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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler,
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd,
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Studies in Computational Intelligence 77

B.Hammer - P. Hitzler
(Eds.)

Perspectives of
Neural-Symbolic
Integration

Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas,
Hoifung Poon, Gerson Zaverucha '

https://arxiv.org/abs/1711.03902 (2017)

llaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs
for eXplainable Artificial Intelligence: Foundations, Applications and
Challenges. Studies on the Semantic Web Vol. 47, I0S Press, 2020.
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Neural-Symbolic Integration and the
Semantic Web

Pascal Hitzler, Federico Bianchi, Monireh Ebrahimi, Md Kamruzzaman Sarker,
Neural-Symbolic Integration and the Semantic Web.
Semantic Web 11 (1), 2020, 3-11.
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aSe Lab
Part I. Deep Deductive Reasoners ‘%

Part 2: Explainable Al using Knowledge Graphs

Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler,
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners.
Applied Intelligence, 2021, to appear.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.
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Deep Deductive Reasoners

« We trained deep learning systems to do deductive reasoning. mb

 Why is this interesting?
— For dealing with noisy data (where symbolic reasoners do
very poorly).
— For speed, as symbolic algorithms are of very high
complexity.
— Out of principle because we want to learn about the
capabilities of deep learning for complicated cognitive tasks.

— To perhaps begin to understand how our (neural) brains can
learn to do highly symbolic tasks like formal logical
reasoning, or in more generality, mathematics.

A fundamental quest in Cognitive Science.
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Reasoning as Classification

« Given a set of logical formulas (a theory). ELab
« Any formula expressible over the same language is either
— alogical consequence or

— not a logical consequence.

 This can be understood as a classification problem for machine
learning.

|t turns out to be areally hard machine learning problem.
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Knowledge Materialization

« Given aset of logical formulas (a theory). “ab

 Produce all logical consequences under certain constraints.

 Without the qualifier this is in general not possible as the set of
all logical consequences is infinite.

« So we have to constrain to consequences of, e.g., a certain
syntactic form. For relatively simple logics, this is often
reasonably possible.
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Deep Reasoners Overview

RDFS via Memory Networks (classification). ELab
RDFS via Pointer Networks (generative).

OWL EL via LSTMs (generative)

LTNSs for first-order predicate logic

> W

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler,
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive
Reasoners. Applied Intelligence, 2021, to appear.
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RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie,
Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler,

Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment.
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart
and Brayden Pankaskie
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RDF reasoning

» [Note: RDF is one of the simplest useful knowledge “ab
representation languages that is not propositional.]

« Think knowledge graph.
« Think node-edge-node triples such as

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human

husbandOf rdfs:subPropertyOf  spouseOf

« Then thereis a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)

KANSAS STATE ontolog, February 2021
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Representation

« Goal is to be able to reason over unseen knowledge graphs. ELab
l.e. the out-of-vocabulary problem needs addressing.

 Normalization of vocabulary (i.e., it becomes shared
vocabulary across all input knowledge graphs.

« Onevocabulary item becomes a one-hot vector
(dimension d, number of normalized vocabulary terms)

* Onetriple becomes a 3 x d matrix.

« The knowledge graph becomes an n x 3 x d tensor
(n is the number of knowledge graph triples)

« Knowledge graph is stored in “memory”

KANSAS STATE ontolog, February 2021
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Mechanics

 An attention mechanism retrieves memory slots useful for ELab
finding the correct answer to a query.

« These are combined with the query and run through a (learned)
matrix to retrieve a new (processed) query.

 This is repeated (in our experiment with 10 “hops”).
 The final out put is a yes/no answer to the query.
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Experiments: Performance

?

