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« Two current trends:
— Neuro-Symbolic Artificial Intelligence
— Knowledge Graphs
 And their convergence:
— Added Value for Deep Learning
 Example: Explainable Al
— Added Value for Knowledge Graphs
 Example: Deep Deductive Reasoning
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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler,
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd,

Cpseran

Studies in Computational Intelligence 77

B.Hammer - P. Hitzler
(Eds.)

Perspectives of
Neural-Symbolic
Integration

Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas,
Hoifung Poon, Gerson Zaverucha '

https://arxiv.org/abs/1711.03902 (2017)

llaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs
for eXplainable Artificial Intelligence: Foundations, Applications and
Challenges. Studies on the Semantic Web Vol. 47, I0S Press, 2020.
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2022 Book

NEURO-SYMBOLIC
ARTIFICIAL
: e . : INTELLIGENCE:
Neuro-symbolic Artificial Intelligence: The State of the Art THE STATE
Pascal Hitzler and Md Kamruzzaman Sarker, editors OF THE ART
Fontriers in Al and Applications Vol. 342, I0S Press, Amsterdam, 2022

https://www.iospress.com/catalog/books/neuro-symbolic-artificial-intelligence-the-state-of-t

Preface: The 3rd Al wave is coming, and it needs a theory v it nneccan Sarkes
Frank van Harmelen

Introduction ix
Pascal Hitzler and Md Kamruzzaman Sarker

Chapter 1. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation 1 Chapter 9. Spike-Based Symbolic Computations on Bit Strings and Numbers 214
Tarek R. Besold, Artur d’Avila Gareez, Sebastian Bader, Howard Bowman, Ceca Kraisnikovié, Wolfgang Maass and Robert Legenstein
Pedro Domingos, Pascal Hitzler, Kai-Uwe Kiihnberger, Luis C. Lf{-'”b' Chapter 10. Explainable Neuro-Symbolic Hierarchical Reinforcement Learning 235
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon Daoming Lyu, Fangkai Yang, Hugh Kwon, Bo Liu, Wen Dong
and Gerson Zaverucha and Levent Yilmaz
Chapter 2. Symbolic Reasoning in Latent Space: Classical Planning as an Example 52 Chapter 11. Neuro-Symbolic Semantic Reasoning 253
Masataro Asai, Hiroshi Kajino, Alex Fukunaga and Christian Muise Bassem Makni, Monireh Ebrahimi, Dagmar Gromann and Aaron Eberhart
y - . . 5 . “hapter 12. Learni N ; Ytratea ec in FrndtolF SR L Prong )
Chapter 3. Logic Meets Learing: From Aristotle to Neural Networks 78 Chapter 1 Ln.arfnng -Ra.‘.ascmlnghbhalf.glcs in End-to-End Differentiable Proving 280
Vaishak Belle Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,
’ Edward Grefenstette and Tim Rocktdischel
Chapter 4. Graph Reasoning Networks and Applications 103 Chapter 13. Generalizable Neuro-Symbolic Systems for Commonsense Question
Qingxing Cao, Wentao Wan, Xiaodan Liang and Liang Lin Answering 294
. . . . Alessandro Oltramari, Jonathan Francis, Filip llievski, Kaixin Ma
Chapter 5. Answering Natural-Language Questions with Neuro-Symbolic and Roshanak Mir=ace
Knowledge Bases 126
Haitian Sun, Pat Verga and William W. Cohen Chapter 14. Combining Probabilistic Logic and Deep Learning for
) o Self-Supervised Learning 311
Chaplcr 6. Tractable Boolean and Arithmetic Circuits 146 H(;{ﬁmg Poon, Hai Wang and Hunter Lang
Adnan Darwiche . , , . .
Chapter 15. Human-Centered Concept Explanations for Neural Networks 337
Chapter 7. Neuro-Symbolic Al = Neural + Logical + Probabilistic Al 173 Chih-Kuan Yeh, Been Kim and Pradeep Ravikumar
Robin :_'lffrmhaeve. G f‘frseppc JTI/!{’H'."(;*. Th_unms Demeester, Chapter 16. Abductive Learning 353
Sebastijan Dumancic, Angelika Kimmig and Luc De Raedt Zhi-Hua Zhou and Yu-Xuan Huang
Chapter 8. A Constraint-Based Approach to Learning and Reasoning 192 Chapter 17. Logic Tensor Networks: Theory and Applications 370
Michelangelo Diligenti, Francesco Giannini, Marco Gori, Marco Maggini Lucicno Serafini, Artur d’Avila Garcez, Samy Badreddine, Ivan Donadello,

