A Domain Ontology for Task Instructions

Aaron Eberhart5![0000-0008-3007-5460] | Ciogan Shimizu![0000-0008—4283-8701]
Christopher Stevens?, Pascal Hitzler![0000-0001-6192=3472] " Oty pigtopher W.

Myerg?[0000—0003-0556-5935] " 5 Benji Maruyama®

! DaSe Lab, Kansas State University, Manhattan, KS, USA
2 Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
3 Air Force Research Laboratory, Materials & Manufacturing Directorate,
Wright-Patterson AFB, OH, USA
{aaroneberhart, coganmshimizu, hitzler}@ksu.edu, {christopher.myers.29,
christopher.stevens.28, benji.maruyama}@us.af.mil

Abstract. Knowledge graphs and ontologies represent information in a
variety of different applications. One use case, the Intelligence, Surveil-
lance, & Reconnaissance: Mutli-Attribute Task Battery (ISR-MATB),
comes from Cognitive Science, where researchers use interdisciplinary
methods to understand the mind and cognition. The ISR-MATB is a set
of tasks that a cognitive or human agent perform which test visual, au-
ditory, and memory capabilities. An ontology can represent a cognitive
agent’s background knowledge of the task it was instructed to perform
and act as an interchange format between different Cognitive Agent tasks
similar to ISR-MATB. We present several modular patterns for repre-
senting ISR-MATB task instructions, as well as a unified diagram that
links them together.

1 Introduction

Knowledge graphs facilitate data integration across highly heterogeneous sources
in a semantically useful way. Knowledge graphs may be equipped with a schema,
frequently an ontology, that combines the associative power of the knowledge
graph with the semantics of the ontology. Due to this, they are uniquely suited
to support research in cognitive science, where it is often necessary to incor-
porate information from fields like computer science, psychology, neuroscience,
philosophy, and more.

Cognitive agents are a sub-field of cognitive science and an application of
the more broad study of cognitive architectures. Cognitive architectures, like
ACT-R [?] for example, are an approach to understanding intelligent behavior
and cognition that grew out of the idea of Unified Theories of Cognition [?].
These systems have their roots in Al production systems and some types use
rules-based cognition. Many in Computer Science are familiar with inductive
themes from a different type, called Connectionism, due to its historic ties with
artificial neural networks. Symbolic cognitive architectures, by contrast, are less
widely known outside of cognitive science, and are abstracted and explicit like
logic programming.

2 Eberhart, Shimizu, Stevens, Hitzler, Myers, Maruyama

Both ontologies and cognitive architectures deal with symbolic knowledge.
Symbolic cognitive architectures typically focus on the plausibility of knowledge
and the way in which that knowledge is translated into human behavior within
a specific task. Ontologies offer a set of robust mechanisms for reasoning over
complex knowledge bases and could help cognitive architectures adapt to tasks
in novel environments. One way the two may be integrated is by leveraging the
ontology to reduce the specificity of a cognitive agent.

In general, cognitive agents are often specialized, or differentiated, to perform
a specific task or set of tasks. An undifferentiated agent is one that has no
specialization. The purpose of such an agent is to be adaptable to new tasks
as needed. As part of initial work to develop such an undifferentiated cognitive
agent, we have developed a modular ontology that captures instructions for a
specific cognitive agent task called ISR-MATB. We discuss this platform in more
detail in the next section.

Currently, the ontology supports the memory of a cognitive agent by adding
structure to its knowledge and providing new varieties of query-like recall. And
due to design methodology used during the modeling process, the ontology is
general enough that it could model other cognitive agent experiments, which
could then be evaluated against each other in a structured way. This allows
the ontology to act as an invaluable interchange format between researchers
developing cognitive agents.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of the use-case: ISR-MATB. Section 3 provides an in-depth examination
of the ontology. Finally, in Section 4, we briefly conclude and discuss next steps.

2 ISR-MATB

ISR-MATRB is a series of cognitive tasks that could be completed by a Cognitive
Agent or a human [?]. A trial starts with one very simple task, the evaluation
then branches into two sub-tasks that relate back to the first task. After the two
sub-tasks are complete the agent completes one final task requiring integration
of remembered information from all previous tasks. The final task is made more
difficult by the possibility of incorrect feedback as the agent learns. ISR-MATB is
intended to be repeated for a fixed time so that researchers can observe changes
in the agent’s response time and develop better computational cognitive agents.

