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DaSeLab

• Postdoc: 
– Cogan Shimizu

• PhD Students:
– Aaron Eberhart
– Abhilekha Dalal
– Joseph Zalewski
– Joshua Schwartz
– Mohammad Saeid Mahdavinejad
– Patrick Stingley
– Reihaneh Amini
– Rushrukh Rayan
– Sanaz Saki Norouzi
– Sulogna Chowdhury

• Undergrad Researchers:
– Andrew Eells
– Brayden Pankaskie
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Where (some) PhD students went
• Industry

– Amazon
– IBM
– Apple
– GE Global Research
– TigerGraph

• Academia
– TU Dresden, Germany (several)
– IIIT Delhi, India
– Universitas Indonesia, Jakarta
– Wright State University, USA
– University of Hartford, NJ

• Elsewhere
– UN Headquarters, New York
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Knowledge Graphs
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Google Knowledge Graph
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Knowledge Graphs
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Schema (as diagram)
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A good schema is critical for ease of reuse
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Schema.org

• Collaboratively launched in 2011 by Google, 
Microsoft, Yahoo, Yandex. 
2011: 297 classes, 187 relations
2015: 638 classes, 965 relations

• Simple schema, request to web site providers to
annotate their content with schema.org markup.
Promise: They will make better searches based
on this.

• 2015: 31.3% of Web pages have schema.org 
markup, on average 26 assertions per page.

Ramanathan V. Guha, Dan Brickley, Steve Macbeth:
Schema.org: Evolution of Structured Data on the 
Web. ACM Queue 13(9): 10 (2015)
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Knowledge Graph Standards
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Languages based on formal logic
allow for automated (deductive) 
reasoning. 
Corresponding algorithms are 
mathematically sophisticated and
require formal correctness and 
complexity assessments.

Also: 
The Standards need improvements!
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Plenty of open questions

• What makes good knowledge graphs?
• What are good processes and tools for making them?
• What are strong intelligent algorithms for managing them, 

including
– Automatic construction
– Integration
– Querying

• How do I make them self-explanatory?
• How do I use them in or with intelligent systems?
• What is the underlying theory/mathematics of the representation 

languages and (complex) algorithms?

12
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Key research question (knowledge graphs)

• Data management (discovery, integration, publishing, re-use)
is a major cost factor in data-intensive applications.
– In particular, if data is multi-sourced and heterogeneous.

• How can we save effort and cost for this data management?

• Research premise: 
The principled use of Smart Data 
(knowledge graphs and ontologies) 
saves effort and cost.

But how to exactly apply these methods best?

13
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Past and current external sponsors for DaSeLab
• Federal and State

– NSF (main source of funding to date) – CISE, GEO and OIA directorates
– NIST / Department of Commerce
– USGS
– Ohio Board of Regents

• Defense
– DARPA
– DoD / Air Force
– AFRL/RY
– AFOSR
– Defense Associated Graduate Student Innovation program

• Foundations
– The Andrew W. Mellon Foundation
– Henry M. Jackson Foundation
– Sloan Foundation

• Industry
– IOS Press (Publisher, several)
– Lockheed-Martin

• International
– DFG (Germany)
– DAAD (Germany)
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enslaved.org
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https://enslaved.org/ https://lod.enslaved.org

https://enslaved.org/
https://lod.enslaved.org/
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enslaved.org process

1. Quality Ontology Design.
2. Realization of ontology-based schema in 

Wikibase.
3. Knowledge graph construction and 

interaction through Wikibase as engine.
4. Additional front-end (simplified view)

(4) https://enslaved.org/
(3) https://lod.enslaved.org/

Focus of this talk: Going from (1) to (2)

16

>53M RDF triples from Wikibase export

https://enslaved.org/
https://lod.enslaved.org/
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KnowWhereGraph

• 2 years, $5M. Follows a $1M, 1-year pilot.
• NSF “Open Knowledge Networks” (OKN) program. 

21 phase 1 projects; 5 phase 2 projects.