Base Inferred Invalid
Test Dataset RO - opaes T #Em0 [ %Css | %lndv [ %R | %Axiom. | #Facs | #EaL | %Class | %Indv | %R | %Axiom | #Facts
OWL-Centric 2d6d 1 99 832 14 19 3 ] 494 832 4 0.01 I 20 462 i
Linked Data 20527 | 999 181 3 22 J ] 124 87 3 0.006 1 83 124
OWL-Centric Test 5et | 21 622 400 36 41 3 0 837 400 36 3 1 12 476
Synthetic Dala 2 152 s06 52 0 1 0 126356 506 52 0 1 0.07 700
Table 2: Statistics of various datasets used in experiments
Baseline: non-normalized embeddings, same architecture
Training Datasct Test Dataset Valid TrlErle& Class Invalid Trl!:l]-f:}; Class Accuracy
Precision Recall F-measure | Precision Recall F-measure
’ {Sensitivity : {Specificity :
OWL-Centric Dataset Linked [ata K] U5 Ui Us U3 Y3 Ui
OWL-Centric Dataset (90%) | OWL-Centric Dataset (10%) | 88 01 89 20 88 89 9%
OWL-Centric Dataset OWL-Centric Test Set ® 79 62 68 70 84 16 69
OWL-Centric Dataset Synthetic Data 65 49 40 32 34 42 52
OWL-Centric Dataset Linked Data * KE | o8 10 o1 16 27 B6
OWL-Centric Dataset * Linked Data * 62 72 67 67 36 61 01
OWL-Centric Dataset(90%) *| OWL-Centric Dataset(10%) *| 79 72 75 74 g1 77 80
OWL-Centric Dataset OWL-Centric Test Set 7 38 68 62 62 30 M 38
OWL-Centric Dataset ® OWL-Centric Test Set 2° 77 57 65 66 82 73 73
OWL-Centric Dataset Synthetic Data * 70 51 40 47 52 38 51
OWL-Centric Dataset ® Synthetic Data ® &7 3 25 52 &0 62 50
Baseline
OWL-Centric Dataset Linked Data 73 o8 B3 PE] 46 61 43
OWL-Centric Dataset (909%) | OWL-Centric Dataset (10%) | 84 83 B4 84 84 B 82
OWL-Centric Dataset OWL-Centric Test Set 62 84 70 80 40 48 1
OWL-Centric Dataset Synthetic Data 35 41 32 48 35 45 45

® More Tricky Mos & Balanced Dataset
® Completely Different Domain.

Table 3: Experimental results of proposed model



Experiments: Reasoning Depth

Test Dataset o H-;}:u{p 0 - Hop 1 Hop 2 Hop3 Hop 4 Hop 3 Hop 6 Hop T HopE Hop 9 Hop 10
Tinked Data® | 0 | 0 | 0 | &0 | 99 | &5 | &9 | 97 | 9% | 17 | 94 Bh
Linked Data® | 2 D [0 [8 [ o1& |89 [98 9379|100 &8
]
3

OWLCenine™[ 19 [ 3 [ 7AETAEEE TR [HE[H [H[S [THE]6 T- - - - - - - - - - - - - - - - - -
Synthebc I EEIENEEA R sl e [de [ S 1 [ 5 [ [ 332414530 54302236 ]2

* LemonUby Ontology
A grovoe Oniology
£ Compleiely Dhifferent Domaim

Table 4: Experimental results over each reasoning hop

Dataset Hopl | Hop2 | Hop3 | Hop4 | Hop5 | Hop6 | Hop7 Hop 8 Hop 9 Hop 10
OWL-Centric* | 8% 67% 24% 0.01% | 0% 0% 0% 0% 0% 0%
Linked Data” 31% 50% 19%% 0% 0% 0% 0% 0% 0% 0%
Linked Data® 34% 46% 20% 0% 0% 0% 0% 0% 0% 0%
OWL-Centric® | 5% 64% 30% 1% 0% 0% 0% 0% 0% 0%
Synthetic Data | 0.03% | 1.42% | 1% 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65%

* Training Set

h LemonUby Ontology

“ Agrovoc Ontology

4 Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day
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Generative RDFS Reasoning
using Pointer Networks

Monireh Ebrahimi, breaking results
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Pointer Networks

e Pointer Networks ‘point’ to input elements! “ab

e Ptr-Net approach specifically targets problems whose outputs are
discrete and correspond to positions in the input.

e At each time step, the distribution of the attention is the answer!

e Application:
— NP-hard Travelling Salesman Problem (TSP)
— Delaunay Triangulation
— Convex Hull
— Text Summarization
— Code completion
— Dependency Parsing

KANSAS STATE ontolog, February 2021
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Pointer Networks for Reasoning

« To mimic human reasoning behaviour where one can learn to choose “ab
a set of symbols in different locations and copy these symbols to

suitable locations to generate new logical consequences based on a set of
predefined logical entailment rules

b=l 1
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Preliminary Results

Pointer Networks

Logic | KG Size SubWordText | Tokenizer |
RDF 3 - T35 ST 99Y%%,
A0) T3% T3%
ER o) 68% 625
120 A49Y% A49Y%,

e On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
e Our approach is amore straightforward application.
e Evaluation is on the same dataset.