2.1 Psychomotor Vigilance Test

The Psychomotor Vigilance Test is one of the more basic cognitive tasks [?].
In this task, there is an area of the screen where a letter could appear. The
letter will be drawn with a specific color. When the letter does appear an agent
must press a button that acknowledges they have seen it. If the agent pushes the
button too soon a false start is recorded and the task continues normally. If too
much time passes before the agent pushes the button then the task will continue

A Domain Ontology for Task Instructions 3

Intel

Show Intel (I)

Allocate Sensors:

[Yes (U)] [No (0)]

Frequency Selection

Present (N) Absent (,)

Fig. 1: An example depicting the four ISR-MATB tasks in a single interface.

with the letter unacknowledged. The next two tasks reference this letter and
color, so the agent is instructed to remember them.

2.2 Visual Search

The Visual Search task requires that the agent determine if the letter they re-
member is among a group of many letters that appear on the screen [?]. The
other letters are distractors, and may be the same letter as the target with a
different color, or the same color as the target with a different letter, or both
color and letter different. The target may or may not appear among the distrac-
tors, and never appears more than once. The agent pushes a button to indicate
whether the the letter is present or absent.

2.3 Auditory Search

The Auditory Search task is very similar to the Visual Search, except of course
that the agent must listen instead of look. In this task there are between one
and four audio messages that each include a spoken color and letter. If one of
the messages is the same as as the letter and color from the first task the agent
pushes a button to indicate that it is present, otherwise they indicate that it is
absent.

4 Eberhart, Shimizu, Stevens, Hitzler, Myers, Maruyama

2.4 Decision Making

The final task, Decision Making, requires agents to infer a relationship between
the outcomes of the Visual and Auditory Search tasks together with a new binary
piece of information called “Intelligence” that appears after choosing whether to
hypothetically allocate sensors or not. The rule the agent must guess is not too
hard, but it is complex enough that it must be learned by trial-and-error over
multiple attempts. Learning the rule is made more difficult by the unlikely but
not impossible event that the program responds incorrectly even when a correct
answer is given. Responding ‘yes’ or ‘no’ to this sub-task ends one ISR-MATB
trial.

3 Ontology Description

In this section we present the Instruction Ontology, a domain ontology built
for use with the ISR-MATB experiment platform. This ontology was produced
by following the Modular Ontology Modeling (MOM) methodology, outlined in
[?,?] MOM is designed to ensure the high quality and reusability of the resulting
ontology, both in terms of scope and in terms of granularity, which is a desired
outcome.

The ontology consists of six modules: ISR-MATB Experiment, Instruction,
SituationDescription, ltemRole, Action, and Affordance. For each module, we
describe its purpose, provide a schema diagram,? and state its axiomatization
in both description logic syntax and natural language. The OWL file for this
ontology can be found online® as well as the official documentation.® Figure 5
shows the schema diagram for the entire ontology.

3.1 ISR-MATB Experiment.

The ISR-MATB Experiment module is the core module for the ontology. The two
main classes are ISR-MATB Experiment and ISR-MATB Task. As noted in Section
2, an experiment consists of up to four tasks that may require that information
be carried between them, where each Task resides in a specific quadrant of
the interface. Each Task provides roles to different ltems, as well as a set of
Instructions for the agent to carry out. We discuss these classes in more detail in
their respective Module sections. The schema diagram for this module is shown
in Figure 2c.

4 A schema diagram is an informal, but intuitive way for conveying information about
the structure and contents of an ontology. We use a consistent visual syntax for
convenience, detailed in Figure 2.

® See https://raw.githubusercontent.com/undiffagents/uagent/develop/
ontology/uagent.owl.

