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Abstract. Trees — i.e., the type of data structure known under this
name — are central to many aspects of knowledge organization. We in-
vestigate some central design choices concerning the ontological modeling
of such trees. In particular, we consider the limits of what is expressible
in the Web Ontology Language and provide a reusable ontology design
pattern for trees.

1 Introduction

Trees are fundamental data structures for knowledge organization. They make
their appearance in the form of taxonomies, meronomies, decision trees, branch-
ing processes, etc. As such they are fundamental for ontological knowledge rep-
resentation.

At the same time, however, it is not possible to fully characterize trees in the
Web Ontology Language (OWL) [I4/I5] (see Section . It is thus an important
research question how to represent trees in ontology modeling, and to understand
the pros and cons of different ways to do it.

We need to realize, of course, that trees in ontology modeling often serve a
different purpose than in programming. Operations on trees important in pro-
gramming include, for example, adding or deleting items or pruning of whole
sections; i.e., some of the important operations do actually change the tree. For
ontology modeling purposes, in contrast, it is more appropriate to think of a tree
as static and as something that is being queried. Typical queries would be to
identify roots or leaves, common ancestors, or descendants.

Because trees are an important conceptual tool for knowledge organization,
we present a design pattern for modeling trees. We also discuss different design
choices related to modeling trees, as well as their respective advantages and
disadvantages.

The rest of the paper is structured as follows. In Section [2] we present a
particularly interesting use case which has informed our work, namely the use of
ontology modeling for evolutionary or phylogenetic trees. In Section [3| we discuss
the fundamental shortcomings of the Web Ontology Language (OWL) regarding
the modeling of trees. In Section [4] we present a basic ontology design pattern
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for the modeling of treesE| In Section |5| we discuss the special case of n-bounded
trees (e.g., with n = 2 for binary trees). Section |§| presents a model for trees
that contain data arranged in an order, as well as some general discussion on
the representation orders in OWL. In Section [7] we conclude.

This paper is an extended version of [3].

2 Phylogenetic Trees

One of the central tenets following from the theory of organismal evolution is
that all life is related through descent with modification [5]. That is, populations
of a biological species can over time diverge enough, due to natural selection,
adaptation, genetic drift, and other forces acting differentially on different popu-
lations, that they form new species, some of which persist and go on themselves
to split, giving rise to new species, and so forth. Speciation through diversifica-
tion can sometimes be driven by new ecologic opportunities, for example when
new habitats are being colonized, a process often referred to as adaptive radiation
[30/31]. One of the most prominent research objectives in evolutionary science
is to reconstruct, using genetic and organismal trait data, the evolutionary his-
tory of different organisms, species, or life forms; i.e., to reconstruct the lines of
shared descent by which organisms are connected [10/33]. Such a reconstruction
is represented in the form of a phylogenetic tree, in which the leaves are often
called operational taxonomic units (OTUs) and represent the sampled entities,
and internal nodes represent ancestral entities, such as ancestral populations
from which descendent ones diverged. Phylogenetic reconstruction results in un-
rooted trees; the root is normally not known (and cannot normally be sampled),
but reasonably accurate mechanisms for inducing a root exist [16J20] (for exam-
ple, by including in the reconstruction analysis a group of species — a so-called
“outgroup” — that are already known to fall outside of the ingroup for which
evolutionary patterns are being studied).

A phylogenetic tree represents important evolutionary hypotheses about
shared history. For example, two OTUs A and B are more closely related to
each other than to OTU C if A and B share a more recent common ancestor
than they do with C. The subtree descending from a node forms a clade, clades
which share a parent are called sister clades. One of the major objects of com-
parative phylogenetics is to identify the properties and processes (organismal
traits, geographic range, tempo and mode of evolution, etc) by which one clade
differs from others, in particular its sisters, and how these properties change
along lines of descent in the tree [924]. This gives rise to a number of impor-
tant queries when mapping data onto phylogenetic trees for (or as a result of)
analysis. Particularly ubiquitous operations on trees include the following: (1)
finding the most recent common ancestor of a given number of nodes (usually
leaf nodes); (2) enumerating the leaf nodes, or all nodes descending from a given
(internal) node; (3) enumerating the sequence of ancestors of a node to the root;

