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Some Background %aSe Lab

Workshop Series on Neural-Symbolic Learning and Reasoning
Since 2005.
http://neural-symbolic.org/

Studies in Computational Intelligence 77

Perspectives on Neural-Symbolic Integration
. B. Hammer - P. Hitzler
Barbara Hammer and Pascal Hitzler (eds) (Eds)

Springer, 2007 .
Perspectives of

Neural-Symbolic
A Survey and Interpretation Integration

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman,
Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb,
Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas,
Hoifung Poon, Gerson Zaverucha

Neural-Symbolic Learning and Reasoning:

https://arxiv.org/abs/1711.03902 (2017)
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Not covered

I’'m not going to talk about our work in

« Ontology modeling and management

« Data integration

« Knowledge representation and reasoning
o eftc.
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Neural-Symbolic? Symbolic-Subsymbolic?
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 Refers to computational abstractions of (natural) neural
network systems.

 Prominently includes Artificial Neural Networks and Deep
Learning as machine learning paradigms.

« More generally sometimes referred to as connectionist systems.

« Prominent applications come from the machine learning world.

« And of course, there is the current deep learning hype.
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Symbolic

 Refers to (computational) symbol manipulations of all kind.

« Graphs and trees, traversal, data structure operations.

« Knowledge representation in explicit symbolic form (data base,
ontology, knowledge graph)

* Inductive and statistical inference.
« Formal logical (deductive or abductive) reasoning.

 Prominent applications all over computer science, including
expert systems (and their modern versions), information
systems, data management, added value of data annotation, etc.

« Semantic Web data is inherently symbolic.
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Neural-Symbolic %aSe Lab

Computer Science perspective:

 Connectionist machine learning systems are

very powerful for some machine learning problems

robust to data noise

very hard to understand or explain

really poor at symbol manipulation

unclear how to effectively use background (domain) knowledge

« Symbolic systems are

Usually rather poor regarding machine learning problems
Intolerant to data noise

Relatively easy to analyse and understand

Really good at symbol manipulation

Designed to work with other (background) knowledge

WRIGHT STATE
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Neural-Symbolic %aSe Lab

Computer Science perspective:

« Let'stryto getthe best of both worlds:
— very powerful machine learning paradigm
— robust to data noise
— easy to understand and assess by humans
— good at symbol manipulation
— work seamlessly with background (domain) knowledge

« How to do that?
— Endow connectionist systems with symbolic components?
— Add connectionist learning to symbolic reasoners?

WRIGHT STATE
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Neural-Symbolic %aSe Lab

Note:

« Deep Learning systems are a far cry from how natural neural
networks work.

« There are things that our brain can do, and things that symbolic
approaches can do, where we do not have the faintest idea how to
solve them through deep learning (or any other connectionist
learning approach).

« The argument that we “just don’t have enough training data”
speaks (understandably) to the current hype, but is a hope that is
unfounded: While this may be the case in some cases, there is no
rationale to overgeneralize.

[Note: if we had “enough computational power,” we could also
solve all reasonable-size NP-complete problems in an instant.]
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The Interface Issue %ase Lab

« Symbolic knowledge comes as logical theories (sets of
formulas over alogic)

« Subsymbolic systems process tuples of real/float numbers
(vectors, matrices, tensors)

e How do you interface?

e How do you map between the symbolic world and the
subsymbolic world?

Some key problems that need to be overcome:

 Logic is full of highly structured objects, how to represent them
In Real Space?

« How to represent variable bindings in a distributed setting?

« Therequired length of logical deduction chain is not known up
front.
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Representation Issues
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McCulloch & Pitts. 194 %
cCulloch & Pitts, 1943 ase Lab

 McCulloch & Pitts 1943
— Neurons with binary activation functions.

— Modelling of propositional connectives.
— Networks equivalent to finite automata.

1

Values 0 (,false®) and 1 1 ; 1 disjunction
(,true®) being propagated. >

Simultaneous update of all
nodes in network. >

i : 1 . hegation
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conjunction

—
v
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McCulloch & Pitts follow-on

« Holldobler & Kalinke 1994
— Extends the approach by McCulloch & Pitts.

— Representation of propositional logic programs
and their semantics.