5 See https://daselab.cs.ksu.edu/content/domain-ontology-instruction

A Domain Ontology for Task Instructions 5

Axiomatization:

T C Vaffords.Affordance (1)

ISR-MATBTask C >1 haslnstruction.Instruction (2)
ISR-MATBExperiment C <4 hasTask.ISR-MATBTask (3)

T C VhasLocation.Location (4)

T C VhasName.xsd:string (5)

ISR-MATBTask C =1 hasName.xsd:string (6)

ISR-MATBTask C VprovidesRole.ltemRole (7)

ISR-MATBTask C Yinforms.ISR-MATBTask (8)

Explanation of axioms above:

1. Range. The range of affords is Affordance.

2. Minimum Cardinality. An ISR-MATBTask has at least one Instruction.

3. Maximum Cardinality. An ISR-MATBExperiment consists of at most four
ISR-MATBTasks.

4. Range. The range of haslLocation is Location.

5. Range. The range of hasName is xsd:string.

6. Scoped Range. The range of providesRole is ltemRole when the domain is
ISR-MATBTask.

7. Scoped Range. The range of informs is ISR-MATBTask when the domain is
ISR-MATBTask.

3.2 Action

The Action module is an instantiation of the Explicit Typing meta-pattern de-
scribed in [?].7

In this case, we use a class, ActionType, to represent a controlled vocabulary.
We believe that using a controlled vocabulary to represent this type information
is less invasive to the ontology. This way, adding or removing types of actions
from the controlled vocabulary does not actually change the ontology. Some
instances of the controlled vocabulary are listed in Figure 5.

An Action, in this context, is the physical, actual action that takes place to
transition between different states of the experiment, e.g. ‘the action of clicking
a button.” The schema diagram for this module is shown in Figure 2a.

Axiomatization:

Action C =1ofType.ActionType (1)

7 [?] is a modular ontology design library; it contains a set of frequently used patterns
and respective documentation.

)]
I TransitionDescription |

]

triggers

)

refersTo

(a) The schema diagram for the Action
module.

affords hasl..n

informs
ISR-MATB Task

hasName

(¢) The schema diagram for the ISR-
MATB Experiment module.

ISR-MATB Experiment
hasTask

hasLocatlon)r e
Location|
L p)

providesRole

L ItemRole]

Eberhart, Shimizu, Stevens, Hitzler, Myers, Maruyama

ofType AffordanceType

(b) The schema diagram for the Affor-
dance module.

_____ N I—_1
ISR-MATB Task | Item |

—=q-=- il

providesRole assumedBy

ofType ItemRoleType

(d) The schema diagram for the ltem-
Role module.

Fig. 2: Orange boxes are classes and indicate that they are central to the diagram.
Blue dashed boxes indicate a reference to another diagram, pattern, or module.
Gray frames with a dashed outline contain modules. Arrows depict relations and
open arrows represent subclass relations. Yellow ovals indicate data types (and
necessarily, arrows pointing to a datatype are data properties). Finally, purple
boxes represent controlled vocabularies. That is, they represent a controlled set
of IRIs that are of that type.

Explanation of axioms above:

1. Exact Cardinality. An Action has exactly one ActionType.

3.3 Affordance

The Affordance module is also instantiated from the Explicit Typing meta-pattern,
explained in more detail in Section 3.2 and [?]. An Affordance is essentially some
quality of an [tem that indicates that “something” may be done with it. Familiar
examples might include clickable buttons or text highlighted in blue (perhaps
indicating that it’s a hyperlink). Instances of the AffordanceType can be found
in Figure 5. The schema diagram for this module is shown in Figure 2b.

A Domain Ontology for Task Instructions 7

Axiomatization:

Affordance C =1hasAffordanceType.AffordanceType (1)

Explanation of axioms above:

1. Exact cardinality. An Affordance has exactly one AffordanceType.

3.4 ItemRole

The ItemRole module is an instantiation of the AgentRole pattern, which may
also be found in [?]. We also equip it with an explicit type, in the same manner
as Action and Affordance.

Each ISR-MATB Task may provide roles to Iltems. That is, certain items may
be a target or distractor, but not always. This allows us to assign certain roles
to items that may, if they were qualities, be ontologically disjoint. The schema
diagram for this module is shown in Figure 2d.

Axiomatization:

ISR-MATBTask C VprovidesRole.ltemRole (
T C VhasltemRoleType.ltemRoleType (2

ltemRole T VassumedBy.ltem (

ltemRole C JassumedBy.ltem (

Explanation of axioms above:

1. Scoped Range. The range of providesRole is ItemRole when the domain is
ISR-MATBTask.

2. Range. The range of hasltemRoleType is ItemRoleType.

Scoped Range. ltemRoles are assumedBy Items.

