
Towards Logical Linked Data Compression

Amit Krishna Joshi, Pascal Hitzler, and Guozhu Dong

Kno.e.sis Center, Wright State University, Dayton, OH, U.S.A.

Abstract. Linked data has experienced accelerated growth in recent
years. With the continuing proliferation of structured data, demand for
RDF compression is becoming increasingly important. In this study, we
introduce a novel lossless compression technique for RDF datasets, called
Rule Based compression (RB compression) that compresses datasets by
generating a set of new logical rules from the dataset and removing
triples that can be inferred from these rules. We employ existing fre-
quent pattern mining algorithms for generating new logical rules. Unlike
other compression techniques, our approach not only takes advantage
of syntactic verbosity and data redundancy but also utilizes intra- and
inter-property associations in the RDF graph. Depending on the nature
of the dataset, our system is able to prune more than 50% of the original
triples without affecting data integrity.

1 Introduction

Linked Data has received much attention in recent years due to its interlinking
ability across disparate sources, made possible via machine processable non-
proprietary RDF data [14]. Today, large numbers of organizations, including
governments, share data in RDF format for easy re-use and integration of data
by multiple applications. This has led to accelerated growth in the amount of
RDF data being published on the web. Although the growth of RDF data can be
viewed as a positive sign for semantic web initiatives, it also causes performance
bottlenecks for RDF data management systems that store and provide access
to data [11]. As such, the need for compressing structured data is becoming
increasingly important.

Earlier RDF compression studies [3, 5] have focused on generating a compact
representation of RDF. [5] introduced a new compact format called HDT which
takes advantage of the powerlaw distribution in term-frequencies, schema and
resources in RDF datasets. The compression is achieved due to the compact
form rather than a reduction in the number of triples. [12] introduced the notion
of a lean graph which is obtained by eliminating triples which contain blank
nodes that specify redundant information. [15] proposed a user-specific redun-
dancy elimination technique based on rules. Similarly, [17] studied RDF graph
minimization based on rules, constraints and queries provided by users. The lat-
ter two approaches are application dependant and require human input, which
makes them unsuitable for compressing the ever growing set of linked datasets.

In this paper, we introduce scalable lossless compression of RDF datasets
using automatic generation of decompression rules. We have devised an algorithm

2 Joshi, Hitzler, Dong

to automatically generate a set of rules and split the database into two smaller
disjoint datasets, viz., an Active dataset and a Dormant dataset based on those
rules. The dormant dataset contains list of triples which remain uncompressed
and to which no rule can be applied during decompression. On the other hand,
the active dataset contains list of compressed triples, to which rules are applied
for inferring new triples during decompression.

In order to automatically generate a set of rules for compression, we employ
frequent pattern mining techniques [8, 13]. We examine two possibilities for fre-
quent mining - a) within each property (hence, intra-property) and b) among
multiple properties(inter-property). Experiments reveal that compression based
on inter-property frequent patterns are better than those done based on intra-
property frequent patterns.

Specifically, the contribution of this work is a rule based compression tech-
nique with the following properties:

• The compression reduces the number of triples, without introducing any new
subjects, properties and objects.

• The set of decompression rules, R, can be automatically generated using
various algorithms.

• The compression can potentially aid in discovery of new interesting rules.
• It is highly scalable with the ability to perform incremental compression on

the fly.

2 Preliminaries

2.1 Frequent Itemset Mining

The concept of frequent itemset mining [1] (FIM) was first introduced for min-
ing transaction databases. Over the years, frequent itemset mining has played
an important role in many data mining tasks that aim to find interesting pat-
terns from databases, including association rules and correlations, or aim to use
frequent itemset to construct classifiers and clusters [6]. In this study, we exploit
frequent itemset mining techniques on RDF datasets for generating logical rules
and subsequent compressing of RDF datasets.