19

PI: Krzysztof Janowicz, UCSB
Co-PIs: Mark Schildhauer, Wenwen Li, 

Dean Rehberger, Pascal Hitzler
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KnowWhereGraph
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(some) project goals

• pushing the state of the art in spatiotemporal 
Knowledge Graph (KG) engineering

• transfer of KG technology towards adoptable practice
• application showcases

Addressing the bottleneck in data science:

80% is data processing
20% is deriving insights

http://KnowWhereGraph.org/ 

21
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Public release

Forthcoming (very soon!) – public release
• Knowledge Graph with >12B triples

– One of the currently largest public knowledge graphs.
– Focus on spatial data related to environment and natural 

disasters
• (somewhat later)

– open source software for access and management

http://knowwheregraph.org/
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Methods

• We  develop and apply a whole range of techniques to problems 
around knowledge graphs, including
– Deep learning
– Natural language processing
– Logic-based knowledge representation
– Computational logic and automated reasoning

• We apply our methods to other fields
– Intelligence data integration and analysis (DARPA)
– Cognitive Agents (AFOSR)
– Humanities (Mellon Foundation)
– Explainable Deep Learning (OBOR)
– Food Systems data (NIST / Department of Commerce)
– Scientific data (NSF GEO)
– Industry (several)

24
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Neuro-Symbolic Artificial Intelligence:
Bridging between AI paradigms
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Neuro-symbolic AI
Publications on neuro-symbolic AI in major conferences 
(research papers only):

See
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
AI Communications, to appear; https://arxiv.org/abs/2105.05330
for more analysis.
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Neural

• Refers to computational abstractions of (natural) neural 
network systems.

• Prominently includes Artificial Neural Networks and Deep 
Learning as machine learning paradigms.

• More generally sometimes referred to as connectionist systems.

• Prominent applications come from the machine learning world.

• And of course, there is the current deep learning hype.
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Symbolic

• Refers to (computational) symbol manipulations of all kind.

• Graphs and trees, traversal, data structure operations.
• Knowledge representation in explicit symbolic form (data base, 

ontology, knowledge graph)
• Inductive and statistical inference.
• Formal logical (deductive or abductive) reasoning.

• Prominent applications all over computer science, including 
expert systems (and their modern versions), information 
systems, data management, added value of data annotation, etc.

• Semantic Web data is inherently symbolic.
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Neuro-Symbolic

Computer Science perspective:

• Let’s try to get the best of both worlds:
– very powerful machine learning paradigm
– robust to data noise
– easy to understand and assess by humans
– good at symbol manipulation
– work seamlessly with background (domain) knowledge

• How to do that?
– Endow connectionist systems with symbolic components?
– Add connectionist learning to symbolic reasoners?
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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of 
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, 
Howard Bowman, Pedro Domingos, Pascal Hitzler, 
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, 
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha
https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs 
for eXplainable Artificial Intelligence: Foundations, Applications and 
Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020. 

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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2022 Book (just out!)

31

Neuro-symbolic Artificial Intelligence: The State of the Art
Pascal Hitzler and Md Kamruzzaman Sarker, editors
Fontriers in AI and Applications Vol. 342, IOS Press, Amsterdam, 2022
https://www.iospress.com/catalog/books/neuro-symbolic-artificial-intelligence-the-state-of-the-art

https://www.iospress.com/catalog/books/neuro-symbolic-artificial-intelligence-the-state-of-the-art
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, 
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. 
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.
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Deep Deductive Reasoners

• We trained deep learning systems to do deductive reasoning
over knowledge graph data.

• Why is this interesting? 
– For dealing with noisy data (where symbolic reasoners do 

very poorly).
– For speed, as symbolic algorithms are of very high 

complexity.
– Out of principle because we want to learn about the 

capabilities of deep learning for complicated cognitive tasks.

– To perhaps begin to understand how our (neural) brains can 
learn to do highly symbolic tasks like formal logical 
reasoning, or in more generality, mathematics.
A fundamental quest in Cognitive Science.
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Reasoning as Classification

• Given a set of logical formulas (a theory).

• Any formula expressible over the same language is either 
– a logical consequence or
– not a logical consequence.

• This can be understood as a classification problem for machine 
learning.

• It turns out to be a really hard machine learning problem.
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Knowledge Materialization

• Given a set of logical formulas (a theory).

• Produce all logical consequences under certain constraints.

• Without the qualifier this is in general not possible as the set of 
all logical consequences is infinite.

• So we have to constrain to consequences of, e.g., a certain 
syntactic form. For relatively simple logics, this is often 
reasonably possible.