and Giuseppe Marra Michael Spranger and Federico Bianchi



https://www.iospress.com/catalog/books/neuro-symbolic-artificial-intelligence-the-state-of-the-art

Neuro-symbolic Al

Publications on neuro-symbolic Al in major conferences eLab
(research papers only):

conference | 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | total
ICML 0 0 0 0 0 1 3 2 5 6 17
NeurIPS 0 0 0 0 0 0 0 4 2 4 10
AAAI 0 0 0 0 0 1 0 1 1 1 4
IJCALI 1 0 0 0 0 0 2 2 0 2 7
ICLR N/A  N/A 0 0 0 0 1 1 1 3 6
total 1 0 0 0 0 2 6 10 9 16 44
See

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
Al Communications 34 (3), 197-209, 2022.
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New Book for 2023

Compendium of Neuro-Symbolic Artificial Intelligence (tentative mb
approx. 30 chapters and 700 pages
Each chapter based on 2 or more related published papers.

Book will provide an even more comprehensive overview of the
state of the art.

[We can still add a few chapters — see
https://daselab.cs.ksu.edu/content/call-book-chapter-proposals-
compendium-neuro-symbolic-artificial-intelligence and send your
chapter proposal very quickly.]
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Neural

 Refers to computational abstractions of (natural) neural ELab
network systems.

 Prominently includes Artificial Neural Networks and Deep
Learning as machine learning paradigms.

« More generally sometimes referred to as connectionist systems.

* Prominent applications come from the machine learning world.

« And of course, there is the current deep learning hype.
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Symbolic

» Refers to (computational) symbol manipulations of all kind. mb

« Graphs and trees, traversal, data structure operations.

« Knowledge representation in explicit symbolic form (data base,
ontology, knowledge graph)

* Inductive and statistical inference.
 Formal logical (deductive or abductive) reasoning.

 Prominent applications all over computer science, including
expert systems (and their modern versions), information
systems, data management, added value of data annotation, etc.

« Semantic Web data is inherently symbolic.

KANSAS STATE AIKP, July 2022
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Neuro-Symbolic
Computer Science perspective: eLab

« Let'stryto getthe best of both worlds:
— very powerful machine learning paradigm
— robust to data noise
— easy to understand and assess by humans
— good at symbol manipulation
— work seamlessly with background (domain) knowledge

e How to do that?
— Endow connectionist systems with symbolic components?

— Add connectionist learning to symbolic reasoners?
— ..”

KANSAS STATE AIKP, July 2022
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 Learning of knowledge bases
 Improving symbolic algorithms
 Improving deep learning systems

« Commonsense reasoning

« NLP

* Question Answering

 Explaining deep learning systems (XAl)
 Solving complex Al problems
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« Two current trends:
— Neuro-Symbolic Artificial Intelligence
— Knowledge Graphs
 And their convergence:
— Added Value for Deep Learning
 Example: Explainable Al
— Added Value for Knowledge Graphs
 Example: Deep Deductive Reasoning
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Knowledge Graphs
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Google Knowledge Graph

Laura <
Kelly

Governor of Kansas

Laura Kelly is an American palitician haSEducation

senving as the 48th governor of
Kansas since 2019, A member of the
Democratic Party, she represented
the 18th district in the Kansas Senate
from 2005 to 2019, Kelly ran for
governor in the 2018 election and
defeated the Republican nominee,
Kansas Secretary of State Kris
Kobach. Wikipedia

Born: January 24, 1350 (age
69 years), Mew York, NY
Spouse: Ted Daughety
Party: Democratic Party

Office: Governor of Kansas since
2019

Education: Indiana University,
Bradley University, Indiana University
Bloomington