Transaction Database Let I = {i1, i2, ..., in} be a set of distinct items. A set
X = {i1, i2..., ik} ⊆ I is called an itemset, or a k-itemset if it contains k items.
Let D be a set of transactions where each transaction, T = (tid,X), contains
a unique transaction identifier, tid, and an itemset X. Figure 1 shows a list of
transactions corresponding to a list of triples. Here, subjects represent identifiers
and the set of corresponding objects represent transactions. In this study, we use
the following definitions for intra- and inter-property transactions.

Intra-property transactions: For a graph G containing a set of triples, an
intra-property transaction corresponding to a property p is a set T = (s,X)
such that s is a subject and X is a set of objects, i.e. (s, p, ox) is a triple in graph
G. ox is an element of x.

Towards Logical Linked Data Compression 3

Inter-property transactions: For a graph G containing a set of triples, an
inter-property transaction is a set T = (s, Z) such that s is a subject and each
Z is a pair (p, o) of property and object, i.e. (s, pz, oz) is a triple in graph G.

Support and Frequent Itemset The support of an itemset X, denoted by
σ(X), is the number of transactions in D containing X. Itemset X is said to be
frequent if σ(X) ≥ minSup (minSup is a minimum support threshold).

Itemset Mining

Definition 1. Let D be a transaction database over a set of items I, and σmin

a minimum support threshold. The set of frequent itemsets in D with respect to
σmin is denoted by F (D,σmin) : = X ⊆ I|σ(X) ≥ σmin,

A frequent itemset is often referred to as a frequent pattern. Numerous studies
have been done and various algorithms [1, 2, 8, 18, 19] have been proposed to mine
frequent itemsets. Among these algorithms, Apriori [1] was the first algorithm
to generate frequent patterns. It consists of multiple mining iterations, each
mining frequent patterns of a given length. However, it requires a large number
of database scans to generate frequent patterns. An alternative FP-Growth [8]
algorithm was introduced about seven years after Apriori ; it is much faster than
the Apriori algorithm. Parallelized versions of FP-Growth [13, 20, 16] have also
been explored. In this study, we use FP-Growth for generating frequent patterns.

s1 rdf:type 125 s4 rdf:type 125.
s1 rdf:type 22. s4 rdf:type 22.
s1 rdf:type 225. s4 rdf:type 225.
s1 rdf:type 60. s4 rdf:type 60.
s6 rdf:type 90. s4 rdf:type 22.
s5 rdf:type 125. s5 rdf:type 22.
s2 rdf:type 225. s2 rdf:type 125.
s2 rdf:type 22. s3 rdf:type 81.
s3 rdf:type 22.

(a) Triples for rdf:type property

TID rdf:type

S1 125,22,225,60

S2 125,22,225

S3 81,22

S4 125,22,225,60

S5 125,22

S6 90,22

(b) Transactions

Fig. 1. RDF Triples and Corresponding Transactions.

FP-Growth FP-Growth uses a recursive divide-and-conquer approach to de-
compose both the mining tasks and the database [7]. It requires only two scans
on the database. For a given input dataset, it scans the data set to compute a
list of frequent items sorted in frequency descending order. Then, the database is
compressed into a frequent pattern tree (FP-tree). Then it starts to mine the FP-
tree for each item whose support is larger than the support(σmin) by recursively
constructing conditional FP-tree for the item [7]. It transforms the problem of
finding frequent patterns to identifying frequent items and constructing trees
recursively [13].

4 Joshi, Hitzler, Dong

Key Value
225 ([22, 225],525786)
60 ([22, 225,60],525786)
189 ([22, 227, 83, 189],60194)
213 ([22, 227, 83, 189, 213],60194)
173 ([22, 103, 26, 304, 173],57772)
70 ([22, 70],56372),

([22, 103, 26,304,173,70],31084),
([22,202,42,70],25288)

13 ([22, 225, 60, 174, 13],53120)
235 ([22, 225, 60, 174, 235],52305),

([22, 225, 60, 202, 42, 174, 235],480)
126 ([22, 191, 97, 222, 126],49252)

