
December 2018 – Bosch, Pittsburgh, PA– Pascal Hitzler

Pascal Hitzler
Data Semantics Laboratory (DaSe Lab)

Data Science and Security Cluster (DSSC) 
Wright State University

http://www.pascal-hitzler.de

Advances in Bridging the 
Symbolic-Subsymbolic Divide



December 2018 – Bosch, Pittsburgh, PA– Pascal Hitzler 2

Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning
Since 2005.
http://neural-symbolic.org/

Perspectives on Neural-Symbolic Integration
Barbara Hammer and Pascal Hitzler (eds)
Springer, 2007

Neural-Symbolic Learning and Reasoning: 
A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, 
Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, 
Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha

https://arxiv.org/abs/1711.03902 (2017)

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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Data Semantics Laboratory

Monireh Ebrahimi       Md Kamruzzaman Sarker      Federico Bianchi
(not shown)
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Not covered

I’m not going to talk about our work in

• Ontology modeling and management
• Data integration
• Knowledge representation and reasoning
• etc.
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Neural-Symbolic? Symbolic-Subsymbolic?
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Neural

• Refers to computational abstractions of (natural) neural 
network systems.

• Prominently includes Artificial Neural Networks and Deep 
Learning as machine learning paradigms.

• More generally sometimes referred to as connectionist systems.

• Prominent applications come from the machine learning world.

• And of course, there is the current deep learning hype.
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Symbolic

• Refers to (computational) symbol manipulations of all kind.

• Graphs and trees, traversal, data structure operations.
• Knowledge representation in explicit symbolic form (data base, 

ontology, knowledge graph)
• Inductive and statistical inference.
• Formal logical (deductive or abductive) reasoning.

• Prominent applications all over computer science, including 
expert systems (and their modern versions), information 
systems, data management, added value of data annotation, etc.

• Semantic Web data is inherently symbolic.
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Neural-Symbolic

Computer Science perspective:

• Connectionist machine learning systems are
– very powerful for some machine learning problems
– robust to data noise
– very hard to understand or explain
– really poor at symbol manipulation
– unclear how to effectively use background (domain) knowledge

• Symbolic systems are
– Usually rather poor regarding machine learning problems
– Intolerant to data noise
– Relatively easy to analyse and understand
– Really good at symbol manipulation
– Designed to work with other (background) knowledge 
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Neural-Symbolic

Computer Science perspective:

• Let’s try to get the best of both worlds:
– very powerful machine learning paradigm
– robust to data noise
– easy to understand and assess by humans
– good at symbol manipulation
– work seamlessly with background (domain) knowledge

• How to do that?
– Endow connectionist systems with symbolic components?
– Add connectionist learning to symbolic reasoners?
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Neural-Symbolic

Note:

• Deep Learning systems are a far cry from how natural neural 
networks work.

• There are things that our brain can do, and things that symbolic 
approaches can do, where we do not have the faintest idea how to 
solve them through deep learning (or any other connectionist 
learning approach). 

• The argument that we “just don’t have enough training data” 
speaks (understandably) to the current hype, but is a hope that is 
unfounded: While this may be the case in some cases, there is no 
rationale to overgeneralize. 
[Note: if we had “enough computational power,” we could also 
solve all reasonable-size NP-complete problems in an instant.]



December 2018 – Bosch, Pittsburgh, PA– Pascal Hitzler 11

The Interface Issue
• Symbolic knowledge comes as logical theories (sets of 

formulas over a logic)
• Subsymbolic systems process tuples of real/float numbers 

(vectors, matrices, tensors)

• How do you interface?
• How do you map between the symbolic world and the 

subsymbolic world?

Some key problems that need to be overcome:
• Logic is full of highly structured objects, how to represent them 

in Real Space?
• How to represent variable bindings in a distributed setting?
• The required length of logical deduction chain is not known up 

front.
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Representation Issues
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McCulloch & Pitts, 1943
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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The catch

• This is all propositional.

• There’s only that much you can do with propositional logic.