KANSAS STATE ontolog, February 2021
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Completion Reasoning Emulation for the
Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler,
Completion Reasoning Emulation for the Description Logic EL+.

In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug
Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the

AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge

Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25,
2020, Volume I.
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EL+ Is essentially OWL 2 EL

KAN
UNII

] -
Table 2: ££7 Completion Rules :
CXCCY
|
CXNCYCCZ (1) ACC CCD — AC D
CX C 3RY.CZ (2) ALC (G ACCy CinCG:CDEACD
JRX.CY C CZ (3) ACC CCIJdR.D = ACdR.D
RX CRY 4 ACJRB BCC ARCCED EACD
RX = RY C RZ (5) AC 35D SCH — ACdR.D
)ACdR,.C CCdR:.D Rio R C REACdRD
Table 1: ££7 Semantics
Description Expression Semantics
Individual a ac Al
Top T AT
Bottom 1 )]
Concept C ct c At
Role R RT C AT x AT
Conjunction cnp cInp*
Existential Restriction dR.C { a|there is b € AT such that (a,b) € RT and b e CT }
Concept Subsumption CCD cTcpr
Role Subsumption RC S RT C 5T
Role Chain Ryo---oR,CR Rlo---oRICRI 21

with o signifying standard binary composition
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New Fact | Rule | Support
Step 1 CICC3 | (1) (C1CcC2C2C(C3
ClICC4 | 4) |[CICCICIC3RICIARI.CZCEC4
CICARIC3 | (3) |C1CC2C2C 3RI1.C3
CICIRIC1 | (3 |CICIRILCILRICERZ
CICJR4.C4 | (6) | C1CJRIL.CIRlI «cR3CER4,CI C 3R3.C4
Step 2 CICGCS | (2) |CAnC4CC5CICC2CZEC3CICC2CICEARICIARIC2ZECA

KANSAS STATE

ontolog, February 2021
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. e A. Train 1 to match reasoner step support data
ArChIteCture B. Test 1 and save result

Completion Step 1 C. Train 2 using correct answers from reasoner
tompletion Step £ D. Test 2 using saved data from 1

Completion Step n
mpletion Step 1 mpletion Step Completion Step n
A l

L

‘ LSTM Cell I—»{ LSTM Cell }—» " —»‘ LSTM Cell ] 2
A h
Supports Step 1 Supports Step 2 @

Supports Step Supports Step 2 Supports Step n
A h L

Figure 2: Piecewise Architecture
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Architecture

Completion Step 1 [

Completion Step 2

Camjictmn Step n

-
Eompletion Step 1 Cumpletmn Step z @‘@
k,
[ LSTM Cell LSTM Cell }—. *)[ LSTM Cell l
A

A

@@ P S

A A

[ LSTM Cell H LSTM Cell }—) 4>{ LSTM™ Cell ]
k
KB Vector Copy 1 KB Vector Copy 2 KB Vector Copy n

KB Vector

Figure 3: Deep Architecture
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Architecture

A
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Completion Step 1
Completion Step 2

Completion Step n

Completion Step 1 @ @
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‘ LSTM Cell }—)[ L5TM Cell —_— ‘)I LSTM Cell ‘
A ] A

r
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Figure 4: Flat Architecture
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KB statement Vectorization
CXCCY 5 0.0, £ X 00]
CXMCYCCZ — [, X Z 00]
CXC3RY.CZ — Joo, &, =X Z
RX.CYCCZ — [Z, X £ 00
RX CRY —  [0.0,=%, =X 0.0]
RXeRYCRZ — [=X, =X =£ 0.0]

¢ = Number of Possible Concept Names
r = Number of Possible Role Names

KANSAS STATE ontolog, February 2021

UNIVERSITY



Results

Table 7: Average Precision Recall and F1-score For each Distance Evaluation

Cpseran

Atomic Levenshtein Distance

Character Levenshtein Distance

Predicate Distance

Prcc1.~;mn| Recall |P]—scmr+:

Pn:msmn| Kecall |I-']—scnn:

PI'-I'_‘['lEi.I{}]'Il Recall |I-']—scnrr:

