Schema) {t} {tI,Z}
Top > ∆I

Bottom ⊥ ∅

Axiom Syntax Semantics

Concept Assertion E(a) aI,Z ∈ EI,Z

Role Assertion R(a, b) (aI,Z , bI,Z) ∈ RI,Z

General Concept Inclusion C v D CI,Z ⊆ DI,Z

Role Inclusion Axiom R v S RI,Z ⊆ SI,Z

Role Chain Axiom R ◦ S v T {(x, z) | (x, y) ∈ RI,Z , (y, z) ∈ SI,Z} ⊆ T I,Z

Concept Product R v C ×D {RI,Z ⊆ CI,Z ×DI,Z}
C ×D v R {CI,Z ×DI,Z ⊆ RI,Z}

where C,D are concept expressions, E ∈ NC , R,S ∈ NR, a, b ∈ NI , v ∈ Nv, and
x, y ∈ ∆I

Fig. 1. Syntax and semantics of DL constructors

the reader is familiar with basic description logic (DL) notation and results, and
refer to [1,7] for background reading.

Every ELROVn knowledge base KB is defined over a signature L composed
of four mutually disjoint finite2 sets of concept names NC , individual names
NI , role names NR, and variable names NV . Given a signature, the set C of
ELROVn concept expressions is defined inductively to contain the expressions
in the upper part of Figure 1. The set of ELROVn axioms is then defined in
the lower part of Figure 1. As usual in DL, we distinguish between axioms
of ABox (assertional axioms), TBox (terminological axioms or general concept
inclusions), and RBox (role related axioms).

For a set KB of ELROVn axioms to qualify as an ELROVn knowledge base,
further syntactic restrictions need to be satisfied. We continue by introducing
some preliminary definitions that allow us to declare these restrictions.

Let π be a function that maps every DL axiom α into a first order logic
axiom π(α) as defined in Figure 2. We recursively define the set NC

R of role
names with respect to a set KB of ELROVn axioms to contain all roles T such
that R ◦ S v T ∈ KB or R v T ∈ KB where R ∈ NC

R . We define the set

2 but large enough



Concept and Role Expressions

πx(⊥) = ⊥
πx(>) = >
πx(A) = A(x)

πx(C uD) = πx(C) ∧ πx(D)
πx(∃R.C) = ∃y[R(x, y) ∧ πy(C)]
πx({a}) = x ≈ a

Axioms

π(C v D) = ∀x[πx(C)→ πx(D)]
π(R v S) = ∀x∀y[R(x, y)→ S(x, y)]

π(R ◦ S v T ) = ∀x∀y∀z[R(x, y) ∧ S(y, z)→ T (x, z)]
π(R v C ×D) = ∀x∀y[R(x, y)→ πx(C) ∧ πy(D)]
π(C ×D v R) = ∀x∀y[πx(C) ∧ πy(D)→ R(x, y)]

π(C(a)) = → C(a)
π(R(a, b)) = → R(a, b)

where C,D are ELROVn concept expressions, R,S ∈ NR, a ∈ NI ∪NV , and x, y are
fresh new first-order predicate logic variables

Fig. 2. Translating ELROVn into first-order predicate logic

NS
R of role names as NS

R = NR/N
C
R . We call the roles contained in the set NC

R

(resp. NS
R) complex (resp. simple) roles with respect to a set KB of ELROVn

axioms. We frequently drop the “with respect to a set KB of ELROVn axioms”
as this is clear from the context. Furthermore, we define ran(R) where R ∈ NR
as the set of ELROVn concept expressions containing all concepts D such that
R v S1, . . . , Sn−1 v Sn ∈ KB and Sn v C×D ∈ KB for some S1, . . . , Sn ∈ NR
and n ≥ 0.

Definition 1 (ELROVn Restrictions). An ELROVn knowledge base is a set
KB of ELROVn axioms which satisfies all of the following conditions:

1. All roles appearing in expressions of the form ∃R.Self in KB are simple.
2. For every axiom of the form R ◦S v T ∈ KB we have that ran(T ) ⊆ ran(S).
3. For every ELROVn axiom α containing nominal schemas we have that π(α)

does not contain more than n different free variables and α does not contain
more than n different nominal schemas.

4. Axioms of the form R v C × D and C × D v R do not contain nominal
schemas and axioms containing nominal schemas of the form C v D, where
C and D are ELROVn concept expressions, do not contain occurrences of
the top > and bottom ⊥ concepts in C.

