
A Resolution Procedure for Description Logics
with Nominal Schema

Cong Wang and Pascal Hitzler

Kno.e.sis Center, Wright State University, Dayton OH 45435, USA
{cong,pascal}@knoesis.org

Abstract. We present a polynomial resolution-based decision proce-
dure for the recently introduced description logic ELHOVn(u) , which
features nominal schemas as new language construct. Our algorithm is
based on ordered resolution and positive superposition, together with a
lifting lemma. In contrast to previous work on resolution for description
logics, we have to overcome the fact that ELHOVn(u) does not allow
for a normalization resulting in clauses of globally limited size.

1 Introduction

Description Logic (DL) and rule-based formalism are two prominent paradigms
for Knowledge Representation. Although both paradigms are based in classical
logic, they provide different expressivity and neither of them contains the other
one, i.e. there exist axioms in DL which are not expressible in the rules paradigm
and viceversa. Despite significant research efforts [4,5,17], many integrations of
the two paradigms lead to undecidability (see [14] for a survey).

Currently, the most notable language in DLs family is the W3C recommenda-
tion Web Ontology Language (OWL1). OWL can express many rules (see [14]),
but it cannot express many others, such as

hasParent(x, z) ∧ hasParent(x, y) ∧married(y, z)→ C(x) (1)

which defines a class C of children whose parents are married.
One idea for retaining decidability is to restrict the applicability of rules to

named individuals. Rules that are understood in this sense are called DL-safe
rules, and the combination between OWL DL and DL-safe rules is decidable
[21].

Very recently, this idea is found to be able to carry further to description
logic paradigm. Nominal schemas, as a new element of description logic syntax
construct, was introduced in this sense [16]. It does not only further generalize
the notion of DL-safety, but also enables to express the DL-safe rules within the
description logic syntax. Using nominal schemas, rule (1) could be represented
as:

∃hasParent.{z} u ∃hasParent.∃married.{z} v C (2)

1 http://www.w3.org/TR/owl2-overview/

The expression {z} in (2) is a nominal schema, which is a variable that only
binds with known individuals in a knowledge base and the binding is the same
for all occurrences of the same nominal schema in an axiom.

Consequently, a new description logic SROIQVn was introduced, which in-
deed is a extension of OWL 2 DL SROIQ with nominal schemas Vn. It is
decidable and has the same worst-case complexity as SROIQ [16]. SROELVn
is a tractable fragment of SROIQ. And extending SROELVn with role con-
junction on simple roles and concept product would not change its worst-case
complexity [24]. The importance of SROELVn(us,×) is that it can incorporate
OWL EL and OWL RL (two tractable fragments of OWL 2), and to allow re-
stricted semantic interaction between the two. Also, it is more easy for ontology
modelers to write rules in OWL syntax.

Although reasoning for description logic with nominal schema is theoretically
feasible, the simple experiment in [19] shows that the naive approach, based on
full grounding nominal schemas to all known individuals, is extremely slow.
Therefore, it is really necessary to design a *smarter* algorithm. One idea is
to ground nominal schemas in a more intelligent way, e.g. intelligent grounding,
which is quite well known in Answer Set Programming (ASP) field [23]. In [13],
the authors applied this strategy on ALCO with nominal schema, but it needs
a very good heuristics for grounding choices.

Another idea is to find a procedure that could do reasoning without ground-
ing. We apply this idea in the paper by using resolution procedure with a lifting
lemma. In this paper, we restrict SROELVn(us,×) to ELHOVn(u) , which
disallows self role, complex role inclusion (role chain) and concept product, but
allows role conjunction even for complex roles. The reason of this restriction
will be discussed in Section 6. We provide a tractable resolution procedure for
ELHO(u) , then show that the algorithm can also apply for ELHOVn(u) via a
lifting lemma.

The structure of this paper is as follows. Section 2 describes some preliminar-
ies of description logic and resolution procedure. Section 3 presents a tractable,
sound and complete resolution procedure for ELHO(u) . Section 4 extends the
algorithm to deal with ELHOVn(u) . We will provide an example to illustrate
the resolution procedure in Section 5 and then briefly discuss some related works
in Section 6. Finally we conclude.

2 Preliminaries

2.1 Description Logic

We start by introducing the description logic ELHOVn(u) .

A signature of ELHOVn(u) is a tuple Σ = 〈NI ,NC ,NR,NV 〉 of mutually
disjoint finite sets of individual names, concept names, role names, and variables.

Table 1. Semantics of ELHOVn(u)

Name Syntax Semantics

concept name A AI ⊆ 4I

role name R RI ⊆ 4I ×4I

individual name a aI ∈ 4I

variable x Z(x) ∈ 4I

top > 4I

bottom ⊥ ∅
nominal(schema) {t} {tI,Z}
existential restriction ∃R.C {δ| there is ε with 〈δ, ε〉 ∈ RI,Z and ε ∈ CI,Z}
concept conjunction C uD CI,Z ∩DI,Z

role conjunction R u S RI ∩ SI

concept assertion(Abox) A(t) tI,Z ∈AI,Z

role assertion(ABox) R(t, u) 〈tI,Z , uI,Z〉 ∈ RI,Z

TBox axiom C v D CI,Z ⊆ DI,Z

RBox axiom R v S RI ⊆ SI

Definition 1. The role sets R of ELHOVn(u) and the concept sets C of ELHOVn(u)
are defined by the following grammar:

R ::= R | R uR

C ::= > | ⊥ | NC | {NI} | {NV } | C uC | ∃R.C

Definition 2. An interpretation I = (4I , ·I) consists of a domain of discourse
4I 66= ∅ and a function ·I which maps NC ,NR, and NI to elements, sets and
relations of 4I as shown in Table 1. A variable assignment Z for an interpre-
tation I is a function Z : NV → 4I such that for each v ∈ NV , Z(v) = aI for
some a ∈ NI . For any interpretation I, assignments Z, and C(i) ∈ C, R(i) ∈ NR,
t(i) ∈ T, the function ·I,Z is defined as shown in Table 1.