(a) Frequent patterns with support

ID Object

22 owl:Thing

227 dbp:Work

83 schema:CreativeWork

189 dbp:Film

213 schema:Movie

103 dbp:Person

26 schema:Person

304 foaf:Person

173 dbp:Artist

225 dbp:Place

60 schema:Place

(b) object mappings

Fig. 2. Frequent patterns generated for ’DBpedia Ontology Types’ dataset and several
object mappings

Figure 2 shows several frequent patterns for one of the core DBpedia datasets
containing only rdf:type property1. To generate such frequent patterns, we first
create a transaction database as shown in Figure 1 and then use FP-Growth.
Please refer to [8, 13] for the details about the FP-Growth algorithm and imple-
mentation. In this paper, we represent the output of FP-Growth as a set of pairs
〈k, Fk〉, where k is an item, and Fk, a frequent pattern corresponding to k, is in
turn a set of pairs of the form 〈v, σv〉. v is an itemset of a frequent pattern and
σv is a support of this frequent pattern.

2.2 Association Rule Mining

Frequent itemset mining is often associated with association rule mining, which
involves generating association rules from the frequent itemset with constraints
of minimal confidence (to determine if a rule is interesting or not). However, in
this study, we do not require mining association rules using confidence values.
Instead, we split the given database into two disjoint databases, say A and B,
based on the most frequent patterns. Those transactions which contain one or
more of the top k frequent patterns are inserted into dataset A while the other
transactions are inserted into database B. Compression can be performed by
creating a set of rules using top k frequent patterns and removing those triples
from the dataset which can be inferred by applying rules to some other triples
in the same dataset. Algorithmic details are provided in Section 4.

1 http://downloads.dbpedia.org/preview.php?file=3.7_sl_en_sl_instance_

types_en.nt.bz2

Towards Logical Linked Data Compression 5

3 Rule based Compression (RB Compression)

We consider an RDF Graph G containing |G| non-duplicate triples. Lossless
compression on graph G can be obtained by splitting the given graph G into
Active Graph, GA, and a Dormant Graph, GD, such that: G ≡ R(GA) ∪ GD

where R represents the set of decompression rules to be applied to an active
graph (GA) during decompression.

GA together with GD represents the compressed graph and the ratio of com-
pressed triple size to uncompressed triple size is the compression ratio, denoted
by r. In equation,

r = |GA|+|GD|
|G|

Since the compression is lossless, we have |G| = |R(GA)|+ |GD|.

Definition 2. Let G be an RDF graph containing a set T of triples. A dormant
graph, GD ⊂ G is a graph containing some TD ⊂ T triples. An active graph,
denoted by GA, is a graph containing TA ⊂ {T − TD} triples such that when a
set of R decompression rules is applied to GA (denoted by R(GA)), it produces
a graph containing exactly the {T − TD} set of triples.

GD is referred to as dormant since it remains unchanged during decompres-
sion (no rule can be applied to it during decompression).

In the next section, we provide an algorithm to automatically generate the com-
pressed version of an RDF graph G. Specifically, we investigate how to

• generate a set of decompression rules, R.
• decompose the graph G to GA and GD, such that the definition of RB

compression holds true.
• maximize the reduction in number of triples.

4 Algorithms

In this section, we introduce two rule based compression algorithms using intra-
and inter-property frequent patterns respectively. In addition, we provide an al-
gorithm for delta compression to deal with incremental compression when a set
of triples needs to be added to existing compressed graphs.

For both algorithms, the following holds true. Given an RDF graph G, RB
compression outputs two graphs: GA (Active) and GD (Dormant), and a set of
R decompression rules. We represent the output of FP-growth as a set of pairs
〈k, Fk〉, where k is an item, and Fk, a frequent pattern corresponding to k, is
in turn a set of pairs of the form 〈v, σ(v)〉. v is an itemset of frequent pattern
and σ(v) is a support of this frequent pattern. For the sake of simplicity, we
choose only one frequent pattern such that for a given k, vk has the maximum
support and a length of greater than one. In Algorithms, a rule resulting from
this frequent pattern is written as k → vk.