5. If α ∈ KB is an axiom containing a nominal schema, then for any class-
subexpression of the form ∃R.D on the right hand side of the general class
inclusion, we have that D is of the form {x} u C, where {x} is a nominal
schema and C is a class expression. We refer to this nominal schema {x}
as guard of subconcept D

Some explanations are in order. The first two restrictions are inherited from
EL++. The third is required for obtaining tractability (however, our algorithm



does not need to know what n is). The fourth condition can actually be relaxed,
however this would make our exhibition more involved, and we decided to go for
the simpler variant as we have not been able to come up with good examples
which would use nominal schemas in this types of axioms. The last condition
forbids the occurrence of axioms that contain both nominal schemas and unre-
stricted existentially quantified variables on the right hand side. This is the only
of the five restrictions which really impacts on the language—as shown in [18] it
is not required for obtaining tractability. However we need it for our algorithm
to work. We conjecture that a modification of our algorithm would be able to
avoid this restriction, however details remain to be worked out.

Note that we do not include the role regularity restriction that applies to
the OWL profile languages, as defined in [9] and that our defined restrictions
are equivalent to the ones defined for EL++ if a knowledge base KB does not
include nominal schemas.

The semantics of ELROVn is specified by defining an interpretation I =
(∆I , ·I) where ∆I is a non-empty set, and ·I is an interpretation function that
maps individual, concept, and role names as shown in Figure 1. A variable as-
signment Z for an interpretation I is a function Z : NV → ∆I such that for
each v ∈ NV , Z(v) = aI for some a ∈ NI . Interpretations and assignments are
extended to concept expressions as shown in Figure 1.

An ELROVn axiom α is satisfied by I and Z, written I,Z |= α, if the
conditions defined by the lower part of Figure 1 hold. An interpretation I satisfies
an axiom α, written I |= α, if I,Z |= α for all possible variable assignments Z
for I. An interpretation I is a model for a knowledge base if I satisfies all of
its axioms. We say a knowledge base is satisfiable if such a model exists. We say
that a knowledge base KB entails an axiom α, written as KB |= α, if all models
of KB satisfy α.

To improve the clarity and understandability of the paper, as well as to
simplify our implementation, we make use of a normalization algorithm from
[16] and extend it with some new mappings to normalize axioms containing
nominal schemas.

Definition 2. An ELROVn knowledge base is in normal form if it contains the
axiom > × > v U where U is the universal role, every axiom α not containing
a nominal schema is of one of the forms as described in Figure 3, and for every
axiom β of the form C v D containing nominal schemas we have that D is of
one of the forms as descriptied in Figure 4.

Note that we normalize only the right-hand sides of general class inclusion
axioms. Since a nominal schema may occur in many places within one axiom,
a normalization of axioms following the usual approach of replacing subclasses
by new class names and adding additional axioms (this is called folding in logic
programming terminology) is not possible in general, unless nominal schemas
were first grounded to nominals. However, as discussed in the introduction, such
up-front grounding results in the general case in a significant increase of the size
of the knowledge base, which cannot be handled by existing reasoners.



C v D C v {a}
C uD v E C v ⊥

C v ∃R.D > v C
∃R.C v D R v S

C v ∃R.Self R ◦ S v T
C v ∃R.Self R ◦ S v T

∃R.Self v C R v C ×D
{a} v C C ×D v R

where {C,D,E} ⊆ NC , {R,S, T} ⊆ NR, and a ∈ NI .

Fig. 3. ELROVn normal form for nominal-schema-free axioms

In fact, the unavailability of a folding-based normalization procedure is one
of the main obstacles in adapting DL reasoning algorithms to nominal schemas,
see [13,21]. Our approach presented below works without such a normalization
as the underlying DL algorithm is based on Datalog. Our partial normalization
of the right-hand-sides of general class inclusions, in fact, is not really required,
it just makes our approach easier to read and simplifies correctness arguments.

Proposition 1. For every ELROVn knowledge base KB, an ELROVn knowl-
edge base KB’ over an extended signature can be computed in linear time such
that all axioms in KB’ are in normal form, and, for all ELROVn axioms α
that only use signature symbols from KB, we find that KB |= α if and only if
KB′ |= α.

Proof. We make use of a normalization algorithm from [16] to normalize all
axioms not containing nominal schemas in KB. Then, we add the axiom >×> v
U to KB and we exhaustively apply the mappings described in Figure 5 to the
set of axioms containing nominal schemas in KB. Note that by restriction 5 in
Definition 1 we have that all axioms of the form ∃R.D appearing on the right-
hand side of a a general class inclusion containing nominal schemas contain a
nominal schema {x} in D, and thus this normalization is always possible.