I and Z satisfy a ELHOVn(u) axiom α, written I,Z |= α, if the correspond-
ing condition shown in Table 1 holds. I satisfies α, written I |= α, if I,Z |= α
for all variable assignments Z for I. I satisfies a ELHOVn(u) knowledge base
KB, written I |= KB, if I |= α for all α ∈ KB, and KB is satisfiable if such
an I exists. The axiom α is entailed by KB, written KB |= α, if all models of
KB are also models of α.

If α is a ELHOVn(u) axiom, we call ground(α) as the set of all axioms
that can be obtained by uniformly replacing nominal schemas in α with in-
dividuals in NI . Given a ELHOVn(u) knowledge base KB, ground(KB) :=⋃
α∈KB ground(α).

Example 1. If a ELHOVn(u) KB contains ∃R.{z1} u A v ∃S.{z2} and known
individuals a and b. Then, ground(KB) = {∃R.{a}uA v ∃S.{a}, ∃R.{a}uA v
∃S.{b}, ∃R.{b} uA v ∃S.{a},∃R.{b} uA v ∃S.{b}}.

Table 2. Translating ELHOVn(u) into First Order Logic

Translating Concepts into FOL

πx(⊥) = ⊥
πx(>) = >
πx(A) = A(x)

πx(C uD) = πx(C) ∧ πx(D)
πx(∃R.C) = ∃y.[R(x, y) ∧ πy(C)]

πx({z}) = x ≈ z
Translating TBox Axioms without nominal schemas into FOL

π(C v D) = ∀x : [πx(C)→ πx(D)]
π(R v S) = ∀x∀y : [R(x, y)→ S(x, y)]

π(R u S v T) = ∀x∀y : [R(x, y) ∧ S(x, y)→ T (x, y)]

Translating ABox Axioms without nominal schemas into FOL

π(C(a)) = C(a)
π(R(a, b)) = R(a, b)

Translating Axioms containing nominal schemas into FOL

π(C v D) = ∀x∀z1 . . .∀zn : [O(z1) ∧ . . . ∧O(zn)→ [πx(C)→ πx(D)]]
where z1, . . . , zn are variables in C or D (*)

Translating KB into FOL

π(KB) =
∧
α∈KBT∪KBA∪KBR

π(α)

2.2 Translating ELHOVn(u) into First Order Logic

The first step in deciding satisfiability by resolution procedure is to transform
KB into a set of clauses in first order logic. We apply the well-known FOL
translation for DLs in [6], and also show how to translate nominal schemas into
first order logic.

Definition 3. Let O(x) = x ≈ a1 ∨ x ≈ a2 ∨ . . . ∨ x ≈ an be a first order logic
predicate symbol, where ak(1 ≤ j ≤ n) ∈ NI . The ≈ symbol refers to the first
order logic equality.

Table 2 shows such DL-to-FOL translation. The translation from DL to FOL
is straightforward based on the semantics of DL. We just make it clear for axioms
containing nominal schemas, which the formula (*) in Table 2 states.

From Definition 2, an interpretation I satisfies α, if I,Z |= α for all variable
assignments Z for I. That is to say, if I satisfies an axiom α which contains
nominal schema z1, . . . , zn, I must satisfy ground(α). Suppose aj ∈ NI(1 6 j 6
m) in a KB. I must satisfy

∧n
i=1

∧m
j=1((zi ≈ aj) → π(α)). From Definition 3,∧m

j=1[zi ≈ aj → π(α)]=O(zi)→ π(α). Therefore,
∧n
i=1(O(zi)→ π(α))=O(z1) ∧

. . . ∧ O(zn) → π(α). So, we get the formula (*) π(C v D) = ∀x∀z1 . . . ∀zn :
(O(z1) ∧ . . . ∧O(zn)→ (πx(C)→ πx(D))), where z1, . . . , zn are in C or D.

Example 2. Given two DL axioms containing three nominal schemas z1, z2 and
z3, α = ∃R.{z} v C, β = ∃R.{z1} u ∃S.{z2} v ∃T.{z3}. The corresponding first
order logic translations of α and β according to Table 2 are, π(α) = O(z) →

[R(x, z) → C(x)], π(β) = [O(z1) ∧ O(z2) ∧ O(z3)] → [(R(x, z1) ∧ S(x, z2)) →
T (x, z3)].

2.3 Ordered Resolution

Ordered resolution [3] is a widely used calculus for theorem proving in first order
logic. The calculus has two parameters, an admissible ordering � on literals and
a selection function.