— ,Massively parallel reasoning.”

logic program ——» core net ——» recurrent net

a+
b+ a
c+—aAb
d«e
e«—d
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McCulloch & Pitts follow-on

Logic program P —_—

a <+
b+ a

c+aAb

d«e —

e «—d

- Update ,along implication®.
« Corresponds to computing the semantic operator Th.
* Tp represents meaning (semantics) of P through its fixed points.
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McCulloch & Pitts follow-on

core net —_— recurrent net

—>

» Repeated updates along layers corresponds to iterations of the semantic
operator.

« Semantics of the program (= fixed point of the operator) can be
computed in a parallel manner.
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McCulloch & Pitts follow- Otb
cCulloch & Pitts follow-on aSe Lab

« Garcez & Zaverucha 1999
Garcez, Broda & Gabbay 2001

« Development of a learning paradigm from the Core Method.

« Required: differentiable activation function.
— Allows learning with standard methods.
— Backpropagation algorithm. —

« Establishing the neural-symbolic learning cycle.

initial untrained
(background) nitialise neural
knowledge L network
~~~~~~~~ ”/”
modify > learn
learned < trained
neural f
knowledge extract
network — .
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The catch

« This is all propositional. @

« There’s only that much you can do with propositional logic.

* In particular, in terms of knowledge representation and
reasoning, propositional logic doesn’t really get you anything
useful.

E.Q.

« RDF (knowledge graphs) is already much closer to datalog than
to propositional logic.

« OWL (knowledge graph schemas) is a fragment of first-order
predicate logic.
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Variable Binding %aSQ Lab
]

Shastri & Ajjanagadde 1993

Variable binding

via time synchronization.

Reflexive (i.e. fast)

reasoning possible.
( X)X; buys .
from john Picture: Holldobler,
— Zzz _;{o.s'(s;hmr from john In troduct"on [’O

> Computational Logic, 2001

gives(X,Y,Z) — owns(Y,Z) gives(john,josephine,book)
buys(X,Y) — owns(X,Y) (3X) buys(john,X)
owns(X,Y) — can-sell(X,Y) owns(josephine,ball)

It’s still essentially datalog. * It doesn’t really learn.

Problems: It has a globally bounded reasoning depth.




Logic in Real Space

Interpretations with
Cantor topology Tp

] i .
Homeomorphism | '

v i(Tp) v
Cantor » Cantor

Cantor space as compact
subspace

of R_
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Logic in Real Space
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Logic in Real Space %ase

We observe convergence to unique supported

Bader, Hitzler, Holldobler,

model of the program. Witzel, 1JCAI-07
03 - [micly -
L2s - 0ZE |- -
o4 o~
g &
; = ; oS i
o 5
(R [ER N o >—
u]
ooE - oS - -
o o 1 ] ] 1 1 1
o 0.as C.1 215 0.2 22= 0.3 o n0.os ot 215 0.2 afe 0.2
dimension 1 {&ven] dmenskon 1 {=wen]

But it works only for toy size problems.
The theoretically required embedding into real numbers cannot scale.
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RDFS Deductive Reasoning via Deep
Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi,
Ning Xie, Derek Doran, Pascal Hitzler, under review
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RDF reasoning

 Essentially, RDF reasoning is Datalog reasoning restricted to:
— Unary and binary predicates only.
— A fixed set of rules that are not facts.
 You can try the following:
— Use a vector embedding for one RDF graph.
— Create all logical consequences.
— Throw n% of them away.

— Usetherestto Semantic Web journal under “major revision”
train a DL SYSIt€M.| Deep learning for noise-tolerant RDFS reasoning

Submitted by Bassem Makni on 04/01/2018 - 00:23

- Ch eCk hOW many Tracking #: 1866-3079
of those you —
threw away can o
be recovered this —
W ay . Guest Editors Semantic Deep Learning 2018

Submission type:
Full Paper

Abstract:
|
WI{IGI_IT ST.H.TE Since the introduction of the Semantic Web vision in 2001 as an extension to the Web, the main research focus in
semantic reasoning was on the soundness and completeness of the reasoners. While these reasoners assume the veracity