4 The pattern is available from http://ontologydesignpatterns.org/wiki/
Submissions:Tree_Pattern
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and (4) identifying the last ancestor of a node A from which another node B is
not also descended. We will come back to these and other operations as part of
the competency questions for our modeling in Section

Operations (1) and (4) correspond to two principle ways in which the seman-
tics of clade concepts can be defined on a tree [25], whether using a concrete
instantiation of a tree, or a hypothetical one. In the field of phylogenetic tax-
onomy [26], a clade concept defined by the most recent common ancestor of a
set of (usually leaf) nodes includes the common ancestor and is referred to as a
node-based definition. In contrast, a branch-based definition circumscribes the
clade as the last ancestor of a (usually leaf) node that excludes (i.e., does not
have as a descendant) another node (also usually a leaf node). The semantics
of a clade concept defined in this way is such that the branch subtending from
the ancestor node to its parent is included (hence the name “branch-based”). To
understand this, remember that a phylogenetic tree is a model of evolutionary
lines of descent reconstructed from sampled data. In reality, there may be lines
of descent which were not observed (sampled), for example because all organ-
isms from those lines are now extinct, but which, had they been observed, would
originate from the subtending branch and which would therefore still be included
in the clade because they would branch off after the lineage to be excluded.

It is worth noting that spurred in part by the exponentially increasing amount
of data available for phylogenetic reconstruction, very large trees encompassing
up to tens of thousands of taxa have recently become available [TTI7ISI32I17],
culminating in the initial publication of the synthesized Open Tree of Life with
about 2 million tips [I2]. Such encompassing trees open up unprecedented oppor-
tunities for comparative phylogenetic research. However, this also means that our
knowledge about the evolution of life is changing at increasing pace and breadth,
which makes it necessary to efficiently map clade definitions from one tree to
another, or from one revision of the Open Tree of Life to a future one. A recent
initiative, termed “phyloreferencing” (http://phyloref.org) aims to accomplish
this by using machine reasoning over ontological representations of the seman-
tics of both clade definitions and phylogenetic trees [422[28]. In the rest of this
paper, we abstract from the specific use case and look at the task of ontological
modeling of trees in general.

3 Fundamental Limitations Regarding Tree Modeling

In order to investigate to what degree tree-based properties can be expressed
using common knowledge representation (KR) formalisms, we first need to for-
mally define what structures we denote by the notion “tree”.

Definition 1. A rooted directed branching tree (short: tree) is defined as a
directed graph T = (V, E) where V is a set called vertices or nodes and E C
V x V is the set of edges, satisfying the following properties:

1. There is exactly one node r € V' called root, which has no incoming edges,
i.e, EN(V x{r})=0.
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2. Every node v € V' \ {r} that is not the root has exactly one incoming edge,
i.e., there exists exactly one v' € V' such that (v',v) € E. We then call v/
the parent of v and v the child of v'.

3. Every node v € V' can be reached from the root traversing edges, i.e., there
is a number n > 0 and a sequence (v);ic{o,....n} such that v = vy, v = vy, and
for alli €{0,...,n— 1} we have (v;,v;41) € E.

A node without children is called leaf node. A binary tree is a tree where every
node that is not a leaf has at most two children. An n-ary tree is a tree where
every node that is not a leaf has exactly n children. An n-bounded tree is a tree
where every node has at most n children. A tree is finite if V is finite.

When modeling trees using some logic-based KR language, we would like
create a knowledge base which has exactly all (finite) trees as its models (possibly
using additional auxiliary vocabulary). Unfortunately, it is not too hard to show
that this is not possible by any KR formalism that is expressible in first order
predicate logic (FOL). A very helpful tool for showing this is the well-known
compactness theorem of first-order logic [6].

Theorem 1 (Compactness of FOL). A set & of FOL sentences is satisfiable
if and only if every finite subset of @ is.

We now use this theorem to show our negative result.

Proposition 1. Let 1) be a FOL sentence (using the binary predicate “edge”)
such that every finite tree T = (V, E) corresponds to some model T of v, i.e.,
(V,E) = (AT edget). Then, 1 also has a model which does not correspond to
any (finite or infinite) tree.