Children: Kathleen Daughety, Mally
Daughety

KANSAS STATE

UNIVERSITY

Indiana <
University

® iuedu hasPresident

Indiana University is a multi-campus
public university system in the state
of Indiana, United States. Indiana
University has a combined student
body of more than 110,000 students,
which includes approximately 46,000
students enrolled at the Indiana
University Bloomington campus.
Wikipedia

Mascot: Referred to as "The
Hoosiers”

Endowment: 1.986 billion USD
Students: 110,436 university-wide
President: Michael McRobbie
Academic staff: 8,733 university-wide

Subsidiaries: Indiana University
Bloomington, MORE

AIKP, July 2022

Michael <
McRobbie

President of Indiana

-

University

&)  presidentiuedu

Michael Alexander McRobbie AQ is
an Australian-American computer
scientist, educator and academic
administrator. He became the
eighteenth president of Indiana
University on July 1, 2007. Wikipedia

Born: October 11, 1950 (age
69 years), Melbourne, Australia

Spouse: Laurie Burns (m. 2005)

Education: The Australian Mational

University, The University of
CQueensland

Books: Automated Theorem-proving in
Mon-classical Logics, Automated
Deduction - Cade-13




Knowledge Graphs
hasEducation _ e Lab
(Laura Kelly In_dlang [
University

hasBirthDate

hasPresident

Michael
McRobbie

hasEducation

61/24/195D ?ents
110436

University of
Queensland
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Schema (as diagram)
_ e Lab
(Person hasEducatlon

hasBirthDate

hasPresident

( ate > hasStudents
Cn um ber)

hasEducation

Organization
A good schema is critical for ease of reuse.
This is only a diagram. A full schema (an ontology)
consists of axioms in a formal logic.
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W3C Standards

RDF 1.1 Concepts and Abstract Syntax
: aSe Lab
W3C Recommendation 25 February 2014
This version:
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
Latest published version:
http://www.w3.org/TR/rdf11-concepts/
Previous version:
http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/
Previous Recommendation:
http://www.w3.org/TR/rdf-concepts
Editors:
Richard Cyganiak, DERI, NUI Galway

David Wood, 3 Round Stones
Markus Lanthaler, Graz University of Technology

W3C Recommendation

OWL 2 Web Ontology Language
Primer (Second Edition)

W3C Recommendation 11 December 2012

This version:
http://www.w3.orqg/TR/2012/REC-owl2-primer-20121211/
Latest version (series 2):
http://www.w3.org/TR/owl2-primer/
Latest Recommendation:
http://www.w3.org/TR/owl-primer
Previous version:
http://www.w3.org/TR/2012/PER-owl2-primer-20121018/
Editors:
Pascal Hitzler, Wright State University
Markus Krétzsch, University of Oxford
KANSAS STATE Bijan Parsia, University of Manchester
SRLAINLID WI L4215 Peter F. Patel-Schneider, Nuance Communications
L LR LR L Sebastian Rudolph, FZI Research Center for Information

Both established 2004
as versions 1.0.

W3C Recommendation
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PRACTICE

Industry-Scale Knowledge Graphs: Lessons and Challenges

Jo

By Hatasha Noy, Yuging Gao, Anshu Jain, Anant Narayanan, Alan Patterson, Jamie Taylor
Communications of the ACM, August 2019, Vol. 62 No. &, Pages 36-43

10.1145/3331166

Comments

VIEW AS: SHARE:
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Enowledge graphs are critical to many enterprises today: They
provide the structured data and factual knowledge that drive
many products and make them more intelligent and "magical.”

In general, a knowledge graph describes objects of interest and
connections between them. For example, a knowledge graph may
have nodes for a movie, the actors in this movie, the director, and
so on. Each node may have properties such as an actor's name
and age. There may be nodes for multiple movies involving a
particular actor. The user can then traverse the knowledge graph
to eollect information on all the movies in which the actor
appeared or, if applicable, directed.