Decemb

of the innut data. the realitv is that the Weh of data is inherentlv noisv. Recent research wark on semantic reasoning




RDF reasoning

« The problem with the approach just described:
— It works only with that graph.

« What you'd really like to do is:

— Train a deep learning system so that you can present a new,
unseen graph to it, and it can correctly derive the deductively
Inferred triples.

e Note:

— You don’t know the IRIs in the graph up front. The only
overlap may or may not be the IRIs in the rdf/s namespace.

— You don’t know up front how “deep” the reasoning needs to
be.

— There is no lack of training data, it can be auto-generated.
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RDF reasoning %
aSe Lab
 [Note: RDF is one of the simplest useful knowledge
representation languages beyond propositional logic.]

« Think knowledge graph.
« Think node-edge-node triples such as

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human

husbandOf rdfs:subPropertyOf  spouseOf

« Then thereis a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)

WRIGHT STATE
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Representation

« Goalisto be ableto reason over unseen knowledge graphs.
l.e. the out-of-vocabulary problem needs addressing.

 Normalization of vocabulary (i.e., it becomes shared
vocabulary across all input knowledge graphs.

« Onevocabulary item becomes a one-hot vector
(dimension d, number of normalized vocabulary terms)

* Onetriple becomes a 3 x d matrix.

« The knowledge graph becomes an n x 3 x d tensor
(n is the number of knowledge graph triples)

« Knowledge graph is stored in “memory”

WRIGHT STATE
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Mechanics

e An attention mechanism retrieves momory slots useful for
finding the correct answer to a query.

« These are combined with the query and run through a (learned)
matrix to retrieve a new (processed) query.

 This is repeated (in our experiment with 10 “hops”).
 The final out put is a yes/no answer to the query.
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Memory Network based on ‘ﬁb
MemN2N aSe Lab
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Experiments: Performance

. . Hase Inferred Invalid
Test Dataset RO - opaes T #Em0 [ %Css | %lndv [ %R | %Axiom. | #Facs | #EaL | %Class | %Indv | %R | %Axiom | #Facts
OWL-Centric 2464 006 R37 14 19 3 ] 494 832 El .01 1 20 Ly
Linked Data 20577 | 909 TRT 3 27 5 ] 174 TET 3 D.0e 1 B 124
OWL-Centric Test Set | 21 622 400 36 41 3 0 837 400 36 3 1 12 476
Synthetic Data 2 152 506 52 0 i ] 126356 506 52 ] 1 0.07 TO0
Table 2: Statistics of various datasets used in experiments
Baseline: non-normalized embeddings, same architecture
Training Dataset Test Dataset Walid Triples Class Invalid Triples Class Accuracy
i Precision REW"- F-measure | Precision RE'T‘E}“- F-measure )
’ {Sensitivity ' ' {Specificity :
OWL-Centric Dataset Linked Data U3 Us U Ua 43 U5 U6
OWL-Centric Dataset (905) | OWL-Centric Dataset (10%) | 88 o1 B9 o0 Ba 59 )
OWL-Centric Dataset OWL-Centric Test Set P 79 &2 68 70 e 16 69
OWL-Centric Dataset Synthetic Data 65 49 40 32 34 42 52
OWL-Centric Dataset Linked Data * 54 04 70 01 16 27 836
OWL-Centric Dataset ® Linked Data * 62 T2 67 &7 56 61 01
OWL-Centric Dataset(90%) | OWL-Centric Dataset{ 105 ) *( 79 T2 T3 74 B1 T 80
OWL-Centric Dataset OWL-Centric Test Set 2P 58 68 62 62 50 54 58
OWL-Centric Dataset ® OWL-Centric Test Set 2P 17 57 65 66 B2 13 73
OWL-Centric Dataset Synthetic Data * 70 51 40 47 52 38 51
OWL-Centric Dataset ® Synthetic Data ® 67 3 25 52 &0 62 50
Baseline
OWL-Centric Dataset Linked Data 13 ] 83 04 46 61 43
OWL-Centric Dataset (909 ) | OWL-Centric Dataset (10%) | 84 83 B4 84 e B 82
OWL-Centric Dataset OWL-Centric Test Set ® 62 84 70 80 40 48 &l
OWL-Centric Dataset Synthetic Data 35 41 32 48 35 45 48

® More Tricky Mos & Balanced Dataset
® Completely Different Domain.

Table 3: Experimental results of proposed model



Experiments: Reasoning Depth %ase Lab

Hop O Hop 1 Hop 2 Hop 3 Hop 4 Hop 3 Hop 6 Hop T HopE Hop 9 Hop 10
I PFTRETFIFITETF [FTE F FPTRETE FTRTF FTETF IFTETF[FTEJF [FTETF [FTETE