Synthetic Data

Piecewise Prediction |(. 138663 | 0.142208 (0.140412( 0.138663 |0.142208)|0.140412 {0.138646(0.141923(0.140264
Deep Prediction 0154398 0.156056 (0.155222( 0.1534398 |0.156056| 0.155222 (0. 154258 (0. 1535736 (0. 154993
Flat Prediction 0.140410] 0.142976 (0.141681( 0.140410 10.142976| 0.141681 [0.140375(0.142687 | 0.141521
Random Prediction [0.010951 |0.0200518(0.014166( 0.006833 |0.012401 | 0.008811 [0.004352|0.007908 | 0.007908
SNOMED Data
Piecewise Prediction |(0.010530] 0.013554 [0.011845( 0.010530 |0.013554 | 0.011845 [0.010521 {0.013554|0.011839
Deep Prediction 0013983 |0.0172811 [ 0.016395( 0.015983 (0017281 0.016395 [0.015614 (0.017281 [0.016396
Flat Prediction 0.014414] 0.018300 (0.016112{0.0144140)0.018300| 0.016112 {0.013495 [ 0.018300|0.015525
Random Prediction |0.002807 | 0.006803 [0.003975( 0.001433 |0.003444) 0.002023 [0.001769(0.004281 [ 0.002504

KANSAS STATE

UNIVERSITY
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Noisy data

Averages For Levenshtein Distance
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Figure 8: Character Levenshtein Distance Precision, Recall, and F1-score

KANSAS STATE
UNIVERSITY

ontolog, February 2021




Noisy data
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The Deductive Capability of
Logic Tensor Networks

Federico Bianchi, Pascal Hitzler, On the Capabilities of Logic Tensor Networks for
Deductive Reasoning. In: Andreas Martin et al. (eds.), Proceedings of the

AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge
Engineering (AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA,
March 25-27, 2019, Stanford University, Palo Alto, California, USA, March 25-27,
2019. CEUR Workshop Proceedings 2350, CEUR-WS.org 20109.

KANSAS STATE ontolog, February 2021
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Logic Tensor Networks

Based on Neural Tensor Networks. eLab

Logic Tensor Networks are due to Serafini and Garcez (2016).
They have been used for image analysis under background
knowledge.

Their capabilities for deductive reasoning have not been
sufficiently explored.

Underlying logic: First-order predicate, fuzzyfied.
Every language primitive becomes a vector/matrix/tensor.

Terms/Atoms/Formulas are embedded as corresponding
tensor/matrix/vector multiplications over the primitives.

Embeddings of primitives are learned s.t. the truth values of all
formulas in the given theory are maximized.

KANSAS STATE ontolog, February 2021
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A-priori Limitations

Cpseran

 Not clear how to adapt this such that you can transfer to
unseen input theories.

o Scalability is an issue.

 While apparently designed for deductive reasoning, the
iInventors hardly report on this issue.

KANSAS STATE ontolog, February 2021
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Transitive closure

e Va.b,ce A : (.S'H.b(a_, b) A -S'H.b(b,_ C)) — Sub(a, r:) eLab

e Va € A: —subla,a)
e Va.b: subla,b) — —sub(b.a)

Satisfiability MAE Matthews F1 Precision  Recall

0.99 0.12(0.12) | 0.58 (0.45) | 0.64 (0.51) | 0.60 (0.47) | 0.68 (0.55)
0.56 0.51(0.52) | 0.09 (0.06) | 0.27(0.20) | 0.20 (0.11) | 0.95(0.93)
Random 0.50 (0.50) | 0.00 (0.00) | 0.22(0.17) | 0.14(0.10) | 0.50 (0.50)

parentheses: only newly entailed part of KB

MAE: mean absolute error;

Matthews: Matthews coefficient (for unbalanced classes)

top: top performing model, layer size and embeddings: 20, mean
aggregator

Bottom: one of the worst performing models.
Multi-hop inferences difficult.

KANSAS STATE ontolog, February 2021
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More take-aways from experiments

Cpseran

o Higher arity of predicates significantly increases learning

4 26 27 28 3 3.4
12
=
£ B- 37 39 42 46 5.1
L} 10
i
: 5.1 53 -] 6.1 6.5
§12 R 2 g - 8
G
b
220 [
=

5]
=]

12 20
humber of constants

Figure 5: Computational times in sec-
onds for predicates of arity one and con-
stants
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Figure 6: Computational times in sec-
onds for predicates of arity two and con-
stants

ontolog, February 2021

4- 6.8 24 64 2.6e+02 BS5e+02 BN

11 39 1.1e+02 5.1e+02 1.7e+03 4500

=2

15 56 1.6a+02 T.3a+02 25a+03

300

23 88 26e+02 1.20+03 ENEIIX]

Number of predicates (arity 3)
=
] (]