4. Existential. Every ItemRole is assumedBy an ltem.

©w

3.5 SituationDescription

For this module, we opted to use the Situation and Description approach. We
chose to use this conceptualization due to the non-linear nature of the instruc-
tions.® That is, an ISR-MATB Task is not a sequence of instructions, but a
collection of directions or descriptions.

An Instruction, is a description of a way to transition between two states. In
order to follow out an instruction the state described in the the pre-SituationDescription
would need to be met. Following through would result in a new state, the Post-
Situtation Description.

8 For a deeper discussion on Descriptions, Situations, and Plans, see [?].

8 Eberhart, Shimizu, Stevens, Hitzler, Myers, Maruyama

| Q- ~I— - _7_ _____

hasPreSituationDescription,

hasPostSituationDescription contributesTo

hasCurrentCondition RelativeCondition

LocationType of Type
hasCurrentCondition, hasFirstltem,

refersToltemLocation hasEarlierCondition hasSeconditem RelativeConditionType

refersToltemColor

ColorType

refersToltemShape

ShapeType
refersToltemType isPresent hasltemName assumedBy

r\ _——

\

Fig. 3: The schema diagram for the SchemaDiagram module. Color and shape
usage is the same as in previous diagrams.

Furthermore, the SituationDescription will indicate the presence, or absence,
of an item, as well as its description. Descriptions, in this case, are relegated to
controlled vocabularies in the same manner as Affordance or Action. We call this
an I[temDescription because it is inherent to the Instruction and not the Iltem,
itself.

The schema diagram for this module is shown in Figure 3.

Axiomatization:

SituationDescription C VhasCurrentCondition.(RelativeCondition LI ltemDescription)

(1)

SituationDescription C YhasEarlierCondition.ltemDescription (2)
T C VhasRelativeConditionType.RelativeConditionType

3)

RelativeCondition C YhasFirstltem.ltemDescription (4)

RelativeCondition C YhasSecondltem.ltemDescription (5)

ItemDescription C Vofltem.ltem (6)

ItemDescription C =1 isPresent.xsd:boolean (M)

T C VrefersToltemLocation.LocationType (8)

T C VrefersToltemColor.ColorType 9)

T C VrefersToShapeType.ShapeType (10)

T C VrefersToltemType.ltemType (11)

ItemDescription C >0 refersToltemLocation.LocationType (12)

ItemDescription C >0 refersToltemColor.ColorType (13)

A Domain Ontology for Task Instructions 9

ItemDescription C >0 refersToltemShape.ShapeType (14)
ItemDescription C >0 refersToltemType.ltemType (15)
T C VhasltemName.xsd:string (16)
JhasltemName. T C ltem (17)

Explanation of axioms above:

1. Scoped Range. The range of hasCurrentCondition is a RelativeCondition or
ItemDescription when the domain is SituationDescription.
2. Scoped Range. The range of hasEarlierCondition is ltemDescription when
the domain is SituationDescription.
3. Range. The range of hasRelativeConditionType is RelativeConditionType.
4. Scoped Range. The range of hasFirstltem is ltemDescription when the do-
main is RelativeCondition.
5. Scoped Range. The range of hasSecondltem is ltemDescription when the
domain is RelativeCondition.
6. Scoped Range. The range of ofltem is Item when the domain is ltemDescrip-
tion.
7. Scoped Range. An ltemDescription has exactly one Boolean flag indicating
whether or not it is present.
8. Range. The range of refersToltemLocation is LocationType.
9. Range. The range of refersToltemColor is ColorType.
10. Range. The range of refersToltemShape is ShapeType.
11. Range. The range of refersToltemType is ItemType.
12. Structural Tautology. An ItemDescription may refer to a LocationType.
13. Structural Tautology. An ltemDescription may refer to a ColorType.
14. Structural Tautology. An ltemDescription may refer to a ShapeType.
15. Structural Tautology. An ltemDescription may refer to an ltemType.
16. Range. The range of hasltemName is xsd:string.
17. Domain Restriction. The domain of hasltemName is restricted to Items.

3.6 Instruction

Instructions are the atomic units of a task. They come in two varieties: descrip-
tions and actions. The former are instructions that are prescriptive or descrip-
tive. They are statements that indicate information about the environment or
the task. They may, in natural language, take such form as “There is a button
named ‘Present’.” The latter type of instruction instructs when or where to do
something. For example, “Press the button if a high-pitched tone is heard.” An
Action-Instruction prescribes some transition between descriptions of situations,
whereas Description-Instructions directly contribute to said SituationDescrip-
tion. The module also uses a data property to capture the natural language
formulation of the Instruction. The schema diagram for this module is shown in
Figure 4.