An ordering � on literals is admissible if (1) it is well-founded, stable under
substitutions, and total on ground literals; (2) ¬A � A for all ground atoms A;
and (3) B � A implies B � ¬A for all atoms A and B. A literal L is (strictly)
maximal with respect to a clause C if there is no other literal L

′ ∈ C such that
(L

′ � L)L
′ � L. A literal L ∈ C is (strictly) maximal in C if and only if L is

(strictly) maximal with respect to C\L. [6]
A selection function S assigns to each clause C a subset of negative literals

of C (empty possibly); the literals are said to be selected if they are in S(C).
No other restrictions are imposed on the selection function, i.e., any arbitrary
functions mapping to negative literals are allowed.

With R we denote the ordered resolution calculus, consisting of the following
inference rules, where D ∨ ¬B is called the main premise. C ∨ A is called the
side premise, and Cσ ∨Dσ is called conclusion:

Ordered Resolution:
C ∨A D ∨ ¬B

Cσ ∨Dσ
where (1) σ = mgu(A,B), (2) Aσ is strictly maximal with respect to Cσ, and
no literal is selected in Cσ ∨ Aσ, (3) ¬Bσ is either selected in Dσ ∨ ¬Bσ, or it
is maximal with respect to Dσ and no literal is selected in Dσ ∨ ¬Bσ.

For general FOL, there is another rule needed, called Positive factoring. It re-
solves two positive literals in one clause. However, since the target logic language
in the paper is a Horn logic, such that this rule is not required any more.

2.4 Superposition

Translation ELHOVn(u) into FOL will produce equality symbol. In order to
deal with equality, we also need superposition, a calculus for equational theorem
proving.

Positive superposition:
(C ∨ s ≈ t) · p (D ∨ w ≈ v) · p

(C ∨D ∨ w[t]p ≈ v) · θ
where (i) σ = mgu(sp, wp|p) and θ = pσ, (ii) tθ 6� sθ and vθ 6� wθ, (iii) (s ≈ t)·θ
is strictly eligible for superposition in (C ∨ s ≈ t) · θ, (iv) (w ≈ v) · θ is strictly
eligible for superposition in (D ∨ w ≈ v) · θ, (v) sθ ≈ tθ 6� wθ ≈ vθ, (vi) w|p is
not a variable.

Superposition [20] contains 4 rules, positive superposition, negative super-
position, reflexivity resolution and equality factoring. However, due to the pre-
process in Section 3, only positive superposition is needed. Since negative su-
perposition and reflexivity resolution need clauses containing 6≈, which will not
occur in ELHOVn(u) clauses. Also, since ELHOVn(u) is a Horn logic, therefore,

Table 3. normal forms of ELHO(u) axioms

A v ⊥ ⊥ v C A v C A uB v C ∃R.A v C A v ∃R.B
∃R.{a} v C A v ∃R.{a} A v {a} {a} v A R v T R u S v T

equality factoring, which requires two positive literals in the premise, cannot be
applied.

Ordered resolution and superposition are sound and complete algorithms
for first order logic [3]. But, with different settings of the order and selection
function, the procedure may be terminated or not.

3 Deciding Satisfiability of ELHO(u) by Resolution
Procedure

In order to make the resolution procedure simpler, we first eliminate some equal-
ity literals such that the clauses contains only positive equality literals. Then we
use the well-known structure transformation [20] to get ELHO(u) normal forms.

3.1 Eliminating Equality Literals

Superposition rules are designed to deal with equality in saturating first order
logic clauses. However, some superposition inferences often make the resolution
procedure very complicated. Directly translating of DL to FOL may contain
negative equality literals. We use the following equivalent translation to eliminate
negative equality literals, such that only positive superposition can be applied.

For DL concepts containing a nominal {a}, πx(∃R.{a}) = ∃y.[R(x, y) ∧ y ≈
a] = R(x, a), πx({a} u C) = x ≈ a ∧ πx(C) = πa(C). For DL axioms containing
a nominal {a}, πx({a} v C) = C(a). For C v {a}, we still directly translate it
into FOL, i.e., ¬C(x) ∨ x ≈ a.

Similarly, for DL concepts containing a nominal schema {z}, πz(∃R.{z}) =
R(x, z), πx({z}uC) = πz(C). For DL axioms containing a nominal schema {z},
πx({z} v C) = O(z)→ (x ≈ z → πx(C)) = (O(z) ∧ x ≈ z)→ πx(C) = O(x)→
πx(C). For C v {z}, C is either empty or the subconcept of each individual.
Without losing generality, we assume that no concept C can be subconcept of
each individual. Therefore, C has to be empty, πx(C v {z}) = πx(C v ⊥).

After such transformation, all negative equality literals can be eliminated.

Example 3. For DL axiom α = ∃R.{z}u{z} v C, where {z} is a nominal schema,
π(α) = O(z)→ [πx(∃R.{z} u {z})→ πx(C)] = [O(z)∧ (x ≈ z)∧ πx(∃R.{z})]→
πx(C) = ¬O(x) ∨ ¬R(x, x) ∨ C(x).

3.2 Preprocessing

All the ELHO(u) axioms can be translated into normal forms in Table 3 in poly-
nomial time using the structure transformation [20]. Table 4 shows all possible

clause types appearing in ELHO(u) saturation. We first give the definition of
Ξ(KB), which denotes the FOL clause set of a ELHO(u) KB.