C ∃R.{x}
{y} ∃U.({x} u {y})

∃U.({x} u C) ∃U.({x} u ∃R.{y}))

where C ⊆ NC , R ⊆ NR, and {x, y} ∈ NV .

Fig. 4. ELROVn normal form for axioms with nominal schemas



A v C uD 7→ {A v D,A v C}
A v E 7→ {A v Cx, Cx v E}
A v > 7→ ∅

A v ∃R.({x} u C) 7→ {A v ∃R.{x}, A v ∃U.({x} u C)}
A v ∃U.({x} u E) 7→ {A v ∃U.({x} u Cx), Cx v E}
A v ∃U.({x} u >) 7→ ∅

A v ∃U.({x} u C uD) 7→ {A v ∃U.({x} u C), A v ∃U.({x} uD)}
A v ∃U.({x} u ∃R.({y} u C)) 7→ {A v ∃U.({x} u ∃R.{y}), A v ∃U.({y} u C)}

where A,C,D are concept expressions, E is a nominal or expression of the form ∃R.Self
or ⊥, R,U ∈ NR and U is the universal role, x, y ∈ NV , c ∈ NI and Cx is a freshly
introduced concept name.

Fig. 5. Normalization of axioms containing nominal schemas

Without loss of generality we assume that all knowledge bases appearing
throughout the rest of the paper are in normal form.

3 An Algorithm for ELROVn

As previously mentioned, our algorithm is based on the materialization calculus
Kinst presented in [16]. Following this approach, for every ELROVn knowledge
base KB we will construct a Datalog program PKB that can be regarded as an
instance retrieval procedure over KB. The Datalog program PKB consists of two
sets of rules P and Pns and a set of facts I, produced as follows.

– P is the set of rules listed in Figure 6—this is independent of the input
knowledge base KB.

– I(KB) is the set of facts I(α) produced according to Figure 7 for each α
which is a class name, a role name, an individual name, or a nominal-schema-
free axiom occurring in KB.

– Pns(KB) is the set of all rules Pns(γ) generated from each axiom γ containing
nominal schemas. The definition of Pns is given below.

In order to define Pns, we first define the partial functions b and h that map
first-order logic axioms to sets of unary and binary predicates. Let α be a general
concept inclusion axiom in ELROVn. Then it is easy to see that π(α) can be
normalized into an axiom of the form

∀x[∃y1 . . . ∃yn(
∧
bi)→ ∃z1 . . . ∃zn(

∧
hi)], (29)

where all hi and bi are unary and binary predicates of the form R(x, y) or C(x)
with R ∈ NR, C ∈ NC , and x, y are first-order logic variables. Then let b(π(α))
(respectively, h(π(α))) be the set of all unary and binary predicates contained
in

∧
bi (respectively

∧
hi), called the body (respectively, head) of π(α).



nom(x) 7→ inst(x, x) (1)

nom(x) ∧ triple(x, v, x) 7→ self(x, v) (2)

top(z) ∧ inst(x, z′) 7→ inst(x, z) (3)

bot(z) ∧ inst(u, z) ∧ inst(x, z′) ∧ cls(y) 7→ inst(x, y) (4)

subClass(y, z) ∧ inst(x, y) 7→ inst(x, z) (5)

subConj(y1, y2, z) ∧ inst(x, y1) ∧ inst(x, y2) 7→ inst(x, z) (6)

subEx(v, y, z) ∧ triple(x, v, x′) ∧ inst(x′, y) 7→ inst(x, z) (7)

subEx(v, y, z) ∧ self(x, v) ∧ inst(x, y) 7→ inst(x, z) (8)

supEx(y, v, z, x′) ∧ inst(x, y) 7→ triple(x, v, x′) (9)

supEx(y, v, z, x′) ∧ inst(x, y) 7→ inst(x′, z) (10)

subSelf(v, z) ∧ self(x, v) 7→ inst(x, z) (11)

supSelf(y, v) ∧ inst(x, y) 7→ self(x, v) (12)

subRole(v, w) ∧ triple(x, v, x′) 7→ triple(x,w, x′) (13)

subRole(v, w) ∧ self(x, v) 7→ self(x,w) (14)

subRChain(u, v, w) ∧ triple(x, u, x′) ∧ triple(x′, v, x′′) 7→ triple(x,w, x′′) (15)

subRChain(u, v, w) ∧ self(x, y) ∧ triple(x, v, x′) 7→ triple(x,w, x′) (16)