INENEIEEE R EEERES e - - - - - - - - - - - - - - - - - - - -
0O | &2 [01 | 36 | 89 |98 93 |79 | 100 | 88
l._:l ]
T

Test Datset 1
Linked [ata® 1] {
Linked Data® 2 0
OWL-Cenine™[ 19 [ 3
Synthetic 2] 4

* LemonUby Ontology
" Agrovoc Oniology
£ Compleiely Dhifferent Domaim

I O B T T B D B O e R T

Table 4: Experimental results over each reasoning hop

Dataset Hopl | Hop2 | Hop3 | Hop4 | Hop5 | Hop6 | Hop7 Hop 8 Hop 9 Hop 10
OWL-Centric* | 8% 67% 24% 0.01% | 0% 0% 0% 0% 0% 0%
Linked Data” 31% 50% 19%% 0% 0% 0% 0% 0% 0% 0%
Linked Data® 34% 46% 20% 0% 0% 0% 0% 0% 0% 0%
OWL-Centric® | 5% 64% 30% 1% 0% 0% 0% 0% 0% 0%
Synthetic Data | 0.03% | 1.42% | 1% 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65%

* Training Set

" LemonUby Ontology

“ Agrovoc Ontology

4 Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day
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Fuzzy Deductive Reasoning via Logic
Tensor Networks

Federico Bianchi, Pascal Hitzler
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Logic Tensor Networks %ase Lab

Based on Neural Tensor Networks.

Logic Tensor Networks are due to Serafini and Garcez (2016).
They have been used for image analysis under background
knowledge.

Their capabilities for deductive reasoning have not been
sufficiently explored.

Underlying logic: First-order predicate, fuzzyfied.
Every language primitive becomes a vector/matrix/tensor.

Terms/Atoms/Formulas are embedded as corresponding
tensor/matrix/vector multiplications over the primitives.

Embeddings of primitives are learned s.t. the truth values of all
formulas in the given theory are maximized.

WRIGHT STATE
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A-priori Limitations %aSe Lab

 Not clear how to adapt this such that you can transfer to
unseen input theories.

o Scalability is an issue.

 While apparently designed for deductive reasoning, the
iInventors hardly report on this issue.

- ____________________________________________________________________________________________________________________________
W
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Transitive closure

‘tbaSe Lab

e Va.b.c € A : (sub(a,b) A sub(b,c)) — sub(a, c)

e Va € A: —subla,a)

e Va.b: subla,b) — —sub(b.a)
Satisfiability MAE Matthews F1 Precision  Recall
0.99 0.12(0.12) | 0.58 (0.45) | 0.64 (0.51) [ 0.60 (0.47) | 0.68 (0.55)
0.56 0.51(0.52) | 0.09 (0.06) | 0.27 (0.20) | 0.20 (0.11) | 0.95 (0.93)
Random 0.50 (0.50) | 0.00 (0.00) | 0.22(0.17) | 0.14(0.10) [ 0.50 (0.50)

parentheses: only newly entailed part of KB

MAE: mean absolute error;

Matthews: Matthews coefficient (for unbalanced classes)

top: top performing model, layer size and embeddings: 20, mean
aggregator

Bottom: one of the worst performing models.
Multi-hop inferences difficult.
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More take-aways from

experiments

e Error decreases with
increasing satisfiability.

Mean Absohile Erar
[=] o

0.55 057 0.58 083 0.65 0.67 oF 0.8 0.85 0.8
Salishabiily

' Figure 3: Average MAE for the ancestors tasks on rounded
* Addmg redundant formulas level of satisfiability. MAE decreases with the increase of
to the input KB decreases satisfiability.

error.

Tvpe MAE Matthews F1 Precision Recall
Six Axioms 0.16 (0.17) | 0.73 (0.61) | 0.77 (0.62) | 0.64 (0.47) | 0.96 (0.92)
Eight Axioms | 0.14(0.14) | 0.83(0.69) | 0.85(0.72) | 0.80 (0.66) | 0.89 (0.79)

WRIGHT STATE

December 2018 — Bosch, Pittsburgh, PA— Pascal Hitzler 36



More take-aways from

experiments

o Higher arity of predicates significantly increases learning

time.
4- 28 2.7 2.8 3 3.4
12
B 5 39 42 4.6 5.1
10
5.1 5.3 6 6.1 8.5

Number of predicatea (arnity 1)
=
ra

L] 12
humber of constants

Figure 5: Computational times in sec-
onds for predicates of arity one and con-
stants

150

4- 33 45 7.5 14 28
25
£ 8- 541 7.1 17 31 56
i 100
§12- 65 9.6 18 33 66 .
[=}
-
S20- 97 15 27 51 R 50
Z
25
30- 14 21 37 [/ 1.50+02
4 B 12 20 30

Mumber of conatants

Figure 6: Computational times in sec-
onds for predicates of arity two and con-
stants

4- 68 24 64 2.6e+02 B5e+02
2 g 1 39 1.1e+02 5.1e+02 1.7e+03 4500
f