35
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Published deep deductive reasoning work

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler, 
AAAI-MAKE 2021

[25]: Makni, Hendler, SWJ 2019
[10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
[20]: Hohenecker, Lukasiewicz, JAIR 2020
[6]: Bianchi, Hitzler, AAAI-MAKE 2019
(new): Ebrahimi, Rayan, Eberhart, Hitzler, in progress

36

(new)        RDFS            yes                yes moderate                   high?
(new)           EL+            yes                yes moderate                   high?
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Explaining Deep Learning via Symbolic 
Background Knowledge

Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal Hitzler, Explaining Trained Neural Networks with 
Semantic Web Technologies: First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), Proceedings of the 
Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR 
Workshop Proceedings 2003, CEUR-WS.org 2017

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In: The Thirty-Third AAAI Conference 
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The 
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 –
February 1, 2019. AAAI Press 2019 , pp. 3036-3043.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, Michael 
L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable AI. In: Boris Villazón-Terrazas, Fernando Ortiz-Rodríguez, 
Sanju M. Tiwari, Shishir K. Shandilya (eds.), Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and First 
Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-27, 2020, Proceedings. Communications in Computer 
and Information Science, vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.
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Explainable AI

• Explain behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of knowledge graphs

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system to generate an explanatory 

theory.

• We have key components for this now, but it’s still early stages.
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Concept
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DL-Learner [Lehmann, Hitzler]

Approach similar to inductive logic programming, but using 
Description Logics (the logic underlying OWL).

Positive examples:                               negative examples:

Task: find a class description (logical formula) which separates 
positive and negative examples.
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DL-Learner

Positive examples:                               negative examples:

DL-Learner result:

In FOL: 
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Scalability Issues with DL-Learner

• For large-scale experiments, DL-Learner took 2 hours or more 
for one run.

• We knew we needed at least thousands of runs.

• So we needed a more scalable solution.
• The provably correct algorithms have very high complexity.

• Hence we had to develop a heuristic which trades (some) 
correctness for speed.

• It is also currently restricted to using a class hierarchy as 
underlying knowledge base.

42
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ECII algorithm and system

• We thus implemented our own system, ECII (Efficient Concept 
Induction from Instances) which trades some correctness for 
speed. [Sarker, Hitzler, AAAI-19]
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ECII vs. DL-Learner
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Proof of Concept Experiment

Positive: Negative:
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Images

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""

http://groups.csail.mit.edu/vision/datasets/ADE20K/
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Mapping to SUMO

Simple approach: for each known object in image, create an 
individual for the ontology which is in the appropriate SUMO 
class:

contains road1
contains window1
contains door1
contains wheel1
contains sidewalk1
contains truck1
contains box1
contains building1
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SUMO

• Suggested Merged Upper Ontology
http://www.adampease.org/OP/

• Approx. 25,000 common terms 
covering a wide range of domains

• Centrally, a relatively naïve class hierarchy.

• Objects in image annotations became individuals (constants), 
which were then typed using SUMO classes.

http://www.adampease.org/OP/
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DL-Learner input

Positive:
img1: road, window, door, wheel, sidewalk, truck, 

box, building
img2: tree, road, window, timber, building, lumber
img3: hand, sidewalk, clock, steps, door, face, building,

window, road
Negative:

img4: shelf, ceiling, floor
img5: box, floor, wall, ceiling, product
img6: ceiling, wall, shelf, floor, product

DL-Learner results include: 
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Proof of Concept Experiment

Positive: Negative:
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Experiment 2

Positive (selection): Negative (selection):
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Experiment 5

Positive: Negative (selection):
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Negative 
instances

Positive 
instances

Concept InductionKnowledge Graph

Mountain subClassof UpLandArea
-----------
-----------

CNN to classify imagesTraining data

hasMapping

 Generate explanation of the whole model
 Global explanation

UpLandArea ⊓ LandForm

Explanations

Idea Recap
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From SUMO to Wikipedia Concept Hierarchy

• Wikipedia CH (curated) produces better coverage score
• Reason behind this is the large number of concepts it has.

• approx. 2M concepts
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Work in Progress

• Value of Explanations (end-to-end) to
– humans
– detect bias
– improve deep learning accuracy

– background knowledge challenges

• Explaining hidden neuron activation patterns
– scalability challenges
– background knowledge challenges

55
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Conclusions
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Summary

• Semantic Web core research
– Knowledge graph methods and processes
– Knowledge graph applications in various disciplines

• Combining knowledge graphs and ontologies with deep learning
– Deep Deductive Reasoning
– Explainability using background knowledge
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Thanks!
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Thanks!
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