subRChain(u, v, w) ∧ triple(x, u, x′) ∧ self(x′, v) 7→ triple(x,w, x′) (17)

subRChain(u, v, w) ∧ self(x, u) ∧ self(x, v) 7→ triple(x,w, x) (18)

subProd(y1, y2, w) ∧ inst(x, y1) ∧ inst(x′, y2) 7→ triple(x,w, x′) (19)

subProd(y1, y2, w) ∧ inst(x, y1) ∧ inst(x, y2) 7→ self(x,w) (20)

supProd(v, z1, z2) ∧ triple(x, v, x′) 7→ inst(x, z1) (21)

supProd(v, z1, z2) ∧ self(x, v) 7→ inst(x, z1) (22)

supProd(v, z1, z2) ∧ triple(x, v, x′) 7→ inst(x′, z2) (23)

supProd(v, z1, z2) ∧ self(x, v) 7→ inst(x, z2) (24)

inst(x, y) ∧ nom(y) ∧ inst(x, z) 7→ inst(y, z) (25)

inst(x, y) ∧ nom(y) ∧ inst(y, z) 7→ inst(x, z) (26)

inst(x, y) ∧ nom(y) ∧ triple(z, u, x) 7→ triple(z, u, y) (27)

self(x, y) 7→ triple(x, y, x) (28)

Fig. 6. Deduction Rules P



C(a) 7→ {subClass(a,D)} R(a, b) 7→ {subEx(a,R, b, b)}
> v C 7→ {top(C)} A v ⊥ 7→ {bot(A)}
{a} v C 7→ {subClass(a,C)} A v {c} 7→ {subClass(A, c)}
A v C 7→ {subclass(A,C)} A uB v C 7→ {subConj(A,B,C)}

∃R.Self v C 7→ {subSelf(R,C)} A v ∃R.Self 7→ {supSelf(A,R)}
∃R.A v C 7→ {subEx(R,A,C)} A v ∃R.C 7→ {supEx(A,R,B, auxAv∃R.C)}

R v T 7→ {subRole(R, T )} R ◦ S v T 7→ {subRChain(R,S, T )}
R v C ×D 7→ {supProd(R,C,D)} C ×D v R 7→ {subProd(C,D,R)}

A ∈ NC 7→ {cls(A)} a ∈ NI 7→ {nom(a)}
R ∈ NR 7→ {rol(R)}

Fig. 7. Input Translation I

Definition 3. Given an ELROVn axiom α = A v B (where A and B are
concept expressions) that contains nominal schemas, we now define Pns(α) as
follows. Let Bα be the set of Datalog atoms containing

– triple(x,R, y) for every R(x, y) ∈ b(π(α)),
– inst(x,C) for every C(x) ∈ b(π(α)),
– inst(x, t) for every x ≈ t ∈ b(π(α)) with t ∈ NI ∪NV ,
– nom(v) for every x ≈ v ∈ b(π(α)) ∪ h(π(α)) with v ∈ NV .

Furthermore, let Hα be the set of Datalog atoms containing

– inst(x,C) if h(α) = {C(x)},
– triple(x,R, t) if h(α) = {R(x, y), y ≈ t} and t ∈ NV ,
– inst(x, t) if h(α) = {x ≈ t},
– inst(u, t) and inst(t, u) if h(α) = {U(x, y), y ≈ t, y ≈ u},
– inst(t, C) if h(α) = {U(x, y), y ≈ t, C(y)}, and
– triple(t, R, u) if h(α) = {U(x, y), y ≈ t, R(y, z), z ≈ u}.

We define

Pns(α) =
∧
Bi →

∧
Hi

for all Datalog atoms Bi ∈ Bα and Hi ∈ Hα.

Note that for every nominal schema v in axiom α we include the Datalog
atom nom(v′) in the body of the Datalog rule Pns(α), which essentially restricts
the variable to named individuals (see Figure 7). Note that this precisely corre-
sponds to the semantics of nominal schemas, which may only represent named
individuals.

We give an example of an ELROVn axiom α and the corresponding Datalog
rule Pns(α). Let α be the axiom

∃R.{v} u ∃S.{v} v ∃T.{v},



where v is a nominal schema. Then we obtain

π(α) =∀x[πx(∃R.{v} u ∃S.{v})→ πx(∃T.{v})]
=∀x[πx(∃R.{v}) ∧ πx(∃S.{v})→ ∃y[T (x, y) ∧ πy({v})]]
=∀x[∃z[R(x, z) ∧ z ≈ v] ∧ ∃w[R(x,w) ∧ w ≈ v]→ ∃y[T (x, y) ∧ y ≈ v)]]

and thus

Pns(α) = triple(x,R, z) ∧ inst(z, v) ∧ triple(x, S,w) ∧ inst(w, v) ∧ nom(v)

7→ triple(x, T, v)

Finally, we observe the following result.