Definition 4. The set of clauses Ξ(KB), encoding an ELHO(u) knowledge
base KB in FOL, is defined as follows:

– For each ABox or RBox axiom α in KB , π(α) ∈ Ξ(KB).
– For each TBox axiom C v D in KB , π(C v D) ∈ Ξ(KB).
– For each TBox axiom C ≡ D in KB , π(C v D) ∈ Ξ(KB) and π(D v C) ⊆
Ξ(KB).

Theorem 1. Let KB be an ELHO(u) knowledge base. Then, the following
claims hold:

– KB is satisfiable if and only if Ξ(KB) is satisfiable.
– Ξ(KB) can be computed in polynomial time in the |KB|.

Proof. From Definition 4, equisatisfiability of KB and Ξ(KB) is trivial to check
[6]. All the ELHO(u) axioms can be translated into the normal forms of Table
3 in polynomial time, and translating from DL normal forms into first order
logic clauses is in polynomial time. Therefore, Ξ(KB) can be computed in time
polynomial in the |KB|.

3.3 Deciding ELHO(u)

Now we are ready to show that the resolution procedure for ELHO(u) is in time
polynomial in |KB|.

Definition 5. Let RDL denote the ordered resolution calculus R with positive
superposition parameterized as follows:

– The literal ordering is an admissible ordering � such that f � c � R � A,
for all function symbol f , constant symbol c, binary predicate symbol R and
unary predicate symbol A.

– The selection function selects every negative maximal binary literal in each
clause.

Next, we enumerate all RDL inferences between clauses and show that every
conclusion is one of clause types of Table 4. With [n, m] [k] we denote an
inference between clause type n and m resulting in clause type k, where n, m, k
are integers.

Lemma 1. Each RDL inference, when applied to ELHO(u) -clauses, produces
a ELHO(u) -clause type in Table 4. The maximum length of each clause is 3.
And the number of clauses different up to variable renaming is polynomial in
|KB|.

Table 4. ELHO(u) -clause types

(1) ¬A(x) (11) ¬A(x) ∨ f(x) ≈ a
(2) C(x) (12) a ≈ b
(3) ¬A(x) ∨ C(x) (13) ¬R(x, y) ∨ S(x, y)
(4) ¬A(x) ∨ ¬B(x) ∨ C(x) (14) ¬R(x, y) ∨ ¬S(x, y) ∨ T (x, y)
(5) ¬R(x, y) ∨ ¬A(y) ∨ C(x) (15) (¬)A(a)
(6) ¬A(x) ∨R(x, f(x)) (16) (¬)R(a, b)
(7) ¬A(x) ∨B(f(x)) (17) ¬A(x) ∨ ¬R(x, f(x)) ∨ S(x, f(x))
(8) ¬A(x) ∨R(x, a) (18) ¬A(x) ∨ ¬B(f(x)) ∨ C(f(x))
(9) ¬R(x, a) ∨A(x) (19) ¬A(x) ∨ ¬B(f(x)) ∨ C(x)
(10) ¬A(x) ∨ x ≈ a

Proof. The ordered resolution inferences are possible between the following clauses.
[2, 3] [2], [2, 4] [3]. [6, 5] [19], [6, 13] [6], [6, 14] [17]. [7, 3]
[7],[7, 4] [18], [7, 10] [11], [7, 15] [1]. [8, 5] [3] with unifying x to a,
[8, 9] [3], [8, 13] [8], [8, 14] [17] with unifying x to a, [8, 16] [15].
[15, 1] ⊥, [15, 3] [15], [15, 4] [3] with unifying x to a, [15, 15] ⊥.
[16, 5] [3] with unifying x to a and y to b, [16, 9] [15], [16, 16] [15].

The positive superposition inferences are possible between the following clauses.
[6, 11] [8], [7, 11] [3] with unifying x to a, [8, 12] [8]. [10, 12] [10].

(18) ¬A(x) ∨ ¬B(f(x)) ∨ C(f(x)) can only resolve with clause (7) ¬A(x) ∨
B(f(x)) or (2) B(x), and produce clause (7) ¬A(x) ∨ C(f(x)). Since ordered
resolution only resolves on maximal literals, thus literal ¬A(x) in clause type
(7) can never participate. In addition, due to that every function symbol is
unique after skolemization, there is no other clauses in clause type (7) containing
B(f(x)). Since ¬B(f(x)) in (18) has to resolve with B(f(x)) or B(x), (18)
¬A(x) ∨ ¬B(f(x)) ∨ C(f(x)) can only resolve with clause ¬A(x) ∨ B(f(x)) or
B(x). Similarly, (17) ¬A(x)∨¬S(x, f(x))∨ T (x, f(x)) can only resolve with (6)
¬A(x)∨ S(x, f(x)) producing (6) ¬A(x)∨ T (x, f(x)), (19) ¬A(x)∨¬B(f(x))∨
C(x) can only resolve with (2) and (3) producing (3).

Any other inferences are not applicable. Therefore, every clause is one of the
clause types of Table 4, and the maximum length of clauses is 3. Let c be the
number of unary predicates, r the number of binary predicates, f the number
of unary function symbols, and i the number of constants in the signature of
Ξ(KB). Then, trivially c, r, f and i are linear in |KB|. Consider now the
maximal ELHO(u) -clause of type 5 in Table 4. There are possibly at most
rc2 clauses of type 5. The number of clauses is polynomial in |KB|. For other
ELHO(u) -clause types, the bounds on the length and on the number of clauses
can be derived in an analogous way. Therefore, the number of ELHO(u) -clauses
different up to variable renaming is polynomial in |KB|.