6 Joshi, Hitzler, Dong

A decompression can be performed either sequentially or in parallel. Sequen-
tial decompression is trivial and requires merging of inferred triples into the
resulting uncompressed graph produced by decompression using previous rules.
For parallel decompression, an active graph can be scanned in parallel for each
rule. This allows generation of inferred triples in parallel. Since triples are not
ordered, inferred triples can be added to an uncompressed graph whenever they
are generated. Finally, all triples of the dormant graph are merged into this un-
compressed graph. Storage needed for the rules is negligible in comparison with
the storage of the active and dormant graphs.

4.1 RB compression using intra-property associations

Algorithm 1 RB compression using intra-property association

Require: G
1: R← φ, GD ← φ , GA ← φ
2: for each property, p that occurs in G do
3: create a transaction database D from a set of intra-property transactions. Each

transaction (s, t) contains a subject s as identifier and t a list of corresponding
objects.

4: generate a set of frequent patterns 〈k, Fk〉 using FP-Growth
5: for all k that occurs in 〈k, Fk〉 do
6: select vk such that σ(vk) = argmaxvσ(v)|v occurs in Fk, |v| > 1
7: R← R ∪ (k → vk) . add a new rule
8: end for
9: for each (s, t) ∈ D do

10: for each k ∈ R do
11: if t ∩ vk = vk then
12: GA ← GA ∪ (s, p, k) . add this triple to active graph
13: t← t− vk
14: end if
15: end for
16: for each o ∈ t do
17: GD ← GD ∪ (s, p, o) . add to dormant graph.
18: end for
19: end for
20: end for

Algorithm 1 follows a divide and conquer approach. For each property in a
graph G, we create a new dataset and mine frequent patterns on this dataset.
Transactions are created per subject within this dataset. Each transaction is a
list of objects corresponding to a subject as shown in Figure 1. Using frequent
patterns, a set of rules is generated for each property and later aggregated. Each
rule contains a property p, an object item k, and a frequent pattern itemset v
corresponding to k. A frequent pattern itemset, v, is a set of items including k.

Towards Logical Linked Data Compression 7

The outcome of Algorithm 1 is the following logical rule that can be attached
to an active graph GA:

∀x.triple(x, p, k)→
n∧

i=1

triple(x, p, vi) where, v = v1, v2, ..., vn

For illustration, here’s one such decompression rule we obtained during an
experiment on one core DBpedia dataset:
∀x.triple(x, rdf:type, foaf:Person) → triple(x, rdf:type, schema:Person)

∧ triple(x, rdf:type, dbp:Person)
∧ triple(x, rdf:type, owl:Thing)

This triple is added to the active graph GA while all triples that can be in-
ferred from it are removed. Other triples which cannot be inferred, are placed in
dormant graph GD. The process is repeated for all properties, appending results
to already existing rules R, active graph GA and dormant graph GD.

4.2 RB compression using inter-property associations

Algorithm 2 RB compression using inter-property associations

Require: G
1: R← φ, GD ← φ , GA ← φ
2: create a transaction database D from a set of inter-property transactions. Each

transaction, (s, t) contains a subject s as identifier and t a set of (p, o) items.
3: generate a set of frequent patterns 〈k, Fk〉 using FP-Growth
4: for all k that occurs in 〈k, Fk〉 do
5: select vk such that σ(vk) = argmaxvσ(v)|v occurs in Fk, |v| > 1
6: R← R ∪ (k → vk) . add a new rule
7: end for
8: for each (s, t) ∈ D do
9: for each k ∈ R do

10: if t ∩ vk = vk then . both t and v contain a set (p, o) of items
11: GA ← GA ∪ (s, pk, ok) . add single triple to active graph
12: t← t− vk
13: end if
14: end for
15: for each (p, o) ∈ t do
16: GD ← GD ∪ (s, p, o)) . add triple to dormant graph.
17: end for
18: end for

In Algorithm 2, we try to mine frequent patterns across different properties.
Transactions used in this algorithm are created by generating a list of all possible
pairs of property and objects for each subject. Thus, each item of a transaction
is a pair (p : o). We follow similar approach as before for generating frequent
patterns and rules. Each rule contains a key pair (pk, ok) and a corresponding
frequent pattern v as a list of items (p : o). The procedure is similar to 4.2 once

8 Joshi, Hitzler, Dong

frequent patterns and rules are generated.