Theorem 1 (Correctness). Let KB be an ELROVn knowledge base and let
PKB = I(KB) ∪ P ∪ Pns(KB). We have that PKB |= inst(a,C) if and only
if KB |= C(a) for all C ∈ NC and a ∈ NI . Furthermore, execution of PKB
terminates in polynomial time with respect to the size of KB.

Proof. The formal proof of Theorem 1 can be found in the appendix of an ex-
tended technical report available from
http://www.pascal-hitzler.de/pub/elrov13.pdf. The proof is in fact an
adaptation of the arguments used in [16].

4 Implementation and Evaluation

In the technical report [4], we had already given a preliminary report on some
experiments using full grounding (there called naive grounding), and we give
a summary here. These experiments were performed by adding some axioms
with nominal schemas to some ontologies from the TONES repository3, some
slightly modified. We then removed the nominal schemas through full grounding,
and ran the resulting ontologies through Pellet [20]. This round of testing was
performed using a 64-bit Windows 7 computer with an Intel(R) Core(TM) i5
CPU processor. A Java JDK 1.5 version was used allocating 3GB as the minimum
for the Java heap and 3.5GB as the maximum for each experiment.

In order to understand the effect of several nominal schemas on the runtime,
we added three different types of axioms to the ontologies, (1) an axiom with

3 http://owl.cs.manchester.ac.uk/repository/
4 http://www.mindswap.org/ontologies/family.owl
5 http://sweet.jpl.nasa.gov/1.1/data.owl
6 http://www.ordnancesurvey.co.uk/ontology/BuildingsAndPlaces/v1.1/

BuildingsAndPlaces.owl
7 http://www.berkeleybop.org/ontologies/obo-all/worm_phenotype_xp/worm_

phenotype_xp.obo
8 http://reliant.teknowledge.com/DAML/Transportation.owl
9 http://www.co-ode.org/roberts/family-tree.owl

10 http://reliant.teknowledge.com/DAML/Economy.owl

http://www.pascal-hitzler.de/pub/elrov13.pdf
http://owl.cs.manchester.ac.uk/repository/
http://www.mindswap.org/ontologies/family.owl
http://sweet.jpl.nasa.gov/1.1/data.owl
http://www.ordnancesurvey.co.uk/ontology/BuildingsAndPlaces/v1.1/Buildings AndPlaces.owl
http://www.ordnancesurvey.co.uk/ontology/BuildingsAndPlaces/v1.1/Buildings AndPlaces.owl
http://www.berkeleybop.org/ontologies/obo-all/worm_phenotype_xp/worm_pheno type_xp.obo
http://www.berkeleybop.org/ontologies/obo-all/worm_phenotype_xp/worm_pheno type_xp.obo
http://reliant.teknowledge.com/DAML/Transportation.owl
http://www.co-ode.org/roberts/family-tree.owl
http://reliant.teknowledge.com/DAML/Economy.owl


Table 1. Ontologies used in experiments for full grounding and full ground-
ing experimental results. Ind: individuals, Ann: Annotation Properties, Data:
Data Properties, Obj: Object Properties. For the remaining entries, the first
listed number is load time, the second is reasoning time, both in seconds. OOM
indicates out of memory.

Ont Ind Classes Ann Data Obj no ns 1 ns 2 ns 3 ns

Fam4 5 4 0 1 11 0.01 0.00 0.01 0.00 0.01 0.00 0.04 0.02
Swe5 22 189 1 6 25 3.58 0.08 3.73 0.07 3.85 0.10 10.86 1.11
Bui6 42 686 15 0 24 1.70 0.16 1.50 0.15 2.75 0.26 74.00 6.68
Wor7 80 1842 6 0 31 0.11 0.04 0.12 0.05 1.10 0.55 11,832.00 315.00
Tra8 183 445 2 4 89 0.05 0.03 0.05 0.02 5.66 1.76 OOM OOM
FTr9 368 22 2 6 52 0.03 4.28 0.05 5.32 35.53 42.73 OOM OOM
Eco10 482 339 2 8 45 0.04 0.24 0.07 0.02 56.59 13.67 OOM OOM

Table 2. More full grounding experimental results, the first listed number is
load time, the second is reasoning time, both in seconds. OOM indicates out of
memory.