Credit: Adempercem / Stutterstock

Many practical implementations impose constraints on the links
in knowledge graphs by defining a sechema or ontology. For example, a link from a movie to its director must
connect an object of type Movie to an object of type Person. In some cases the links themselves might have
their own properties: a link connecting an actor and a movie might have the name of the specific role the actor
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WIKIDATA

Main page
Community portal
Project chat
Create a new ltem
Recent changes
Random ltem
Cluery Service
Mearby

Help

Daonate

Lexicographical data

Create a new Lexeme

Recent changes
Random Lexeme

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Wikidata item

In other projects

Wikimedia Commons
MediaWiki

Meta-Wiki

Multilingual Wikisource
Wikispecies
Wikibooks

AR e e

Main Page Discussion Read View source View history | Search Wikidata Q| ~

free

/ Introduction = Project Chat - Community Portal = Help

e A

. AN T ! e / /
multiingu  ywant to help translate? Translate the missing messages.

III—H-H'H""-H. \"L

Welcome to Wikidata

the free knowledge base with 97 501,043 data items that anyone can edit.

collaborative

1\ s

i welcome! Il Learn about data

Wikidata is a free and open knowledge base that can be
read and edited by both humans and machines.

Wikidata acts as central storage for the structured data
of its Wikimedia sister projects including Wikipedia,
Wikivoyage, Wiktionary, Wikisource, and others.

Wikidata also provides support to many other sites and
services beyond just Wikimedia projects! The content of
Wikidata is available under a free licensed , exported
using standard formats, and can be interlinked to other
open data sets on the linked data web.

Mew to the wonderful world of data? Develop and improve
your data literacy through content designed to get you up
to speed and feeling comfortable with the fundamentals in
no time.

T tem: Earth ro2) Property: hichest point



Gartner, 2021
e

Edge Ai
lIAI Maker and Teaching Kits

EXPECTATIONS

Synthetic Data
Neuromorphic Hardware

Responsible Al ——
ModelOps

Machine Customers
Al Orchestration and
Automation Platform

Composite Al

S

Al TRiSM

Transformers
Decision Intelligence —\

“~Mode

Small and Wide Data
Compression

ultiexperience

\Deep Neural Network ASICs
Digital Ethics

Al Cloud Services

Natural Language Proc

Machine Learning

Intelligent Applications

Human-Centered Al Deep Learning
Generative Al
Al Governance Data Labeling and Annotation Services

essing

Physics-
Informed Al SAMRATE SRR
Artificial Chatbots emantic Searc
General Autonomous Vehicles
B Intelligence Computer Vision As of July 2021
Innovation Peak of Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity
TIME
Plateau will be reached: () <2ws. @ 2-5wis. @ 5-10vrs. A >10vis. ® Obsolete before plateau
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enslaved.org

J[ ;—“]"[L f*‘]_ﬂj:l Trade Home  Activities - About Updates Documentation Pariners  Matrix Team

Peoples of the
EIlSlaVCd ‘ HlStOI‘lC Slave Trade

Building a Linked Open Data Platform for the study and
exploration of the historical slave trade.

KANSAS STATE AIKP, July 2022 22
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https://enslaved.org/
https://lod.enslaved.org/

enslaved.org process

1. Quality Graph Design.

2. Realization in Wikibase.
(Engine for Wikidata)

3. Knowledge graph construction and © Places

interaction through Wikibase as.

(@ People 552009 e Lab

] Events 341732

14376

4. Additional front-end (simplified view) E Sources 2599

(4) https://lenslaved.org/

>53M RDF triples from Wikibase export

(3) https://lod.enslaved.org/
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July 2022
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KnowWhereGraph

« 2years, $5M. Follows a $1M, 1-year pilot. eLab

« NSF “Open Knowledge Networks” (OKN) program.
21 phase 1 projects; 5 phase 2 projects.