∀x.triple(x, pk, ok)→
n∧

i=1

triple(x, pi, oi) [vi = (pi, oi)]

4.3 RB-Delta Compression

One of the important properties of RB compression is that incremental com-
pression can be achieved on the fly without much computation. Let’s say, we
consider an RDF graph G, which has undergone RB-Compression resulting in
active graph GA, dormant graph GD and set R of decompression rules. If a new
set of triples corresponding to a subject s, denoted by ∆Ts, needs to be added to
Graph G, delta compression can be achieved by using the results from the last
compression. Each delta compression updates the existing active and dormant
graphs. Hence, there is no need for full RB-Compression every time a set of
triples is added. Algorithm 3 provides a delta compression algorithm when ∆Ts
needs to be added. The algorithm can be extended to include a set of subjects,
S. If a triple needs to be removed, an extra check needs to be performed to see
if the removal violates any existing rules. Such removal might require moving
some of the inferred triples from the active graph to the dormant graph.

Algorithm 3 Delta Compression

Require: GA, GD, R , ∆Ts

1: S ← φ
2: for all t ∈ ∆Ts do
3: if R(t) ⊆ ∆Ts then
4: GA ← GA ∪ t . insert into active graph
5: else
6: GD ← GD ∪ t . insert into dormant graph
7: end if
8: end for

5 Evaluation

This section shows experimental results of the compression performed by our
system. Our experiment is conducted on several linked open datasets, of varying
sizes. The smallest dataset consists of 130K triples while the largest dataset con-
sists of 119 million triples. Readers can download the original and compressed
datasets with additional experimental details from the website2. The main pur-
pose of this test is to validate the working of Rule Based compression techniques
and test algorithm performance. We study both of these in detail.

2 http://dl.dropbox.com/u/65933145/rbc_download

Towards Logical Linked Data Compression 9

5.1 On intra- and inter-property association and compression

Compression ratio, r is defined as the ratio of the compressed size to the un-
compressed size. Table 5.1 shows a comparison between the outputs of the two
algorithms we discussed in Section 4 for nine different linked datasets. It is evi-
dent from the results that compression based on inter-property frequent patterns
is far better than compression using intra-property frequent patterns. Details in-
cluding the number of predicates and transactions derived during experiments
are also included in the table. It can be seen that the best RB compression
(inter-property) can remove around 50% of triples for the Geonames, DBpedia
rdftypes and CN datasets.

Data Set #triples #predicates #transactions
compression ratio

intra-property inter-property

Dog Food 130,178 132 12,695 0.99 0.93

CN 2012 137,484 26 14,553 0.82 0.51

ArchiveHub 431,088 141 51,411 0.92 0.77

Jamendo 1,047,950 25 335,925 0.99 0.83

LinkedMdb 6,147,996 222 694,400 0.97 0.77

DBpedia rdftypes 9,237,320 1 9,237,320 0.49 0.49

RDF About 17,188,323 108 3,132,667 0.97 0.86

DBLP 46,597,620 27 2,840,639 0.96 0.88

Geonames 119,416,854 26 7,711,126 0.97 0.52

Table 1. Compression ratio (based on triple counts) for various linked open datasets

Data Set
#predicates

frequent predicates
Total Frequent

Dog Food 132 16 rdf:type, dc:creator

CN 2012 26 2 skos:closeMatch, pscs:relatedMatch

ArchiveHub 141 7 rdf:type, geo:locatedIn

Jamendo 25 3 rdf:type, foaf:made

LinkedMdb 222 21 rdf:type, lmdb:genre

DBpedia rdftypes 1 1 rdf:type

RDF About 108 9 rdf:type, dc:subject

DBLP 27 4 rdf:type, dc:identifier

Geonames 26 3 foaf:page, geo:alternateName

Table 2. Properties with frequent patterns

During experiments on intra-property transactions, only few predicates ex-
hibited frequent patterns. For most properties, a set of transactions don’t result