Proof. Consider the following sequence (;);cn of FOL sentences (where a is a
fresh constant):

1 := Jzy.edge(z1, a)
o 1= dxydxg.edge(xa, x1) A edge(x1, a)
3 := JrpIxoTxg.edge(xs, x2) A edge(xa, x1) A edge(zy, a)

In short, ¢}, expresses that the node a has an incoming edge-path of length k.
Now let @ := {p} U{¢x | k € N}. Obviously, every finite subset of @ is satisfiable
(intuitively, just pick an arbitrary large finite tree and then pick a such that it
is “deep enough” in the tree). Then, by compactness of FOL, @ itself must be
satisfiable. However, in a model Z of & the element a” cannot be reachable from
the root, since then it would have an incoming edge-path of maximal length
which cannot be the case by construction of . Hence Z cannot correspond to a
tree. By construction, Z is also a model of . O

This result shows, that trees (finite or infinite) are not fully axiomatizable in
FOL and any attempt to do so will only be approximate (although potentially
useful).
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On the other hand, trees are axiomatizable when we extend FOL (or just
DLs for that matter) by a transitive closure operator for binary predicates.
Assume that, for every binary predicate (or in DL terms: role) p, we allow for a
binary predicate/role name p and define its semantics such that (p*)7? is the
transitive closure of pZ. Then the conditions of Definition [1| can be expressed
using the following axioms:

RootNode C {root} (1)
{root} C —Jedge™. T (2)
—{root} C =ledge™.T (3)
—{root} C F(edge™ )" .{root} (4)

To axiomatize the class of binary trees, the following axiom can be added:
T C —Jedge. T U =2edge. T (5)
In order to impose finiteness, one can axiomatize (as an auxiliary additional

structure) a finite linear order with a starting element and an ending element
and the successor role:

{start} C —3succ™.T (6) {end} C —3succ. T (9)
—{start} C =1succ™.T (7) —{end} C =1succ. T (10)
—{start} C I(succ™ )T .{start} (8) —{end} C 3(succ)™.{end} (11)

Transitive closures are not part of the OWL specification [14], so this char-
acterization cannot be used when modeling in the Web Ontology Language.
Description logics featuring regular expressions over roles have, however, been
considered since the early days of DL research [I] and decision and query answer-
ing procedures have been described for very expressive DLs with that feature [2].

4 A Simple Tree Pattern

The repository of ontology design patterns on ontologydesignpatterns.org does
not contain any pattern for trees. There is also none for graphs that could have
been used to specialize a trees pattern. The repository contains a pattern for
lists, thoughﬂ and a list pattern could be generalizable to a tree pattern.

The schema diagram for this list pattern is depicted in Figure [I} It reuses
the sequence patterrﬁ which seems to be the relevant part for our purposes. We
depict the sequence pattern schema diagram in Figure [2]and all non-tautological
axioms are given in Figure The axiomatization appears to be rather mini-
malistic, e.g., “follows” should be transitive over “directlyFollows”, and for a
sequence we should also use cardinality restrictions to limit the number of fol-
lowers and predecessors. We return to this later on.
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owl:Thing
collectionentity:isMemberOf - collectionentity:Collection

sequence:directlyFollows : owl: Thing
sequence:directlyPrecedes : owl:Thing
sequence:follows : owl:Thing
sequence:precedes : owl:Thing

bag:ltem collecticnentity:Collection
bag:itemContent : not (bag:ltem)[1..1] -1 collectionentity-hasMember - owl:Thing
bag:itemOf : bag:Bag bag:size ; integer
radraslterr
bag:itemOt ?
v bag:B
| " Listltem =g:2a9

bag:hasitem : bag:item

[ firstitemOf : List

[ lastitemOf : List

MM nextitem : Listitem(0..1]

I previousitem : Listitem[0..1]

D List
(Bl hasFirstitem : Listitem[0..1]
Y | hasLastitem : Listitem(0..1)

Fig. 1. List pattern schema diagram from ontologydesignpatterns.org

The list pattern just cited provides basic building blocks for a simple tree
pattern. However, we opt to change the names of the properties: It seems to be
more appropriate to use “hasChild” and “hasDescendant” rather than “direct-
lyPrecedes” and “precedes”, and to use “hasParent” and “hasAncestor” rather
than “directlyFollows” and “follows.”

Before proceeding with the tree pattern, we present a set of competency
questions [18] which seem representative to us and include operationes raised as
important in Section [2}

Determine the root.