Ontology Individuals no ns 20×1 ns 10×2 ns

Fam 5 0.01 0.00 0.01 0.00 0.02 0.01
Swe 22 3.58 0.08 3.42 0.08 3.73 0.28
Bui 42 2.70 0.16 2.69 0.25 5.70 3.21
Wor 80 0.11 0.04 0.23 0.28 12.42 6.88
Tra 183 0.05 0.03 0.33 0.15 107.57 43.63
FTr 368 0.03 4.28 0.52 11.33 OOM OOM
Eco 482 0.04 0.24 0.65 0.30 OOM OOM

only one nominal schema, (2) an axiom with two different nominal schemas, and
(3) an axiom with three different nominal schemas. An example for an added
axiom is

∃prop1.{v1} u ∃prop2.{v1} u ∃prop3.{v2} u ∃prop4.{v2} v Class1.

Since the blow-up obtained from full grounding is exponential in the number
of nominal schemas, this is already the limit we can manage with non-trivial
ontologies—as can be seen from the results presented in Table 1.

We then investigated the impact of several axioms with nominal schemas on
the performance, by adding 20 axioms with one nominal schema, respectively 10
axioms with 2 nominal schemas. The results can be found in Table 2.

The experiments just given indicate that full grounding is limited to a max-
imum of two or three nominal schemas per axiom, even for relatively small
ontologies. This insight provides the baseline against which to evaluate our al-
gorithm. Our goal is to show that axioms with more nominal schemas can be
handled with reasonable efficiency.



In order to test our approach, we implemented it as front-end to the Java-
based Datalog reasoner IRIS11 [3]. We also used suitable ontologies from the
TONES repository, see Table 3 for some basic metrics.

Table 3. Evaluation ontologies for our algorithm

Ontology Classes Annotation P. Data P. Object P.

Rex12 552 10 0 6
Spatial13 106 13 0 13

Xenopus14 710 19 0 5

Since these ontologies do not contain individuals, but the algorithm requires
individuals to fire the rules, we created three different sets of dummy individuals
of varying size (100, 1000, and 10000 individuals) which were randomly assigned
to concepts and roles. We then added an axiom of the form

l

1≤i≤k

(∃Ri.{zi}) v C,

where k ranged from 1 to 5 in different tests, to evaluate the effect of axioms
with different numbers of nominal schemas.

To obtain a comparison with the full grounding approach, we ran each on-
tology through two tests. The first used our algorithm, with IRIS as underlying
Datalog reasoner. The second test did first perform a full grounding, with sub-
sequent processing by our algorithm. Note that in this case our algorithm essen-
tially coincides with the one reported in [16], thus providing a fair comparison
between our approach and the full grounding approach. In the second case, the
final reasoning was also done using IRIS. We ran the experiments on a laptop
with a 2.4GHz Intel CoreTM i7-3630QM processor and 8GB RAM operated by
Windows 7 64-bit system with Java VM v.1.7.0. We set a time-out of 1 hour and
a Java heap space of 1GB.

Results are listed in Table 4. First note that the full grounding approach
performed similarly to the results reported above using Pellet, i.e., we hit a
limit with 2 or 3 nominal schemas per axiom. Using our algorithm, however, the
number of nominal schemas per axioms had almost no effect on the runtime,
thus indicating that our approach performs very well indeed.

11 http://iris-reasoner.org/
12 http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/

physicochemical/rex.obo
13 http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/caro/

spatial.obo
14 http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/gross_

anatomy/animal_gross_anatomy/frog/xenopus_anatomy.obo

http://iris-reasoner.org/
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/physicochemical/ rex.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/physicochemical/ rex.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/caro/ spatial.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/caro/ spatial.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/gross_ana tomy/animal_gross_anatomy/frog/xenopus_anatomy.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/gross_ana tomy/animal_gross_anatomy/frog/xenopus_anatomy.obo 


Table 4. Evaluation, IRIS reasoning time listed only (no pre-processing, no
load time), in ms. The ”No ns” column refers to the running with no nominal
schemas. Times in brackets are for full grounding, for comparison. If not listed,
full grounding was OOM (Out of Memory)

Ontology Individuals no ns 1 ns 2 ns 3 ns 4 ns 5 ns

Rex (full ground.)
100 263 263 (321) 267 (972) 273 275 259
1000 480 518 (1753) 537 (OOM) 538 545 552
10000 2904 2901 (133179) 3120 (OOM) 3165 3192 3296