• In particular, in terms of knowledge representation and 
reasoning, propositional logic doesn’t really get you anything 
useful.

E.g.
• RDF (knowledge graphs) is already much closer to datalog than 

to propositional logic.

• OWL (knowledge graph schemas) is a fragment of first-order 
predicate logic.
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Variable Binding

Problems: • It’s still essentially datalog.        * It doesn’t really learn.
• It has a globally bounded reasoning depth.
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Logic in Real Space
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Logic in Real Space

Architecture is mix of radial basis
function network and neural gas
approach.
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Logic in Real Space

But it works only for toy size problems.
The theoretically required embedding into real numbers cannot scale. 

Bader, Hitzler, Hölldobler, 
Witzel, IJCAI-07
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RDFS Deductive Reasoning via Deep 
Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi,
Ning Xie, Derek Doran, Pascal Hitzler, under review
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RDF reasoning

• Essentially, RDF reasoning is Datalog reasoning restricted to:
– Unary and binary predicates only.
– A fixed set of rules that are not facts.

• You can try the following:
– Use a vector embedding for one RDF graph.
– Create all logical consequences.
– Throw n% of them away.
– Use the rest to 

train a DL system.
– Check how many 

of those you 
threw away can 
be recovered this
way.

Semantic Web journal under “major revision”
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RDF reasoning

• The problem with the approach just described:
– It works only with that graph.

• What you’d really like to do is:
– Train a deep learning system so that you can present a new, 

unseen graph to it, and it can correctly derive the deductively 
inferred triples. 

• Note: 
– You don’t know the IRIs in the graph up front. The only 

overlap may or may not be the IRIs in the rdf/s namespace.
– You don’t know up front how “deep” the reasoning needs to 

be.
– There is no lack of training data, it can be auto-generated.
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RDF reasoning

• [Note: RDF is one of the simplest useful knowledge 
representation languages beyond propositional logic.]

• Think knowledge graph. 
• Think node-edge-node triples such as 

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human
husbandOf rdfs:subPropertyOf spouseOf

• Then there is a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)
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Representation

• Goal is to be able to reason over unseen knowledge graphs.
I.e. the out-of-vocabulary problem needs addressing.

• Normalization of vocabulary (i.e., it becomes shared 
vocabulary across all input knowledge graphs.

• One vocabulary item becomes a one-hot vector 
(dimension d, number of normalized vocabulary terms)

• One triple becomes a 3 x d matrix.
• The knowledge graph becomes an n x 3 x d tensor

(n is the number of knowledge graph triples)

• Knowledge graph is stored in “memory”
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Mechanics

• An attention mechanism retrieves momory slots useful for 
finding the correct answer to a query.

• These are combined with the query and run through a (learned) 
matrix to retrieve a new (processed) query.

• This is repeated (in our experiment with 10 “hops”).
• The final out put is a yes/no answer to the query.
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Memory Network based on 
MemN2N
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Experiments: Performance

Baseline: non-normalized embeddings, same architecture
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Experiments: Reasoning Depth

Training time: just over a full day
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Fuzzy Deductive Reasoning via Logic 
Tensor Networks

Federico Bianchi, Pascal Hitzler
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Logic Tensor Networks

Based on Neural Tensor Networks.
Logic Tensor Networks are due to Serafini and Garcez (2016).
They have been used for image analysis under background 
knowledge.

Their capabilities for deductive reasoning have not been 
sufficiently explored.

Underlying logic: First-order predicate, fuzzyfied. 
Every language primitive becomes a vector/matrix/tensor.
Terms/Atoms/Formulas are embedded as corresponding 
tensor/matrix/vector multiplications over the primitives. 
Embeddings of primitives are learned s.t. the truth values of all 
formulas in the given theory are maximized.
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A-priori Limitations

• Not clear how to adapt this such that you can transfer to 
unseen input theories.

• Scalability is an issue.