$12- 15 56 1.60+402 7.30+02 250403 ;
‘g
282 23 88 2.6e+02 1.20+03 PRITNK
2 1500

- 3 1.0e+02 4.1e+02 20403 [LIRUK]

& 12 20 30
Numbar of constants

e

Figure 7: Computational times in sec-
onds for predicates of arity three and
constants
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More take-aways from %
experiments aSe Lab

« Model seems to often end up in local minima. This may be @

addressable using known approaches.

« LTNs seem to predict many false positives, while they are better
regarding true negatives. This may be just because of the test
knowledge bases we used, but needs to be looked at.

« Opverfitting is a problem, but it doesn’t seem straightforward to
address this for LTNs. [e.g. cross-validation may need
completeness information, which may bias the network]

* Increasing layers and embedding size makes optimizing
parameters much more difficult.

« Hence, there’'s a path for more investigations, we're only starting
to understand this.
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»

Explaining Deep Learning via Symbolic
Background Knowledge

Md Kamruzzaman Sarker, Ning Xie, Derek Doran, Mike Raymer, Pascal Hitzler
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Explainable Al

 Explain behavior of trained (deep) NNs.

e J|dea;

— Use background knowledge in the form of linked data
and ontologies to help explain.

— Link inputs and outputs to background knowledge.

— Use a symbolic learning system (e.g., DL-Learner) to
generate an explanatory theory.

« We're just starting on this, | report on very first experiments.

WRIGHT STATE
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Explainable Al

Knowledge Base

TBox (KB Schema)

Man = Human N Male
Father = Man M JhasChild.Human

ABox (Instances)
David : Father

(uonesiyisse)d)
indino yJomisp

B —
-—
_
ff—
-—

(David, Susan) : hasChild DL-Learner| --~
1~ Explanation
— Positive and negative

examples

Using SUMO Testing on ADE20k image dataset / scene recognition.

Workshop paper at NeSy’2017 with preliminary results.

WRIGHT STATE
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N

%dase Lab
Come from the MIT ADE20k dataset

http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture:

001 # O # 0 # sky # sky # "

002 # O # 0 # road, route # road # ""

005 # 0 # 0 # sidewalk, pavement # sidewalk # """
006 # O # 0 # buirlding, edifice # building # ""
007 # O # 0 # truck, motortruck # truck # ""

008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # """
009 # 0 # 0 # pallet # pallet # ""

011 # O # O # box # boxes # "

001 # 1 # 0 # door # door # "

002 # 1 # 0 # window # window # "'

009 # 1 # 0 # wheel # wheel # '

[T L

——— 1
WRIGHT STATE
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http://groups.csail.mit.edu/vision/datasets/ADE20K/

Mapping to SUMO ‘§ba5e Lab

Simple approach: for each known object in image, create an
individual for the ontology which is in the appropriate SUMO
class:

contains roadl
contains window1
contains doorl
contains wheell
contains sidewalk1
contains truckl
contains box1
contains buildingl
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 Suggested Merged Upper Ontology
http://www.adampease.org/OP/

e Approx. 25,000 common terms
covering awide range of domains

 Centrally, arelatively naive class hierarchy.

 Objects in image annotations became individuals (constants),
which were then typed using SUMO classes.

WRIGHT STATE
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http://www.adampease.org/OP/

DL-Learner input Ctb
P aSe Lab
Positive:
imgl: road, window, door, wheel, sidewalk, truck,

box, building
Img2:. tree, road, window, timber, building, lumber

Img3: hand, sidewalk, clock, steps, door, face, building,
window, road

Negative:
iImg4: shelf, ceiling, floor
Img5: Dbox, floor, wall, ceiling, product
Img6: ceiling, wall, shelf, floor, product

DL-Learner results include: Jcontains. Transitway

Jdcontains.LandArea
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Jcontains. Transitway

Jcontains.LandArea
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First 10 DL-Learner responses 0&
P aSe Lab

dcontains. Window (1) Jecontains.LandTransitway  (6)