Spatial (full ground.)
100 22 191 (222) 201 (1163) 198 202 207
1000 134 417 (1392) 415 (OOM) 421 431 432
10000 1322 1792 (96437) 1817 (OOM) 1915 1888 1997

Xenopus (full ground.)
100 62 332 (383) 284 (1629) 311 288 280
1000 193 538 (4751) 440 (OOM) 430 456 475
10000 1771 2119 (319013) 1843 (OOM) 1886 2038 2102

5 Conclusions and Future Work

In this paper, we have introduced, for the first time, an algorithm for reasoning
over a nominal-schema-extended description logic which scales well. We have
obtained this result by modifying an existing algorithm for EL++. While the
algorithm modification itself is not overly sophisticated, it has taken considerable
time (namely three years since the introduction of nominal schemas in [18]) and
several previous unsuccessful efforts (such as [13,21]) to come up with this first
approach. The main contribution of this paper is thus to show that a reasonable
algorithmization of nominal-schema-extended description logics is feasible at all.

Of course, we consider this work only to be a first step towards the de-
velopment of algorithms for nominal-schema-extended description logics. It is
reasonable to expect that the approach presented herein will in some way ex-
tend to other nominal-schema-extended Horn DLs, however major modifications
will be required in order to step outside the EL family of description logics. It
can also be expected that adaptations of tableaux or resolution-based algorithms
are possible, although the initial efforts mentioned above were only of limited
value. New ideas may be required for further advances.
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Appendix

A Correctness

Lemma 1 (Soundness). Let KB be an ELROVn knowledge base and PKB =
I(KB)∪P ∪Pns(KB). We have that P |= inst(a,C) if KB |= C(a) where C ∈ NC
and a ∈ NI .

Proof. Our proof relies on the soundness proof presented in [16]. As in the pre-
viously mentioned argument, to interpret the atoms derived by P , we define
a function k which maps every constant c in our program to a concept k(c).
Function k is defined as follows:

– if c ∈ NI then k(c) := {c},
– if c = auxα where α = C v ∃R.D, then k(c) := D u ∃R−.C.

The concept used in the second case includes an inverse role, a constructor not
included in ELROVn. The semantics of a concept of the form (∃R−.C) are
defined as follows (∃R−.C)I = {y|〈x, y〉 ∈ RI , x ∈ CI}. As in [16], we assign
meaning to ground atoms of P ∪ Pns as follows:

– inst(c, A) with A ∈ NC : KB |= k(c) v A,
– inst(c, d) with d ∈ NI : KB |= k(c) v d,
– triple(c,R, d) : KB |= k(c) v ∃R.k(d), and
– self(c,R) : KB |= k(c) v ∃R.Self,

and in each case KB implies that k(c) is necessarily non-empty. We have that the
second term in any derived inst predicate must either in NC or NI , so the above
covers all cases. We claim that an atom is entailed by P only if the corresponding
semantic conditions are satised by KB. In particular, this proves the overall claim
of soundness.

For most of the rules in P , it is easy to apply the induction hypothesis
immediately to the body atoms to obtain the desired conclusion in combination
with the axioms of KB that the involved EDB atoms encode. This covers all rules
but (23). To prove soundness of rule (23) we extend the induction hypothesis
argument presented in [16]. Note that this is necessary, as we have added a new
rule (28) to the set P .

Let us first consider the situation. We have that if P |= supProd(R,C,D) ∧
triple(c,R, d) then this implies that KB |= k(d) v D. This conclusion is imme-
diate if we have that d = a for some a ∈ NI but we need to include an induction
based argument to also prove that this is the case when d = auxα. Thus, we
assume that d = auxBv∃V.A and hence k(d) = ∃V −.B u A and prove the fol-
lowing claim: if KB |= R v C ×D and P |= triple(c,R, d) then k(d) v D. We
proceed by induction on the proof tree of P |= triple(c,R, d). Most of the rules
here are already considered in the soundness proof in [16] and hence, when some
argument is repeated we just pointed to the aforementioned publication.

– Rule (9): analogous to rule (9) in [16].



– Rule (13): analogous to rule (13) in [16].
– Rule (15): analogous to rule (15) in [16].
– Rule (16): analogous to rule (16) in [16].
– Rule (17): analogous to rule (17) in [16].
– Rule (18): analogous to rule (18) in [16].
– Rule (19): analogous to rule (21) in [16]
– Rule (28): then we have that self(c,R) which by the induction hypothesis

implies that KB |= k(x) v ∃R.Self and d = c. Hence, it is the case that
KB |= k(d) v ∃R−.> and KB |= k(d) v D.