Theorem 2. For an ELHO(u) knowledge base KB, saturating Ξ(KB) by RDL
decides satisfiability of KB and runs in time polynomial in |KB|.

Proof. The number of clauses by translating KB is polynomial in |KB|. By
Lemma 1, the length of every clauses derivable by RDL is at most 3. And each
inference can be performed polynomially. Hence, the saturation terminates in
polynomial time. Since RDL is sound and complete [3], therefore RDL decides
satisfiability of Ξ(KB) in time polynomial in |KB|.

4 Deciding Satisfiability of ELHOVn(u) by Resolution
Procedure

ELHOVn(u) axioms may contain several nominal schemas or one nominal schema
appearing in different positions of an axiom. In such situation, normalization
of axioms becomes difficult. For example, ∃R.(C u ∃S.{z}) v ∃R.{z}, since
{z} binds to the same variable, the axiom can not be normalized. ∃R.(C u
∃S.{z}) v ∃R.{z} has to be translated into first order logic directly, which is
¬O(z) ∨ ¬R(x, y) ∨ ¬C(y) ∨ ¬S(y, z) ∨ R(x, z). Hence, there are possibly very
complex clauses. In order to solve such issue, we use a lifting lemma to show
show the resolution procedure for ELHOVn(u) is still polynomial in |KB|.

In general, the lifting lemma states that reasoning on a ELHOVn(u) KB
without grounding nominal schemas takes fewer steps or produces fewer clauses
than reasoning on the grounding KB. Since after grounding all the nominal
schemas to nominals, ELHOVn(u) KB becomes actually ELHO(u) KB. And
since we already showed that the resolution procedure for ELHO(u) is polyno-
mial in Theorem 2, therefore reasoning on a ELHOVn(u) KB is still polynomial.

At first, we need to define safe environment and ground+(KB). The intuition
behind of safe environment is to restrict the KB with tree-shaped dependencies
in order to avoid exponential blow-up (see details in [16]). Then, we show that
the size of ground+(KB) is polynomial in |KB.

Definition 6. An occurrence of a nominal schema x in a concept C is safe if C
has a sub-concept of the form {a}u∃R.D for some a ∈ NI , such that D contains
the occurrence of {x} but no other occurrence of any nominal schema. In this
case, {a} u ∃R.D is a safe environment for this occurrence of {x}. S(a, x) will
sometimes be used to denote an expression of the form {a}u∃R.D within which
{x} occurs safe.

Definition 7. We define a ELHOVn(u) knowledge base ground+(KB) as fol-
lows. The RBox and ABox of ground+(KB) are the same as the RBox and ABox
of KB. For each TBox axiom α = C v D ∈ KB, the following axioms are added
to ground+(KB):

1. For each nominal schema {x} safe for α, with safe occurrences in environ-
ments Si(ai, x) for i = 1, . . . , l, introduce a fresh concept name Ox,α. For
every individual b ∈ NI in KB, ground+(KB) contains an axiom

l⋂
i=1

∃U.Si(ai, b) v ∃U.({b} uOx,α),

2. A concept C ′ is obtained from C as follow. Initialize C ′ := C. For each
nominal schema {x} that is safe for α: (a) replace all safe occurrences S(a, x)
in C ′ by {a}; (b) replace the non-safe occurrence (if any) of {x} in C ′ by
Ox,α; (c) set C ′ := C ′u∃U.Ox,α. After these steps, C ′ contains only nominal
schemas that are not safe for α, and neither for C ′ v D.

Now add axioms ground(C ′ v D) to ground+(KB).

Theorem 3. Given a ELHOVn(u) knowledge base KB, the size of ground+

(KB) is exponential in n and polynomial in |KB| [16].

From Theorem 3, we know that deciding ELHOVn(u) is in polynomial time.
We also showed that resolution for SROEL(us,×) is a polynomial algorithm
in Section 3. Now, we are ready to bridge the gap by the lifting lemma. Before
giving the lifting lemma, the ordered resolution parameters must be redefined.

Definition 8. Let RODL denote the resolution calculus RDL parameterized as
follows:

– The literal ordering is an admissible ordering � such that f � c � R � O �
A, for all function symbol f , constant symbol c, binary predicate symbol
R, unary predicate symbol A and first order logic predicate O for nominal
schemas.

– The selection function selects every negative maximal binary literal in each
clause.

Lemma 2 (lifting lemma). For a ELHOVn(u) knowledge base KB, clause
C ∈ Ξ(KB) and D ∈ Ξ(KB), if C can resolve with D, then there must exist
at least one resolution inference between a clause C ′ ∈ ground(C) and D′ ∈
ground(D).

Proof. We show this lemma by proving contradiction, which is to show the
statement that if there is no clause C ′ ∈ ground(C) can resolve with clause
D′ ∈ ground(D), then C can not resolve with D. Without losing generality, we
assume C in clause type (n) and D in clause type (m). We denote [n 6∼ m] by
clause type (n) cannot resolve with clause type (m). There are two possibilities.

– Clause type (n) and clause type (m) can resolve, but the resolved literals are
not on the same predicate name. So no matter the clauses are grounded or
not, they cannot resolve.