1500

130402 4.1e+02 20403 LRIGiX]

&
4

& 12 20 30
Numbar of constants

e
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constants




Part I. Deep Deductive Reasoners e Lab
Part 2: Explainable Al using Knowledge Graphs

Explaining Deep Learning via Symbolic
Background Knowledge

Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal Hitzler, Explaining Trained Neural Networks with
Semantic Web Technologies: First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), Proceedings of the
Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR
Workshop Proceedings 2003, CEUR-WS.org 2017

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In: The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 —
February 1, 2019. AAAI Press 2019, pp. 3036-3043.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, lon Juvina, Michael

L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable Al. In: Boris Villazon-Terrazas, Fernando Ortiz-Rodriguez,
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Explainable Al

« Explain behavior of trained (deep) NNs. “ab

e J|dea;

— Use background knowledge in the form of linked data
and ontologies to help explain.

— Link inputs and outputs to background knowledge.

— Use a symbolic learning system to generate an explanatory
theory.

« We have key components for this now, but it’s still early stages.

KANSAS STATE ontolog, February 2021

UNIVERSITY



Concept

Training images

hasMapping

Knowledge Graph

BE128x128

CNN to classify images

24@48x48

Snow subClassof BodyOfWater

And some others

KANSAS STATE

UNIVERSITY

Positive
images

P8 Negatiy
B images

Concept |

e

nduction

—— 3Jcontains. (HighLand N BodyOfWater)
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Concept Induction

L ) eLab
Positive examples: negative examples:

: ©Le T

2 Egg-Le HE 2 [ e Ho -

. [ <& > o B v Lo -

L | o xla a/l B + \oilo 0

. [0 - Hal- B A ===
DL-Learner result: dhasCar.(Closedn Short)
In FOL.:

{z | Jy(hasCar(x,y) A Closed(y) A Short(y))}
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ECIl algorithm and system

- . e lLab
 For scalability, we implemented our own system,
ECII (Efficient Concept Induction from Instances) which
trades some correctness for speed.
[Sarker, Hitzler, AAAI-19]
Experiment Name Number of Euntime (sec) Accuracy {ms) Arccuracy g
pe i Logical Axioms | DL®* | DL FIC()®] DL FIC(2)°| ECII DFY] ECII KCT*| DL® | ECII DFY] DL FIC(1*] DL FICi2FF| ECIl DFY] ECII KCT®
Yinvang_examples 157 0.065 0.0131 0.019 (0.089 0.143 1K) 0610 . (W (KL 0790 (RLL]
Trains i 0.0 0,020 0.0/ 005 D095 K] ] [T [ | AN | L]
Forie 341 2.5 1.169 0. 145 (.95 .331] 0.965 {1642 (.8735 0.875 733 1K)
Poker 1,368 (0.066 0.714 0.817 l (.281 1 KK} 1. (R 0.981 (0,984 1. (WD 1K)
Moral Reasoner 4,6 0.1 3106 4,154 547 6873 IRLLY (L7835 [N (KL 1. (WD 1K)
ADE20k 1 4714 5773 4,268 31.887 1.266 23775 0.924 0416 0,263 (EIE) 0.744 10K
ADEZOE I 7,300 DES A4 16187 307.65 20.8 293,44 1K) 0673 0413 0.413 0846 0,900
ADEIOE TIT 12,193 g 3008 13,202 203210 3l 2388 0375 (IExT 0375 0373 (%] 0957
ADE2OK TV 47 A6E 4 5008 93.658 523.673 116 423345 0375 MNA (.608 0.608 0.660 0.608

DL DL-learner

B DL FIC (1) : DL-Learner fast instance check with runtime capped at execution time of ECII DF
“ DL FIC (2} : DL-Leamer fast instance check with runtime capped at execution time of ECII KCT
4 ECI DF : ECII default paramelers
® ECII KCT : ECII k2ep common types and other default parameters
" Runtimes for DL-Leamer were capped at 600 seconds.
! Funtimes for [DL-Leamner were capped at 4,500 seconds.