Determine all ancestors of a given node.

Determine all leaves.

Determine all descendants of a given node.

Determine all descendants of a given node which are leaves.

Given two nodes, determine whether one is a descendant of the other.
Given two nodes, determine all commmon ancestors.

N oe W

® http://ontologydesignpatterns.org/wiki/Submissions:List
S http://ontologydesignpatterns.org/wiki/Submissions:Sequence
" Generated with the OWLAPI IXTEX renderer [29].
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| [ sequence:precedes |

| [ sequence:directlyPrecedes | "

T &) owl:Thing

2

[ sequence:directlyFollows |

[ sequence:follows
Fig. 2. Sequence pattern schema diagram from ontologydesignpatterns.org

directlyFollows C follows

directlyFollows = directlyPrecedes™
directlyPrecedes C precedes

precedes = follows™
TransitiveProperty (follows)

TransitiveProperty (precedes)

Fig. 3. Axioms for the sequence pattern from Figure [2l We omitted axioms that were
tautologies.

8. Given two nodes, determine the latest common ancestor. This means the
node that is an ancestor of the two nodes but has no children that are
themselves ancestors of both nodes.

9. Given two nodes x and y, determine the earliest ancestor of  which is not
an ancestor of y.

We next give our proposal for a simple tree pattern. Afterwards we will
discuss our design choices. The schema diagram is given in Figure |4l However,
the axiomatization is really much more important; it can be found in Figure [6]
Note that some additional desired axioms, such as hasParent C hasAncestor and
transitivity of hasAncestor can be inferred from the ones stated.

Before we proceed, let us first make a concrete example how this pattern
informs the graph structure of the ABox. Given a tree such as

S\,
VAN
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[ LeafNode ] [ RootNode ]

xsd:positivelnteger

hasChild, hasDescendant, hasParent, hasAncestor, hasSibling

Fig. 4. Schema diagram for the simple tree pattern. Unlabelled arrows are subclass
relationships.

RootNode(a) LeafNode(d) LeafNode(e)
LeafNode(f) TreeNode(b) TreeNode(c)
hasChild(a, b) hasChild(a, ¢) hasChild(b, d)
hasChild(b, e) hasChild(c, f) hasSibling(b, ¢)
hasSibling(d, e) hasOutDegree(a, 2) hasOutDegree(b, 2)
hasOutDegree(c, 1) hasOutDegree(d, 0) hasOutDegree(e, 0)
hasOutDegree(f, 0)

Fig. 5. Example ABox for a tree.

we encode it using the ABox from Figure 5} note that we omit redundant state-
ments which can be inferred from the axioms.

The axioms from Figure |§| should be self-explanatory. Axiom uses a
datatype facet. The complete set of axioms is not in OWL DL because axioms
and declare irreflexivity for non-simple roles. If it is desireable to stay
within OWL DL, these axioms could be omitted.

Our pattern and axiomatization include some terms which may appear to be
redundant. Indeed, we could have omitted the use of hasParent and hasAncestor
as these are simply inverses of hasChild and hasDescendant, respectively. Other
aspects, however, are not redundant.

The property hasOutDegree may appear to be redundant, as it captures the
number of children of a node. However, it is not redundant as far as the OWL
model is concerned, because the underlying open world assumption makes it
impossible to count the number of children. This could of course be addressed
using a (local) closed world extension of OWL, such as in [21I], however the
current standard does not support this. For the same reason, membership in the
classes RootNode and LeafNode cannot be inferred.

The case of the hasSibling property is more intricate. Again it would naively
appear as if it were redundant. However, we have not been able yet to axiomatize
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LeafNode C TreeNode
RootNode C TreeNode
TreeNode C VhasOutDegree.xsd:positivelnteger
TreeNode C =1hasOutDegree.xsd:positivelnteger
LeafNode = TreeNode N
VhasOutDegree.{0""xsd:positiveInteger}
TreeNode M —LeafNode = TreeNode N
VhasOutDegree.{2"" xsd:positiveInteger | 1 <

hasChild = hasParent™
hasDescendant = hasAncestor™
hasChild C hasDescendant
hasDescendant o hasDescendant T hasDescendant
TreeNode C VhasChild.TreeNode
TreeNode M —LeafNode = TreeNode M FhasChild.TreeNode
TreeNode C VhasDescendant.TreeNode
TreeNode C VhasParent.TreeNode
TreeNode C VhasSibling.TreeNode
TreeNode M —RootNode = TreeNode M =1hasParent. T
TreeNode C VhasAncestor.TreeNode
RootNode = TreeNode M —JhasParent. T
LeafNode = TreeNode M =3hasChild. T
Irreflexive(hasChild)
Irreflexive(hasParent)
(
Irreflexive(hasAncestor)
hasSibling = hasSibling ™
Irreflexive(hasSibling)