Pl. Krzysztof Janowicz, UCSB
Co-Pls: Mark Schildhauer, Wenwen LI, USDA

Dean Rehberger, Pascal Hitzler =
=<USGS *Usc

(\ ) . UCSB B

& Kasas Smare

INIOT spatial ucsb

@HYDRONOS LABS @ C ' B O m
TECHNOLOGIES @@NCEAS

" OLIVER WYMAN cal Analysis and Synthesis

?‘ DirectRelief '..° ontotext (& mcHican ;TATE UNIVERSITY
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KnowWhereGraph
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(some) project goals

« pushing the state of the art in spatiotemporal “ab
Knowledge Graph (KG) engineering

« transfer of KG technology towards adoptable practice
e application showcases

Addressing the bottleneck in data science:

80% is data processing
20% is deriving insights

http://[KnowWhereGraph.org/

KANSAS STATE AIKP, July 2022
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Copseran

« Knowledge Graph with about >12B triples
— One of the currently largest public knowledge graphs.

— Focus on spatial data related to environment and natural
disasters

o (forthcoming)
— open source software for access and management

http://knowwheregraph.orqg/

KANSAS STATE AIKP, July 2022
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KAN

(VBN "B BA'A Hurricane Tracks

Thematic Datasets Place-Centric Datasets
Dataset Name/ Source Key Attributes Spatial Temporal Place-Centric Defining Spatial
Theme Agency y Coverage Coverage Dataset Authority Coverage
. . - Targeted Lvl 9 (Global),
Soil Properties USDA soil type, farmland class regions in US Current S2 Cells Google Lvl 13 (US), I
wildfire type, burn severity, University of AN
Wildfires UL?SGFSS' LL?EQ ! num. acres burned, us 1984—current Berkeley, N DaSe Lab
’ contained date Global Museum of Q
: : i ; Vertebrate I
Earthquakes USGS magnitude, length, width, = Global (mag. = 2011-01-01to | Administrative Zoology and the Global
geometry over 4.5) 2022-01-18 Regions International
Climate Hazards NOAA injuries, deaths, property us 1950-2022 Rice Research
damages Institute
Expert - Covid-19 | Direct Relief - . US Federal
Mobility (DR) name, affiliation, expertise Global 2021 I Judicial District DoJ, ESRI us
KWG, UC
Expert - General System, DR, n_ame, al_‘flllatlon, expertise Global unlimited National Weather NOAA us
Semantic with spatiotemporal scopes Zones
Scholar
Cropland Types USDA crop types (raster data) us 2008-2021 I FIPS Codes NRCS us
AirQual. Obs. =~ U.S.EPA  AQIvalue, CO concentration us 19802022 | oesionated Nielen us
arket Area
Smoke Plumes NOAA daily smoke plumes extent us 2010-2022 ZIP ZCTA us
Climate temperature, precipitation, _ . C
Observations NOAA PDSI, PHSI us 1950 - 2022 | Climate Division NOAA us
Disaster designated area, program, Census
: FEMA amount approved, program us 1953 - 2022 i US Census us
Declaration h Metropaolitan Area
designated date
Smoke Plume NDMC,
Extents NOAA Smoke extent us 2017 - 2022 Drought Zone USDA,NOAA us
Geographic
BlueSky Name
Bluesky PM10, PM5 us 2022-03-07 . USGS us
Forecasts Information
System
Transportation DOT road type, road length, road us 2014
(highway network) sign
below poverty level percent,
diabetes age adjusted 20
Public Health CCZ%SHSS plus percent, us 2017
obesity age adjusted 20 plus
percent
Vulﬁgf;zlility CDC/ATSDR  social vulnerability index us 2018 I
NOAA max wind speed, min us 1851-2020 I

pressure




Copseran

« Two current trends:
— Neuro-Symbolic Artificial Intelligence
— Knowledge Graphs
 And their convergence:
— Added Value for Deep Learning
 Example: Explainable Al
— Added Value for Knowledge Graphs
 Example: Deep Deductive Reasoning
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Added Value for Deep Learning
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« KGs are arich source of structured training data
« KGs are arich source of background knowledge

 Improved performance and trainability of DL systems
* Interpreting and explaining DL systems via background knowledge

KANSAS STATE AIKP, July 2022
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Explaining Deep Learning via Symbolic
Background Knowledge

Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal Hitzler, Explaining Trained Neural Networks with
Semantic Web Technologies: First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), Proceedings of the
Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR
Workshop Proceedings 2003, CEUR-WS.org 2017

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In: The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 —
February 1, 2019. AAAI Press 2019, pp. 3036-3043.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, lon Juvina, Michael

L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable Al. In: Boris Villazon-Terrazas, Fernando Ortiz-Rodriguez,
Sanju M. Tiwari, Shishir K. Shandilya (eds.), Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and First
Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-27, 2020, Proceedings. Communications in Computer
and Information Science, vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.