KANSAS STATE
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ECII vs. DL-Learner

/<r>. .
1000000 : —
0.9 B |
100000 -
1000 - 07 i
. 06 1
10 e
100 s
03
10 0.2
ol
1
Yinyang Trains Forte Poker Moral ADE20k | ADE20k ADE20k ADE20k 0

V Yinyang Trains Forte Poker Moral ADE20k IADE20k Il ADE20k ADE20k
‘\‘I
Etime DL-Learner Otime EC

W accuracy DlLlearner DOaccuracy EC

Figure 1: Runtime comparison between DL-Learner and

ECII. The vertical scale is logarithmic in hundredths of sec- Figure 2: Accuracy (a3) comparison between DL-Learner
onds, and note that DL-Learner runtime has been capped at  and ECII. For ADE20k IV it was not possible to compute an
4,500 seconds for ADE20k Il and IV. For ADE20k T'it was  accuracy score within 3 hours for ECII as the input ontology
capped at each run at 600 seconds. was too large.

However, ECII can only deal with class hierarchies as background knowledge.
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Proof of Concept Experiment
Negative: mb

Positive:

B | b e Rt i T Al

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture.

We mapped these to SUMO as background knowledge.
 Suggested Merged Upper Ontology
 Approx. 25,000 common terms covering a wide range of domains
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http://groups.csail.mit.edu/vision/datasets/ADE20K/

DL-Learner input
Positive: ELab

imgl: road, window, door, wheel, sidewalk, truck,
box, building

img2: tree, road, window, timber, building, lumber

Img3: hand, sidewalk, clock, steps, door, face, building,
window, road

Negative:
img4: shelf, ceiling, floor
img5: box, floor, wall, ceiling, product
Img6: ceiling, wall, shelf, floor, product

DL-Learner results include: Elcontains,Transitwa,y

Jecontains.LandArea
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Proof of Concept Experiment

Positive:

Jcontains.Transitway

2 Ii .
w0 P MR R s
Kﬂ ﬂl_ - ;*:“*l Lo Fﬁ?‘g; »E“Ir ont0|0g’ B 1\ . .‘_, CA . X L C) . . : C C\
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Experiment 5

Positive:

Jcontains.BodyOfWater
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Wikipedia KG (WKG) : Breaking Cycle

A

Lost Significant Information dyz eubca

* 50% of the subclass relation o o syl |
* 50% of the class assertion A

ssOf

rdfs:qubClassOf

rdlfs bubClassOf N

: T
Number of entities/facts | SUMO | DBpedia | Wikipedia cyclic | Wikipedia noncyclic
Concepts 4558 1183 1,901,708 1,860,342
Individuals 86,475 1 6,145,050 6,079,748
Object property 778 1144 2 2
Data property 0 1769 0 0
Axioms 175,208 | 7228 71,344,252 39,905,216
Class assertion axioms 167381 1 57,335,031 27,991,282
Subclass axioms 5330 769 5,962,463 3,973,845
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Evaluation : Knowledge Graph in XAl

Workroom Explanations
SUMO

 3Jcontains.(DurableGood M -ForestProduct)
 3Jcontains.(DurableGood M -Lumber)

e 3Jcontains.Entity

Wikipedia

* 3Jcontains.(Wrenches M Tools M -Lumber)
 3Jcontains.(Mechanicaltools M -Lumber)

« 3contains.(Mechanicaltools M -Sky) Test images. Workroom as positive examples
P1, Py, P3 ON the left, Warehouse as negative
examples nj, n,, n; on the right (from top).

Market Explanations

SUMO Mountain Explanations

* 3Jcontains.SentientAgent SUMO

Wikipedia e 3Jcontains.BodyOfWater
Wikipedia

e 3Jcontains.(Structure N Life
( ) e contains.((Life M Branches_of _botany) n(Nature))
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Evaluation : Knowledge Graph in XAl

« Wikipedia Knowledge graph producing better coverage score. e =
« Reason behind this is the large number of concepts it has.

Experiment name #Images | #Positive images | Wikipedia SUMO
#Solution | Coverage  #Solution | Coverage

Market vs. 96 37 286 72 240 T2

WorkRoom and

wareHouse

Mountain vs. Market |181 85 195 .61 190 .53

and workRoom

OutdoorWarehouse 55 3 128 .94 102 .89

vs. IndoorWarehouse

Warehouse vs. 59 55 268 .56 84 .24

Workroom

Workroom vs. 59 4 128 .93 93 .84

Warehouse
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Copseran

« Use approach to identify meaning of hidden neurons.
« Use approach to improve deep learning systems.

 Applications to understand “data differences”.
E.g., false-positives vs. true-positives.

KANSAS STATE ontolog, February 2021

UNIVERSITY



=
Copseran

Conclusions
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Copseran

 Bridging the neural-symbolic gap is still a major quest.

 Butthere are tons of opportunities.
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Copseran

Thanks!
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Thanks!
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