• While apparently designed for deductive reasoning, the 
inventors hardly report on this issue.
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Transitive closure

parentheses: only newly entailed part of KB
MAE: mean absolute error; 
Matthews: Matthews coefficient (for unbalanced classes) 
top: top performing model, layer size and embeddings: 20, mean 
aggregator
Bottom: one of the worst performing models.
Multi-hop inferences difficult.
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More take-aways from 
experiments

• Error decreases with
increasing satisfiability.

• Adding redundant formulas 
to the input KB decreases
error. 
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More take-aways from 
experiments

• Higher arity of predicates significantly increases learning 
time.
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More take-aways from 
experiments

• Model seems to often end up in local minima. This may be 
addressable using known approaches.

• LTNs seem to predict many false positives, while they are better 
regarding true negatives. This may be just because of the test 
knowledge bases we used, but needs to be looked at.

• Overfitting is a problem, but it doesn’t seem straightforward to 
address this for LTNs. [e.g. cross-validation may need 
completeness information, which may bias the network]

• Increasing layers and embedding size makes optimizing 
parameters much more difficult.

• Hence, there’s a path for more investigations, we’re only starting 
to understand this.
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Explaining Deep Learning via Symbolic 
Background Knowledge

Md Kamruzzaman Sarker, Ning Xie, Derek Doran, Mike Raymer, Pascal Hitzler
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Explainable AI

• Explain behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of linked data 

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system (e.g., DL-Learner) to 

generate an explanatory theory.

• We’re just starting on this, I report on very first experiments.
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Explainable AI

Workshop paper at NeSy’2017 with preliminary results.

Using SUMO Testing on ADE20k image dataset / scene recognition.
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Proof of Concept Experiment

Positive: Negative:



December 2018 – Bosch, Pittsburgh, PA– Pascal Hitzler 43

Images

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""

http://groups.csail.mit.edu/vision/datasets/ADE20K/
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Mapping to SUMO

Simple approach: for each known object in image, create an 
individual for the ontology which is in the appropriate SUMO 
class:

contains road1
contains window1
contains door1
contains wheel1
contains sidewalk1
contains truck1
contains box1
contains building1
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SUMO

• Suggested Merged Upper Ontology
http://www.adampease.org/OP/

• Approx. 25,000 common terms 
covering a wide range of domains

• Centrally, a relatively naïve class hierarchy.

• Objects in image annotations became individuals (constants), 
which were then typed using SUMO classes.

http://www.adampease.org/OP/


December 2018 – Bosch, Pittsburgh, PA– Pascal Hitzler 46

DL-Learner input

Positive:
img1: road, window, door, wheel, sidewalk, truck, 

box, building
img2: tree, road, window, timber, building, lumber
img3: hand, sidewalk, clock, steps, door, face, building,

window, road
Negative:

img4: shelf, ceiling, floor
img5: box, floor, wall, ceiling, product
img6: ceiling, wall, shelf, floor, product

DL-Learner results include: 
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Proof of Concept Experiment

Positive: Negative:
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First 10 DL-Learner responses
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Experiment 2

Positive (selection): Negative (selection):
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Experiment 3

Positive: Negative:
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Experiment 4

Positive (selection): Negative (selection):
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Experiment 5

Positive: Negative (selection):
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DL-Learner efficiency problem

• DL-Learner was too slow – we needed several hours for each 
computation, and couldn’t explore and/or scale up.

• We thus implemented our own system, ECII (Efficient Concept 
Induction from Instances) which trades some correctness for 
speed. [Sarker, Hitzler, AAAI-19, to appear]
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ECII vs. DL-Learner
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Next:

• We’re just now starting to run full-scale experiments with ECII in 
the described setting.
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Conclusions



December 2018 – Bosch, Pittsburgh, PA– Pascal Hitzler 57

Conclusions

• Briding the symbolic-subsymbolic gap is still a major quest.

• We looked at
– RDFS reasoning using memory networks (very good)
– Logic Tensor Networks for first-order predicate logic (unclear)
– Background knowledge for explainable AI (first steps suggest 

optimism)

• Possible direct transfers:
– To other types of inference (e.g., common-sense reasoning, 

natural language reasoning)
– Explaining other machine learning paradigms.
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Thanks!
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