Irreflexive(hasDescendant)

Fig. 6. Axioms for the tree pattern from Figure

— 8
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it in the general case; for special cases where it is possible see Section[5} A naive
attempt by means of a ruleﬁ

hasParent(x, y) A hasChild(y, z) — hasSibling(x, z)

is insufficient because for addressing some competency questions we require ir-
reflexivity of hasSibling, while the rule above renders hasSibling to be non-simple,
which is not allowed together with irreflexivity in OWL DL.

Let us return to the competency questions listed earlier; it turns out we can
address them all even when omitting the irreflexivity axioms for hasDescendant
and hasAncestor, such that our model stays within OWL DL. Each answer takes
the form of a query that can be formalized using DL concepts containing the
elements we are interested in. Questions [I] and [3] can be addressed using the
RootNode and LeafNode classes. Questions [2| and [4] are straightforward, as is
question [5] using the LeafNode class. Question [6] can be solved with two queries
using the hasDescendant property.

The remaining questions are more intricate. Given two nodes = and y, Ques-
tion [ can be addressed via

JhasDescendant.{x} M FhasDescendant.{y}.

Question |8 seems to require use of the hasSibling propertyﬂ For readability we
first give the solution as first-order predicate logic formula:

Yw, z,y,z hasChild(z,w) A (w = x V hasDescendant(w, x))
A hasSibling(w, v) A (v = y V hasDescendant (v, y)).

Conversion of this into OWL following the approach laid out in [I9] results in
the class description.

FhasChild.(({«} U FhasDescendant.{z})
M (3hasSibling.({y} U FhasDescendant.{y})).

In a similar fashion, Question [J] can be addressed using the class description

({z} U FhasDescendant.{x}) M (FhasSibling.({y} L FhasDescendant.{y})).

8 This rule can be converted into OWL DL using rolification, see [19].
9 A naive attempt such as

TreeNode M JhasDescendant.{x} M JhasDescendant.{y}

M JhasChild.(({z} U FhasDescendant.{z}) M ={y} M —=3hasDescendant.{y})
M JhasChild.(({y} U JhasDescendant.{y}) M —{z} M -3hasDescendant.{z})

is insufficient as hasDescendant is just a transitive superrole over hasChild, so non-
existence in the desired form cannot be guaranteed. Using a non-monotonic (essen-
tially, second-order) extension of the underlying description logic, such as circum-
scription, would make it possible, in a way very similar to [21].
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[ FirstListltem ] [ LastListitem ]

AV

Listitem

hasNext, hasSuccessor

Fig. 7. Schema diagram for the simple list pattern, derived from the tree pattern.

Note that irreflexivity of hasSibling is required for the class descriptions just
given. Or to be more precise, what is required is that there is no node z in the
tree for which hasSibling(z, z) is declared or can be inferred; note that this is
in fact a weaker requirement than what we get by declaring irreflexivity. As a
consequence, the irreflexivity declaration for hasSibling can actually be omitted
from the axiomatization without impact on the just given solution to Question [0}
however we prefer to keep the irreflexivity declaration in the axiomatization as
it disambiguates the model [I3]. As mentioned earlier, we have not been able
to find a solution to infer the (irreflexive) hasSibling relationship in the general
case using OWL axioms, thus we require it as a primitive. We will revisit this
in the next section, though.

Let us finally use our tree pattern to recover a list pattern based on it.
The schema diagram can be found in Figure []] We keep only one property,
hasNext, which corresponds to hasChild, and hasSuccessor, which corresponds
to hasDescendant. The root becomes the first list item, the leaves become the
last list item. The outdegree is always 1 unless it’s the last list item, so we also
omit this information. The corresponding axiomatization, as derived from the
tree axiomatization above, can be found in Figure [§| As before, Axiom
causes the pattern to fall outside OWL DL, and if this is undesirable, this axiom
should be omitted.