Note that the induction argument presented in that publication to prove
soundness of rule (23) does not need to be extended for the Datalog rules pro-
duced by Pns(KB). Let α be an ELROVn axiom containing nominal schemas,
by the definition of function Pns(KB) we have that for every Datalog atom
triple(x,R, y) produced as a consequence of triggering a rule Pns(α), where α is
an ELROVn axiom, y = a for some a ∈ NI .

We now proceed to show that inferences produced by Datalog rules of the
form Pns(α) are indeed sound. As defined by our normal form, rules Pns(α)
may be of six different types. We evaluate this six different types of productions
that may appear in P and verify that all of them are indeed sound.

– Fact inst(x,C) produced by datalog rule Pns(α) =
∧
Bi 7→ inst(x,C) where

α = D v C: then, by the definition of Pns,KB |= c(x) v D for some
grounding of the nominal schemas in D and hence KB |= c(x) v C.

– Fact triple(x,R, a) produced by Pns(α) =
∧
Bi 7→ triple(x,R, t): then α =

D v ∃R.{t} ∈ KB and t ∈ NV . By the definition of Pns, we have that
KB |= c(x) v D if every occurrence of nominal schema {t} is grounded to
named individual a for some grounding of the rest of the nominal schemas
in D. Henceforth we have that KB |= c(x) v ∃R.{t}.

– Fact inst(x, a) produced by Pns(α) =
∧
Bi 7→ inst(x, t) where α = D v

{t} ∈ KB and t ∈ NV . By the definition of Pns, we have that KB |= c(x) v
D if every occurrence of nominal schema {t} is grounded to named individual
a for some grounding of the rest of the nominal schemas in D. Henceforth,
we have that KB |= c(x) v {a}.

– Facts inst(a, b) and inst(b, a) produced by Pns(α) =
∧
Bi 7→ inst(u, t) ∧

inst(t, u) where α = D v ∃U.({t}u{u}) and t, u ∈ NV . Then, by definition of
Pns we have that D is non-empty for some grounding of the nominal schemas
where occurrences of {t} and {u} are grounded to named individuals a and b.
Consequently, KB |= inst(a, b), inst(b, a). Note that, by the argument made
in [16], we have that c(x) is always non-empty if we have that inst(x,C) or
triple(x,R, y). This is the case, as every rule Pns(α) contains at least some
of these predicates in the body.

– Fact inst(a,C) produced by Pns(α) =
∧
Bi 7→ inst(t, C) where α = D v

∃U.({t} u C) ∈ KB and t ∈ NV . Then, by definition of Pns we have that D
is non-empty for some grounding of the nominal schemas where occurrences
of {t} are grounded to named individual a and hence KB |= inst(a,C).



– Fact triple(a,R, b) produced by Pns(α) =
∧
Bi 7→ triple(t, R, u) where α =

D v ∃U.({t} u ∃R.{u}) ∈ KB and t ∈ NV . Then, by definition of Pns imply
that D is non-empty for some grounding where occurrences of {t} and {u}
are grounded to named individuals {a} and {b} and thus KB |= inst(a,C).

Theorem 2 (Completeness). Let KB be an ELROVn knowledge base and
PKB = I(KB)∪ P ∪ Pns(KB). We have that it KB |= C(a) then P |= inst(a,C)
where C ∈ NC and a ∈ NI .

Proof. The proof extends on the completeness argument used in [16]. More pre-
cisely, we extend the construction of the model J from [16], extending the bullet
list presented therein.

– α. We have that J |= Pns(α), where α = C v D with C containing some
nominal schemas. If dI ∈ C, then there is some grounding for the nominal
schemas in C that will trigger the execution of rule Pns(α) and produce a
set of facts that imply dI ∈ C for that specific grounding of the nominal
schemas in the axiom.

Note that the addition of rule (28) to the program means that we only have
to check for the triple predicates in rules of the form Pns(α), without checking
for combinations of the self predicate.

Lemma 2 (Termination). Let KB be an ELROVn knowledge base and PKB =
I(KB)∪P ∪Pns(KB). Execution of P terminates in polynomial time with respect
to the original size of KB.

Proof. The number of nominal schemas per ELROVnaxiom α and free variables
in Pns(α) is bounded by n, thus there is a global bound on the number of
variables per rule in KB. Datalog is polynominal in this case.
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