Jcontains. Transitway (2) Jcontains.LandArea (7)
dJecontains.SelfConnectedObject  (3) Jcontains.Building (8)
Jcontains.Roadway (4) Ycontains.—Floor (9)
dcontains. Road (5) Ycontains.—~Ceiling (10)
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N

Experiment 2 %aSe Lab

Positive (selection): Negative (selection):

TR L] ; decontains.(DurableGood M —Forest Product)
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Experiment 3 ébaSe Lab

Positive: Negative:

P ]
- I |

Vcontains.(—Furniture M —IndustrialSupply)
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Experiment 4 aSe Lab

Positive (selection): Negative (selection):

——— 1
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®»

Experiment 5 %aSe Lab

Positive: ) Negative (selection):

T

Jcontains. BodyOfWater

_——E--_“- *
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DL-Learner efficiency problem %ase Lab

e DL-Learner was too slow —we needed several hours for each
computation, and couldn’t explore and/or scale up.

« We thus implemented our own system, ECII (Efficient Concept
Induction from Instances) which trades some correctness for
speed. [Sarker, Hitzler, AAAI-19, to appear]

Experiment Name Mumber of Funtime (s&c) Accuracy (os) ACCUTACY o

B i Logical Axioms DLE | DL FEICCDP| DL FICZFE | ECINDEY| BECHKCT| DL® | ECIIDF| DL FICOHP DL FIC2)F | ECIDF?| ECH KCT®

Yimyang_examples 157 0.065 0.013] 0.019 0.089 0.143 KLY 0610 KT [ 0799 KLLY

Trains Z73 0.01 0.020 0.047 0.05 0.055 KLY [ [T [T [N TN

Forie 341 25 [.169 6145 0.95 0.33] 0.965 0642 0.875 (0.875 0733 1 .(HK]

Pokear 1,368 0.066 0.714 0.817 I 0.28] .00 1000 0981 0,984 1.000 1.0

Moral Reasoner 4 666 0.1 3.106 4.154 547 6.873 KLY 0785 [NIICH) [KIICT) 1. (WD | .(HK]

ADE20k 1 4,714 sy 4.268 31.887 1.266 23775 0.926 0416 0,263 0814 0.744 1.0

ADE20k 11 7.300 PEETEL 16.187 307 .65 0.8 293, 44 K] 0673 0413 0413 0846 0,900

ADEIDE TIT 17 193 4 500 13.203 2R3ITT 51 T3R8 037 0937 0375 0375 0.5930 0937

ADEZOE IV 47 468 45008 93.658 523673 116 423349 | D375 MNA 0,608 0,608 0,660 0.608

*DL DL-lLearner

b DL FIC (1) : DL-Learner fast instance check with runtime capped at execution time of ECII DF

® DL FIC (2} : DL-Leamer fast instance check with runtime capped at execution time of ECII KCT
4 ECI DF : ECIT default Pirameaters

= ECII KCT : ECII keep common types and other default parameiers

T Runtimes for DL-Leamer were capped at 600 seconds.

£ Runtimes for [DL-Leamer were capped at £.500 seconds.
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ECII vs. DL-Learner

1000000 1 ’—
““““““ 0.8 —
10000 — 07 il
_ (] 0.6 —
1000 05
100 o
10 0.2
i ool
1
Yiryang Trains Forte Poker Moral ADE20k | ADE20k ADE20k ADE20k 0
Yinyang Trains Forte Poker Moral ADE20k IADE20k Il ADE20k ADE20k
Etime DL-Learner Otime EC
W accuracy Dllearner DOaccuracy EC

Figure I: Runtime comparison between DL-Learner and

ECIL The vertical scale is logarithmic in hundredths of sec-  Figure 2: Accuracy (a3) comparison between DL-Learner
onds, and note that DL-Learner runtime has been capped at ~ and ECII. For ADE20k IV it was not possible to compute an
4,500 seconds for ADE20k Il and IV. For ADE20k T'it was  accuracy score within 3 hours for ECII as the input ontology
capped at each run at 600 seconds. was oo large.
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« We're just now starting to run full-scale experiments with ECII in
the described setting.
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Conclusions
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Conclusions

 Briding the symbolic-subsymbolic gap is still a major quest. @

« We looked at
— RDFS reasoning using memory networks (very good)
— Logic Tensor Networks for first-order predicate logic (unclear)

— Background knowledge for explainable Al (first steps suggest
optimism)

e Possible direct transfers:

— To other types of inference (e.g., common-sense reasoning,
natural language reasoning)

— Explaining other machine learning paradigms.

WRIGHT STATE

December 2018 — Bosch, Pittsburgh, PA— Pascal Hitzler 57



Thanks!
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