5 Trees With Bounded Arity

In this section, we look at n-bounded trees as a special case, and present a set
of OWL axioms that can be employed to model these.

Definition 2. A rooted directed branching n-bounded tree (short: n-bounded
tree) is a tree T = (V, E) where every node has at most n outgoing edges; i.e.,
for everyv e V, |[EN ({v} x V)| < n.

In the previous section, we have discussed why we needed to include an
explicit hasSibling relation in our model, namely because we were unable to
axiomatically define it in OWL. If we know that the trees under consideration
are n-bounded, though, we can in fact infer the hasSibling relation.
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w
J

FirstListItem C ListItem
LastListItem C ListItem
ListItem C VhasNext.ListItem

w
o

ListItem C VhasNext ™ .ListItem
ListItem M —LastListItem = ListItem M =1hasNext.ListItem

>
— O

ListItem M —FirstListItem = ListItem M =1hasNext ™ .ListItem

N
w

FirstListItem = ListItem M —3hasNext™ . T
LastListItem = ListItem M —~JhasNext. T

PR
TS

hasNext C hasSuccessor

>
D

hasNext o hasSuccessor C hasSuccessor

e e e e e e e e e e T
> =~
~ [\
_ D D DD O D DD —

Irreflexive(hasSuccessor)

Fig. 8. Axioms for the lists pattern from Figure m

n-BoundedTreeNode C TreeNode

n-BoundedTreeNode C VhasAncestor.n-BoundedTreeNode

n-BoundedTreeNode C VhasDescendant.n-Bounded TreeNode

n-BoundedTreeNode C Child; U ... U Child,

{Child; N Child; C L |1<i<j<n}
{n-BoundedTreeNode C <1hasChild.Child; | 1 <7 < n}

n-BoundedTreeNode C <nhasChild.n-BoundedTreeNode

{Child; C 3R;.Self | 1 <i < n}
{R;i o hasParent o hasChild o R; C hasSibling | 1 <4 < j < n}

AN N N N N N N N
[}
D D O — T T T

Fig. 9. Axioms for the n-bounded Tree Pattern to add to the axioms from Figure [6]

To this end, we introduce a set of additional axioms (see Figure E[) that, if
combined with the axioms from Figure [f]can be used to axiomatize the structure
of an n-bounded tree. Key to this are axioms and , which together limit
the number of children per node to a maximum of n.

Note that, if these axioms are considered, we can indeed automatically infer
the hasSibling relationship: Having an upper bound on the number of children
per node, we can use a finite set of concept names Child; to differentiate the
children of any given node in the tree. Note how, due to and (52)), every
n-ary tree node is typed by one and only one class Child;. Moreover, axioms
in enforce that at most one child of every node is in the class Child; for
every ¢ = 1,...,n. Using axioms in , we automatically infer that each child
of every node is connected to itself via some property R; for some i = 1,... n.
Using axiom , we can infer the hasSibling relation.
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HeapLikeTree

orderedBy<‘ HeaplLikeTree

asString

hasRootNode

TreeNode

IInternaINode] [RootNode] [LeafNudel

hasChild,
hasParent,
hasAncestor,
hasDecendant

xsd:nonNegativelnteger hasOutDegree

containsData

xsd:anyURI asRawData TreeNodeData| inOrderRelation

Fig. 10. Schema diagram a heap-like tree, derived from the tree pattern.

Note, though, that hasSibling is non-simple, i.e. the declaration of irreflexivity
for hasSibling from Figure [f] violates the role regularity requirements for OWL
DL. If the ontology shall fall within OWL DL, the irreflexivity axiom should be
removed.

Note also, that the approach just spelled out may not be practical for large
n, as the number of models to be checked, e.g. by a tableaux-based reasoner,
will increase exponentially with n due to the disjunction in .