10 Joshi, Hitzler, Dong

in any frequent pattern even for a low support of 3. Table 5.1 shows the number
of predicates in the original dataset and the total number of predicates that re-
sulted in frequent patterns for experiments involving intra-property transactions.
For Geonames dataset, only 3 (foaf:page, geo:alternateName, geo:officialName)
out of 26 properties exhibited frequent patterns. In most cases, rdf:type is shown
to contain frequent patterns, which is expected since it supports a hierarchi-
cal structure (and hence associations). It is apparent that the DBpedia rdftype
dataset, which contains only the rdf:type property, has the best compression
ratios. The experimental results indicate that RDF datasets exhibit strong as-
sociations among different properties resulting in a greater reduction of triples.

5.2 Comparison using compressed dataset size

In addition to evaluating our system based on triple count, we examine the com-
pression based on the storage size of the compressed datasets and compare it
against other compression systems. This is important since none of the exist-
ing compression systems has the ability to compress RDF datasets by removing
triples. [4] compared different universal compressors and found that bzip2 is one
of the best universal compressors. For this study, we compress the input dataset
(in N-Triples format) and the resulting dataset using bzip2 and provide a quan-
titative comparison (see Table 5.2). An advantage of semantic compression such
as RB Compression is that one can still apply syntactic compression (e.g. HDT)
to the results. HDT [5] achieves a greater compression for most of the datasets
we experimented on. Such high performance can be attributed to its ability to
take advantage of the highly skewed RDF data. Since any generic RDF dataset
can be converted to HDT compact form, we did a test by converting the output
of RB compression to HDT for the linkedMdb dataset. The resulting dataset size
is only 9MB which is better than the individual compression. Performing the ex-
periment with a few other datasets exhibited similar behavior and we observed
that converting to HDT after RB compression results in the best compression.

Data Set Size compressed
compressed size using bzip2

HDT-Plain inter-property

DogFood 23.4 MB 1.5MB 1.1 MB 904K

CN 2012 17.9 MB 488K 168K 532K

Archive Hub 71.8 MB 2.5MB 1.79 MB 1.73MB

Jamendo 143.9 MB 6MB 4.3M 5.6MB

LinkedMdb 850.3 MB 22MB 16 MB 27MB

DBpedia rdftypes 1.2 GB 45MB 44 MB 39 MB

RDFabout 4.3 GB 79MB 45 MB 75M

DBLP 10.9 GB 265 MB 201 MB 239 MB

Geonames 13G 410 MB 274 MB 380 MB

Table 3. Comparison of compression ratio based on dataset size

Towards Logical Linked Data Compression 11

5.3 Soundness and Completeness of RB compression

Although it should already be rather clear from our definitions and algorithms
that our compression is lossless in the sense that we can recover all erased triples
by using the newly introduced rules—let us dwell on this point for a little while.

First of all, it is worth mentioning that we cannot only recreate all erased
triples by exhaustive forward-application of the rules—a fact that we could rea-
sonable refer to as completeness of our approach. Rather, our approach is also
sound in the sense that only previously erased triples are created by application
of the rules. I.e., our approach does not include an inductive component, but is
rather restricted to detecting patterns which are explicitly and exactly represented
in the dataset. Needless to say, the recreation of erased triples using a forward-
chaining application of rules can be rephrased as using a deductive reasoning
system as decompressor.

It is also worth noting that the rules which we introduce, which are essentially
of the form triple(x, p, k)→ triple(x, p, v), can also be expressed in the OWL [9]
Web ontology Language. Indeed, a triple such as (x, p, k) can be expressed in
OWL, e.g., in the form3 k(x) if p is rdf:type, or in the form p(x, k) if p is
a newly introduced property. The rule above then becomes k v v for p being
rdf:type, and it becomes ∃p.{k} v ∃p.{v} in the case of the second example.