– Clause type (n) and clause type (m) cannot resolve. So we need to show
they cannot resolve even before grounding. We enumerate all the impossible
resolution cases. For ordered resolution inference, [2 6∼ 5], because before
grounding, ¬A(x) is not selected and not the maximal literal, so C(x) in
(2) cannot resolve with ¬A(x) in (5). Similarly, we have [2 6∼ 6, 7, 8, 10, 11]
and [7 6∼ 5, 6, 7, 8, 9, 10, 11]. For positive superposition, [6 6∼ 10, 12], because
violate the condition of positive superposition before grounding. Similarly,
[7 6∼ 10, 12] and also [10 6∼ 11].

Therefore, if there is no clause C ′ ∈ ground(C) which can resolve with clause
D′ ∈ ground(D), then C can not resolve with D. Hence, as for clause C ∈ Ξ(KB)
and D ∈ Ξ(KB), if C can resolve with D, then there must exist at least one
resolution inference between a clause C ′ ∈ ground(C) and D′ ∈ ground(D).

Theorem 4. Given an ELHOVn(u) knowledge base KB, saturating Ξ(KB) by
RODL decides satisfiability of KB and runs in time polynomial in |KB|.

Proof. By the lifting lemma, reasoning on clauses before grounding take fewer
steps than the clauses after grounding. By theorem 3, we know that reasoning on
ground+(KB) is in polynomial time in |KB|. We also know that the resolution
procedure for ELHO(u) is in polynomial time by Theorem 2 and ground+(KB)
is a ELHO(u) KB. Therefore, the resolution procedure for ELHOVn(u) KB
takes fewer steps than ground+(KB), and soRODL decides satisfiability of Ξ(KB)
in time polynomial in |KB|.

The proof is closely relevant with the order and selection parameter of ordered
resolution. If we change the setting of the parameters, the lifting lemma might
not hold.

To the best of our knowledge, this parameter setting of the order and select
function is best. If O has the highest order among all predicates, then the clauses
which contain O cannot resolve with others unless O(x) literals are resolved.
Thus, it has no difference with full grounding method, because resolving O(x) is
actually grounding x with all known individuals. If f � O � P , where P denotes
the DL predicate name, ¬A(x)∨R(x, f(x)) and ¬O(z)∨¬R(x, z)∨S(x, z) cannot
resolve. That is to say, we still need to ground O(x) in some clauses. If we set the
parameter as f � R � O � A, ¬A(x)∨R(x, f(x)) and ¬O(z)∨¬R(x, z)∨S(x, z)
can resolve. So it delays the grounding even later. However, if we force O to be
the lowest order, there are undesired clauses violating termination. Therefore,
we choose f � R � O � A as the order.

There are several reasons that resolution procedure can be much more effi-
cient than the naive full grounding method. First of all, the number of clauses
translated from ELHOVn(u) knowledge base KB is much fewer than the num-
ber of clauses of ground+(KB). Secondly, some clauses cannot do any further
resolution, such that they can be seen as redundant clauses. For example, resolv-
ing ¬A(x)∨R(x, f(x)) and ¬O(z)∨¬R(x, z)∨B(x) produces a clause containing
¬O(f(x)). However, ¬O(f(x)) cannot resolve with any others, because there are
only positive literal of O(a) in KB and thus ¬O(f(x)) cannot unify with oth-
ers. For the resolution procedure, we can even apply the powerful redundancy
technique to reduce the number of clauses [6], e.g., all the tautologies can be
removed directly in the resolution procedure.

After saturation, we can reduce all the clauses into a disjunctive datalog
program DD(KB). The program DD(KB) entails the same set of ground facts
as KB, Thus, instance checking in KB can be performed as query answering
in DD(KB). Database systems usually contain Datalog reasoning and compute
query answers in one pass efficiently, either bottom-up or top-down. Especially,
when KB containing nominal schemas, the decision procedure needs to do a lot

of Instance Checking implicitly. So resolution approach is particularly suitable
for nominal schemas. Comparatively, tableau algorithms might need to run for
each individual in ABox. (see more details about disjunctive datalog program in
[6])

5 Examples

We now present a rather simple example that points out how the resolution
procedure works and why it’s more efficient than full grounding approach in
general. Intuitively, our approach delays grounding only when it’s necessary to
do so.

Consider the following clearly unsatisfiable KB containing nominal schema.
KB = {
∃hasParent.{z} u ∃hasParent.∃married.{z} u Teen v Child,
hasParent(john,mark),
hasParent(john,mary),
married(mary,mark),
T een(john),
¬Child(john)}

We first translate all the DL axioms into first order logic clauses.
Ξ(KB) = {
(1) ¬O(z) ∨ ¬hasParent(x, z) ∨ ¬hasParent(x, y) ∨ ¬married(y, z)

∨ ¬Teen(x) ∨ Child(x)
(2) hasParent(john,mark),
(3) hasParent(john,mary),
(4) married(mary,mark),
(5) Teen(john),
(6) ¬Child(john)}
Ξ(KB) also contains O(john), O(mary) and O(mark) because they are

known individuals. By saturating Ξ(KB) we obtain the following clauses (the
notation R(n,m) means that a clause is derived by resolving clauses n and m):

(7) ¬O(mark)∨¬hasParent(john, y)∨¬married(y,mark)∨¬Teen(john)
∨ Child(john) R(1,2)

(8) ¬O(mark) ∨ ¬married(mary,mark) ∨ ¬Teen(john)
∨ Child(john) R(7,3)

(9) ¬O(mark) ∨ ¬Teen(john) ∨ Child(john) R(8,4)
Since O symbol has a higher order than unary predicate, (9) ¬O(mark) ∨

¬Teen(john)∨Child(john) will resolve withO(mark) and produce (10) ¬Teen(john)∨
Child(john).