6 Heap-Like Trees

Another common use case for trees is to arrange tree data in an order based on
the child/parent relationship, like in a heap. Even though typically referred to as
just a tree, this organizational strategy specifically makes use of an underlying
partial order in the data, such as the natural ordering of the integers. Formally,
the tree-order of a tree is the partial order < of the vertexes such that v < w if
and only if the unique path from the root to u contains v. Ordering the data in
a heap-like tree based on its tree-order with respect to the child relation places
useful constraints on how it can occur in the tree, so that, for instance, the root
node of a subtree will always be a maximum (or minimum) value occurring within
the subtree. A schema diagram for the heap-like tree is shown in Figure In
addition to the original axioms in Figure [6] the new semantics are captured by
adding the DL axioms in Figure [11] along with DL-Safe rules [23] in Figure
Using DL-Safe rules will restrict us to named individuals, however in the
case of axioms about the data in a finite tree this should not much of a loss
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HeapLikeTree C <lhasRootNode.RootNode (57)
HeapLikeTree = =lorderedBy.Order (58)
Order C JasString.xsd:string (59)
TreeNode C =1containsData.TreeNodeData (60)
InternalNode = TreeNode M —LeafNode (61)
TreeNodeData C =lasRawData.xsd:anyURI (62)
TreeNodeData C VinOrderRelation. TreeNodeData (63)
FinOrderRelation. TreeNodeData E TreeNodeData (64)
Asymmetric(inOrderRelation) (65)

Fig. 11. DL axioms to add to the tree pattern for heap-like trees

hasDescendant(z, y) A containsData(x, a) A containsData(y, b) (66)
— inOrderRelation(a, b)
hasAncestor(z, y) A containsData(z, a) A containsData(y, b) (67)

— inOrderRelation(b, a)

Fig. 12. DL-Safe Rules for the heap-like tree pattern from Figure

in many cases: data that is known will be ordered, and unlike nodes, unknown
data should not be ordered without a known value. The DL-Safe axioms could
also be rewritten with role chains in OWL if necessary, avoiding the named
individuals requirement, but this would cause inOrderRelation to be a non-
simple role and thus conflict with the asymmetry axiom thus violating
global constraints imposed on OWL DL. The minor compromise of DL-Safe
axioms seems preferable over an OWL Full ontology.

OWL cannot be used to model heap-like trees using their actual data values,
since DataProperties do not relate literals to other literals in the same way that
roles relate individuals to one another. SWRL allows literal comparison, but only
with a predefined set of built-ins. To remedy this, we have created a class called
TreeNodeData that contains individuals we can order using the role inOrderRe-
lation, and each has a link to exactly one datum via asRawData. The asymmetry
of the role inOrderRelation may seem counter-intuitive for representing a par-
tial order. However, we must make a distinction between the order of tree nodes,
which are all unique, and the order of the data that the nodes contain, which
may be duplicated. The order in our heap-like tree pattern corresponds to the
order of the nodes by using asymmetry instead of antisymmetry to represent the
order of children nodes from the root node. If the descendant of a node contains
data equal to its own data, both nodes are nonetheless unique nodes in the tree
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root
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internall internal2
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® ® ©

Fig. 13. Example of a max-heap ordered by <, with labeled nodes

OrderedOutTree(tree) orderedBy(tree,order)  asString(order,“<”)
hasRoot(tree,root) containsData(root,dR)  asRawData(dR,10)
hasChild(root,internall) containsData(internall,dil) asRawData(dil,10)
hasChild(internall,leafl) containsData(leafl,dl1)  asRawData(dl1,9)
hasChild(internall,leaf2) containsData(leaf2,d12)  asRawData(dl2,5)
hasChild(root,internal2) containsData(internal2,di2) asRawData(di2,9)
hasChild(internal2,leaf3)  containsData(leaf3,d13)  asRawData(dl3,2)

hasDescendant(root,leaf2) A containsData(root,dR) A containsData(leaf2,d12)
— inOrderRelation(dR,d12)

hasAncestor(leaf3,root) A containsData(leaf3,d13) A containsData(root,dR)
— inOrderRelation(dR,d13)

Fig. 14. Rules made from figures [12| showing order in figure

and should be considered unequal. The inOrderRelation role simply provides a
way to tie the ordering of the data to the ordering of the nodes. At the end of
this section we will discuss antisymmetry and the more general case of strict and
non-strict partial orders in OWL.