The observation just made that our compression rules are expressible in
OWL. From this perspective, our approach to lossless compression amounts to
the creation of schema knowledge which is completely faithful (in the sound and
complete sense) to the underlying data. I.e., it amounts to the introduction of
uncontroversial schema knowledge to Linked Data sets. It is rather clear that
this line of thinking opens up a plethora of exciting follow-up work, which we
intend to pursue.

6 Conclusion

In this paper, we have introduced a novel lossless compression technique called
rule based compression (RB compression) that efficiently compresses RDF datasets
using logical rules. The key idea is to split the original dataset into two disjoint
datasets A and B, such that A adheres to certain logical rules while B does
not. Dataset A can be compressed since we can prune those triples that can be
inferred by applying rules on some other triples in the same dataset. We have
provided two algorithms based on frequent pattern mining to demonstrate the
compression capability of our rule based compression. Experimental results show
that in some datasets, RB Compression can remove almost half the triples with-
out losing data integrity. The approach is highly scalable due to the dynamic
compression capability exhibited by RB-Delta compression. Rules generated by
RB compression can be used to study instance alignment and automated schema
generation. In future work, we will explore more efficient algorithms for better
compression and will explore the effect of RB-Compression in the querying of
linked open datasets.

3 We use description logic notation for convenience, see [10].

12 Joshi, Hitzler, Dong

Acknowledgements

This work was supported by the National Science Foundation under award
1143717 “III: EAGER – Expressive Scalable Querying over Linked Open Data”
and 1017225 “III: Small: TROn – Tractable Reasoning with Ontologies.”

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD Conference. pp. 207–216 (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB. pp. 487–499 (1994)

3. Álvarez-Garćıa, S., Brisaboa, N.R., Fernández, J.D., Mart́ınez-Prieto, M.A.: Com-
pressed k2-triples for full-in-memory rdf engines. In: AMCIS (2011)

4. Fernández, J.D., Gutierrez, C., Mart́ınez-Prieto, M.A.: Rdf compression: basic ap-
proaches. In: WWW. pp. 1091–1092 (2010)

5. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutierrez, C.: Compact representation of
large rdf data sets for publishing and exchange. In: ISWC. pp. 193–208 (2010)

6. Goethals, B.: Survey on frequent pattern mining pp. 1–43 (2003), http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.2405
7. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and

future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)
8. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

9. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation 27 October 2009
(2009), available from http://www.w3.org/TR/owl2-primer/

10. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

11. Huang, J., Abadi, D.J., Ren, K.: Scalable sparql querying of large rdf graphs.
PVLDB 4(11), 1123–1134 (2011)

12. Iannone, L., Palmisano, I., Redavid, D.: Optimizing rdf storage removing redun-
dancies: An algorithm. In: IEA/AIE, pp. 732–742 (2005)

13. Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: Pfp: parallel fp-growth for
query recommendation. In: RecSys. pp. 107–114 (2008)

14. Manola, F., Miller, E., McBride, B.: Rdf primer (2004), http://www.w3.org/TR/
rdf-primer/

15. Meier, M.: Towards rule-based minimization of rdf graphs under constraints. In:
RR. pp. 89–103 (2008)

16. Özdogan, G.Ö., Abul, O.: Task-parallel fp-growth on cluster computers. In: ISCIS.
pp. 383–388 (2010)

17. Pichler, R., Polleres, A., Skritek, S., Woltran, S.: Redundancy elimination on rdf
graphs in the presence of rules, constraints, and queries. In: RR (2010)

18. Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining as-
sociation rules in large databases. In: VLDB. pp. 432–444 (1995)

19. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints.
In: KDD. pp. 67–73 (1997)

20. Zäıane, O.R., El-Hajj, M., Lu, P.: Fast parallel association rule mining without
candidacy generation. In: ICDM. pp. 665–668 (2001)