(11) Child(john) R(10,5)
(12) ⊥ R(11,6)
Now, we can see that the O symbol literal is resolved at the very last. That

is to say, the grounding of nominal schemas in such procedure has been delayed.
However, if we use the full grounding approach, the KB will contain clause
∃hasParent.{john} u ∃hasParent.∃married.{john} u Teen v Child, which is

absolutely unnecessary for inference. Consider KB has even more irrelevant
known individuals, it will generate even more useless clauses. Therefore, clearly,
our approach is much better than the full grounding one.

6 Related Work and Discussion

There are several algorithms particularly for EL family, but none of them can
be easily to extend to DLs containing nominal schemas. For SROEL(us,×),
the only reasoning approach was proposed in [15]. Instead of using traditional
tableau method, all DL axioms are rewritten into a set of datalog rules. How-
ever, it is unclear how to translate nominal schemas into such rules. Since all of
the rewriting rules apply on the normal forms, but axioms containing nominal
schemas are not able to be normalized to the best of our knowledge. Also, we
do not know how to extend completion-rule based algorithm [1] and the recently
concurrent algorithm [9,8], because they also need to normalize axioms at first.
In [13], the author tried to apply a selective and delayed grounding technique to
decide ALCO extended with nominal schemas. The advantage is the technique
can easily extend to more expressive logic, such as SROIQVn. But it is hardly
to say such algorithm is suitable for DLs with nominal schemas, because one has
to find a very good heuristics for grounding choices.

When we want to extend our resolution procedure to capture general role
chain, it becomes much more difficult. The possible cyclic role chain axioms
can do self-resolution, which prevent termination. For example, a transitive re-
lation S satisfies S(a, b) ∧ S(b, c) → S(a, c) can resolve with itself to yield a
new clause S(a, b) ∧ S(b, c) ∧ S(c, d) → S(a, d) and so on. In [10], the problem
was partially solved by eliminating transitive role with another equisatisfiable
axiom containing universal quantifier. In [2], the authors developed a so-called
ordered chaining rule based on standard techniques from term rewriting. It can
deal with binary relations with composition laws of the form R ◦ S v U in the
context of resolution-type theorem proving. However, the approach applies even
more restricted order on role predicates than the acyclic role chains in SROIQ.
So it can not solve the problem of general role chain neither. To the best of
our knowledge, there is no resolution procedure that can deal with general role
chain. And hence, it becomes to our next goal.

The extension of our algorithm to deal with cross-products becomes in-
tractable for conjunction of roles. The reason is that using extended role hierar-
chies, it is possible to express inclusion axioms with universal value restrictions
of form C v ∀R.D, or equivalently, inclusion axioms with inverse roles of form
∃R−.C v D which were shown to cause intractability in [1]. Indeed, these ax-
ioms are expressible using three inclusion axioms: C × > v S, S u R v H and
H v >×D, where S and H are fresh role names [7].

The extension of ELHO(u) with self role should not affect tractability, al-
though it may cause clauses have longer length. For example, consider the fol-
lowing KB = {C v ∃R.Self, D v ∃S.Self, RuS v T}. After saturation, Ξ(KB)
contains ¬C(x) ∨ ¬D(x) ∨ T (x, x), which may resolve with other role conjunc-

tion axioms and so forth. So it is possible to have clauses with longer length,
like ¬C1(x) ∨ . . . ∨ ¬Cn(x) ∨ R(x, x). However, we conjecture that the number
n in ¬C1(x) ∨ . . . ∨ ¬Cn(x) ∨ R(x, x) is linear to the number of concept names
in KB. So the resolution procedure for ELHO(u) with self role should be still
in polynomial time. Due to that we want to keep this paper easier to read, we
disallow self role constructor.

More problems will occur when extending to more expressive description
logic SROIQVn. When translating SROIQVn into first order logic, since one
nominal schema can appear at different positions in an axiom, such that the
number of corresponding FOL clauses can be exponential blow-up. For example,
for such a DL axiom, (∃R1.{z} t ∃S1.{z}) u . . . u (∃Rn.{z} t ∃Sn.{z}) v C,
since we cannot normalize it into smaller axioms, it has to be translated into a
number of clauses in conjunctive normal form, and the number of such clauses
is exponential blow-up.

Although theoretically optimal, the resolution procedure may not be scalable
in practice. The reason seems to be that, despite optimizations, resolution still
produces many unnecessary clauses (see discussion in [25]). Another algorithm,
called hypertableau, seems to be very potential to efficiently deal with nominal
schemas. Hypertableau algorithm takes unnormalized DL-clauses to infer based
on the hypertableau rule. It can avoid unnecessary nondeterminism and the
construction of large models, which are two primary sources of inefficiency in the
tableau-based reasoning calculi [22]. We believe that the idea of the lift lemma
can also work for hypertableau method, such that we may use the similar way
to prove the feasibility of hypertableau for nominal schemas.

Nominal schemas have even more good properties. In [11,12], the author
describes nominal schemas allow not only for a concise reconciliation of OWL
and rules, but also that the integration can in fact be lifted to cover established
closed world formalisms on both the OWL and the rules side. More precisely,
they endow SROIQ with both nominal schemas and a generalized semantics
based on the logic of minimal knowledge and negation as failure (MKNF). The
latter is non-monotonic and captures both open and closed world modeling.