Examples of trees that can be represented with the heap-like tree pattern are
Phylogenetic Trees ordered by common ancestor and Class Hierarchies ordered
by C, which already contain data that is ordered in a heap-like way, as well
as many trees common in Computer Science, such as, unsurprisingly, a heap
ordered by < or >. In Figure 13| we show a max-heap tree ordered by <, and in
Figure [14] we show example facts and rule applications that produce an order.

Regarding the competency questions for trees, the original questions can all
be answered in the same way for a heap-like tree as for a general tree. We also
add competency questions for heap-like trees. Note that data means members of
the TreeNodeData class and not data literals.
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Irreflexive(directlyFollows)
Irreflexive(inStrictPartialOrder)

directlyFollows C inStrictPartialOrder
directlyFollows o inStrict PartialOrder C inStrictPartialOrder

Fig. 15. A strict partial order made from two roles

10. Determine the maximal data element in the tree.

11. For any two tree nodes determine if their data is in an order relation.

12. For any two nodes with data in an order relation determine which is maximal.

13. For any two nodes with data not in an order relation, determine what other
nodes have data that both nodes’ data are in an order relation with.

The answer to Question [10]is simply the data in the root, which is known for
any ordered tree. Question [11] can be answered by checking whether the nodes
are ancestors or descendants of one another and applying the corresponding DL-
safe rule. In Question [12] the maximal data will be the data in the node that is
the ancestor of the other node: it has the data that is closest in the order relation
to the root. Question can be answered by answering Question [7] except in
this case we also know that a common ancestor will have data that corresponds
to solutions for DL-Safe rules for both of the nodes and their data.

Although the pattern we have shown is sufficient for modeling heap-like trees,
it nonetheless raises interesting questions about the general use of orders in
OWL. For instance, if we state that a role is transitive and irreflexive, obtaining
a strict partial order, this role would violate the simplicity requirements of roles
in OWL DL: an ontology containing both statements will be in OWL Full. We
can decompose this role into a single-step irreflexive role and a transitive role
that includes the single-step role to try to avoid the conflict with simple roles
as seen in Figure but the transitive role must also be irreflexive to correctly
capture the order. In some cases, like Competency Questions the transitivity
alone will be sufficient, so this can be a useful if imprecise strategy.

It is also possible to create a non-strict partial order if we use boolean role
restrictions [27]. An example of this is reproduced in Figure Unfortunately,
boolean role constructors are only known to be decidable on simple roles, and our
axioms require the use of functionality for identity and transitivity or irreflexivity
in the already problematic strict partial order. Finally we find ourselves squarely
in OWL Full with no obvious way to represent even a useful fragment of the
expression. As such, the role representing non-strict partial orders may be helpful
in axioms for modeling, but it will be incompatible with current OWL reasoners.

The potential use of orders in OWL warrants further investigation, since or-
ders often have decidable properties and are convenient for modeling. Though
it is unlikely that OWL can state all of the requirements for an order sepa-
rately within the current semantics, based on what we have seen, perhaps future
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Reflexive(identity)
Functional(identity)
Irreflexive(directlyFollows)
Irreflexive(inStrictPartialOrder)

directlyFollows C inStrictPartialOrder
directlyFollows o inStrictPartialOrder C inStrictPartialOrder

A(inStrictPartialOrder N inStrictPartialOrder™ \ identity). T C L

inNonStrictPartialOrder = (inStrictPartialOrder U identity)

Fig.16. A non-strict partial order made from four roles

research will reveal that OWL can accommodate ordered roles in some other
way.

7 Conclusions

We have presented a general ontology design pattern for trees together with
an axiomatization which makes it possible to answer non-trivial competency
questions as they arise in practice. We have also presented a list pattern derived
from this tree pattern. We have furthermore discussed limitations of OWL for
the modeling of trees, and have provided an alternative axiomatization for the
more specific case that the tree is known to be n-bounded. Finally, ordered trees
provided a useful extension to general trees as well as some reflections on orders
and OWL.

Of course, our approach is still rather straightforward and there are cases
where our model will not suffice. For example, in the application domain dis-
cussed in Section [] it is often desirable to attach additional information to
parent-child relationships (i.e., edges), e.g. temporal information. This cannot
be done in our current model but would require a reification of the edges using
established techniques, and of course this change may affect the treatment of
our competency questions. This remains to be investigated.
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