10 Eberhart, Shimizu, Stevens, Hitzler, Myers, Maruyama

asString

P —

prescribes

TransitionDescription

hasPreSituationDescription,
hasPostSituationDescription

DescriptionInstruction

contributesTo

SituationDescription |

Fig.4: The schema diagram for the Instruction module. Color and shape usage
is the same as in previous diagrams.

Axiomatization:
Actionlnstruction C Instruction (1)
Actionlnstruction C Vprescribes.TransitionDescription (2)
T L VasString.xsd:string (3)
Instruction C >0 asString.xsd:string (4)
DescriptionInstruction C Instruction (5)
Descriptioninstruction C VcontributesTo.SituationDescription (6)

T C VhasPreSituationDescription.SituationDescription
(7)
T C VhasPostSituationDescription.SituationDescription

(8)

Explanation of axioms above:

—_

Subclass. Every Actionlnstruction is an Instruction.

Scoped Range. The range of prescribes is TransitionDescription when the
domain is Actionlnstruction.

Range. The range of asString is xsd:string.

Structural Tautology. An Instruction may have a string representation.
Subclass. Every Descriptionlnstruction is an Instruction.

Scoped Range. The range of contributesTo is SituationDescription when the
domain is Descriptionlnstruction.

Range. The range of hasPreSituationDescription is SituationDescription.
Range. The range of hasPostSituationDescription is SituationDescription.

»o

S Gk

®© N

11

A Domain Ontology for Task Instructions

[qisin
aiqipne
aiqepuy
aigensinal
8|qeyoIess
elgexpIP

adf Lsouepioyysey

sweNwaj|sey \'é

I spioye
woy

oysiefel

ﬁ 2%

uonngoyul

Bj0yWay

uopngesuodsal
Jopesnsip |oyway|
snjnwns

19612} odf Lojoyweyisey

adeygwayio L siojl

UOPE20 WA} 0| SIBje)

Agpownsse w0

UEB|00q:PSX

waypucosgsey

adk LwayoLsiejes

Jueseids!
uopduosaquiay|

uoppuoIUBLNDSEY uonpuogIaIEISey

=

aweNsey

JUEIIESE]

SLYN-HSI yseLsey

uonesosey

||||| L
1" yespenpyuoneoot J

sjoysepinoid

swojuy

spioye

wasdsey

— adAL Tm&to " " ’ T: pUOOIUBLNDSEY

uonduosaquonen)is

uopduosaquonenys

|
uonduosequonenygisodsey
oL - uonduoseq

uopduosequonisuel] |«

— uononsul-uonduosaq _

|

J

uononnsulsey

e*m:smmmx_ uononasu| _A_|Ta_§=w:_.=o__o<_

uononssu|

166

Buinauel
Buipeas
Bupyono

i
I
!
| Buiyoseas
I
I
I
I
I

Fig.5: The schema diagram for the entire ontology. Note that the SituationDe-
scription module is nested in the Instruction Module. Color and shape usage is

the same as in previous diagrams.

12 Eberhart, Shimizu, Stevens, Hitzler, Myers, Maruyama

4 Conclusion

In this paper we have presented an ontology for modeling the ISR-MATB cogni-
tive agent task instructions. This ontology can be used, as we have, to directly
support the memory of a cognitive agent performing tasks. It also could support
experiment design, irrespective of any agent, by providing a structured basis
for evaluating similar tasks. The modular structure facilitates adapting the on-
tology to other use cases and scenarios by replacing or adapting the existing
modules. It is also possible to create new modules from the referenced patterns
via template-based instantiation [?].

4.1 Future Work

In the future we plan to extend this ontology so that it can support a fully
undifferentiated agent. This will include tasks like ISR-MATB, but also many
others that could be very different. One such task is supporting materials sci-
ence research that uses the Autonomous Research System (ARES) framework.
An undifferentiated cognitive agent could operate a robotic system that per-
forms research, using software like ARES, saving materials researchers hours of
potentially hazardous lab work.

Acknowledgement This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-18-1-0386.