7 Conclusion and Future work

In this paper, we provide a polynomial resolution procedure for the description
logic language ELHOVn(u) . We show that the algorithm is sound, complete
and tractable. For future work, the main task is to implement the algorithm
and compare it with the tableau approach with selective grounding strategy.
We will also look into the hypertableau method to see if it can be extended.
In general, we hope to develop a more efficient algorithm to be applicable for
SROELVn(us,×), SROIQVn(us,×) and even more powerful DL languages.

Acknowledgements. This work was supported by the National Science Foun-
dation under award 1017225 “III: Small: TROn—Tractable Reasoning with On-
tologies.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI. pp. 364–369. Professional Book Center (2005)

2. Bachmair, L., Ganzinger, H.: Ordered chaining for total orderings. In: Bundy, A.
(ed.) CADE. Lecture Notes in Computer Science, vol. 814, pp. 435–450. Springer
(1994)

3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier and
MIT Press (2001)

4. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D. (eds.):
RIF Core Dialect. W3C Recommendation (22 June 2010), available at http://

www.w3.org/TR/rif-core/

5. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A Semantic Web Rule Language. W3C Member Submission (21 May 2004), see
http://www.w3.org/Submission/SWRL/

6. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a Resolution Framework. Tech. Rep. 3-8-04/04, FZI, Germany (2004)

7. Kazakov, Y.: Saturation-based decision procedures for extensions of the guarded
fragment. Ph.D. thesis, Saarlndische Universitts- und Landesbibliothek, Post-
fach 151141, 66041 Saarbrcken (2005), http://scidok.sulb.uni-saarland.de/

volltexte/2007/1137

8. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: Practical reasoning with nominals in
the EL family of description logics. In: Brewka, G., Eiter, T., McIlraith, S.A.
(eds.) Proceedings of the 13th International Conference on Principles of Knowledge
Representation and Reasoning (KR’12). pp. 264–274. AAAI Press (2012)

9. Kazakov, Y., Krtzsch, M., Simank, F.: Concurrent classification of el ontologies
(2011), to appear

10. Kazakov, Y., Motik, B.: A resolution-based decision procedure for shoiq. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 4130,
pp. 662–677. Springer (2006)

11. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9-10), 1528–1554 (2011)

12. Knorr, M., Mart́ınez, D.C., Hitzler, P., Krisnadhi, A.A., Maier, F., Wang, C.: Re-
cent advances in integrating owl and rules (technical communication). In: Krötzsch
and Straccia [18], pp. 225–228

13. Krisnadhi, A., Hitzler, P.: A tableau algorithm for description logics with nominal
schema. In: Krötzsch and Straccia [18], pp. 234–237

14. Krisnadhi, A., Maier, F., Hitzler, P.: Owl and rules. In: Polleres, A., d’Amato,
C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P.F.
(eds.) Reasoning Web. Lecture Notes in Computer Science, vol. 6848, pp. 382–415.
Springer (2011)

15. Krötzsch, M.: Efficient inferencing for OWL EL. In: Janhunen, T., Niemelä, I. (eds.)
Proceedings of the 12th European Conference on Logics in Artificial Intelligence
(JELIA’10). LNAI, vol. 6341, pp. 234–246. Springer (2010)

16. Krötzsch, M., Maier, F., Krisnadhi, A., Hitzler, P.: A better uncle for owl: nominal
schemas for integrating rules and ontologies. In: Srinivasan, S., Ramamritham, K.,
Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) WWW. pp. 645–654.
ACM (2011)

17. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In: Sheth,
A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) Proceedings of the 7th International Semantic Web Conference (ISWC’08).
LNCS, vol. 5318, pp. 649–664. Springer (2008)

18. Krötzsch, M., Straccia, U. (eds.): Web Reasoning and Rule Systems - 6th Interna-
tional Conference, RR 2012, Vienna, Austria, September 10-12, 2012. Proceedings,
Lecture Notes in Computer Science, vol. 7497. Springer (2012)

19. Martinezi, D.C., Krisnadhi, A., Maier, F., Sengupta, K., Hitzler, P.: Reconciling
owl and rules. Tech. rep., Kno.e.sis Center, Wright State University, Dayton, OH,
U.S.A. (2011), available from http://www.pascal-hitzler.de/

20. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (Jan-
uary 2006)

21. Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. In: McIl-
raith, S.A., Plexousakis, D., van Harmelen, F. (eds.) International Semantic Web
Conference. Lecture Notes in Computer Science, vol. 3298, pp. 549–563. Springer
(2004)

22. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. Artif. Intell. Res. (JAIR) 36, 165–228 (2009)

23. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Answer set programming with con-
straints using lazy grounding. In: Hill, P.M., Warren, D.S. (eds.) ICLP. Lecture
Notes in Computer Science, vol. 5649, pp. 115–129. Springer (2009)

24. Rudolph, S., Krötzsch, M., Hitzler, P.: Cheap boolean role constructors for descrip-
tion logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA. Lecture Notes
in Computer Science, vol. 5293, pp. 362–374. Springer (2008)

25. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond horn
ontologies. In: Walsh, T. (ed.) IJCAI. pp. 1093–1098. IJCAI/AAAI (2011)