KANSAS STATE AIKP, July 2022
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Explainable Al

« Explain behavior of trained (deep) NNs. “ab

e J|dea;

— Use background knowledge in the form of linked data
and ontologies to help explain.

— Link inputs and outputs to background knowledge.

— Use a symbolic learning system to generate an explanatory
theory.

« We have key components for this now, but it’s still early stages.

KANSAS STATE AIKP, July 2022
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Concept

Training images

hasMapping

Knowledge Graph

BE128x128

CNN to classify images

24@48x48

Snow subClassof BodyOfWater

And some others

KANSAS STATE

UNIVERSITY

Positive
images

P8 Negatiy
B images

Concept |

e

nduction

—— 3Jcontains. (HighLand N BodyOfWater)
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DL-Learner [Lehmann, Hitzler]

Approach similar to inductive logic programming, but using
Description Logics (the logic underlying OWL).

Positive examples: negative examples:
: - La HeEgHR
2 oL - 2 - e Mo B
. [ <G o HHE— v Lo T HE
i |Oallox]a at B . \No Al 0
. [ HT—Hal B O o | o | O

Task: find a class description (logical formula) which separates
positive and negative examples.

KANSAS STATE AIKP, July 2022
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L ) eLab
Positive examples: negative examples:

: ©Le T

2 Egg-Le HE 2 [ e Ho -

. [ <& > o B v Lo -

L | o xla a/l B + \oilo 0

. [0 - Hal- B A ===
DL-Learner result: dhasCar.(Closedn Short)
In FOL.:

{z | Jy(hasCar(x,y) A Closed(y) A Short(y))}

KANSAS STATE AIKP, July 2022
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Scalability Issues with DL-Learner

. aSe Lab
« For large-scale experiments, DL-Learner took 2 hours or mor e :
for one run.

 We knew we needed at least thousands of runs.

« So we needed a more scalable solution.
« The provably correct algorithms have very high complexity.

« Hence we had to develop a heuristic which trades (some)
correctness for speed.

 |Itis also currently restricted to using a class hierarchy as
underlying knowledge base.

KANSAS STATE AIKP, July 2022
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ECIl algorithm and system

e Lab

« We thus implemented our own system, ECII (Efficient Concep
Induction from Instances) which trades some correctness for
speed. [Sarker, Hitzler, AAAI-19]

Experiment Name Mumber of Runtime (s2c) Accuracy (os) ACCUTACY o
] Logical Axioms | DL* | DL FIC(1)®| DL FIC(2)"| ECII DF¥| ECII KCT*[ DL* [ ECII DFY| DL FIC(1°[ DL FICi2FF| ECII DF| ECII KCT®

Yinvang examples 157 (0.063 0.0131 0019 (G 0.143 100 [ 06l .00 .00 0799 1.(HK)
Trains I73 0.0l 0020 ey (& 0095 1.1HK] [.0NHD .00 [.000 1.0 1.THK]
Forie 341 15 1.169 h.145 .95 0.331 0965 [ 0.642 0.875 0.875 0733 1.0HK)
Poker 1,368 (.0 0.714 0.817 I 0.281 1.{HK) 1000 0.981 0.584 1.000 1.0HK)
Moral Reasoner 4,666 0l 1106 4.154 547 6.873 1000 [ 0785 1000 1000 1.000 1.0HK)
ADE20k 1 4714 571.3" 4.268 J1.BET 1.966 23775 0926 [ 0416 0.263 0814 0744 1.(HK)
ADE20K 11 7,300 oE3.4 6. 187 307.65 0.8 293,44 LoD [ 0673 0413 0.413 L.Ed6 0.900
—  ADEIDE T 12,193 15008 13207 263217 51 2388 0375 [ 0537 0375 0.373 0.530 0937
ADE20k IV 47 468 45008 93.658 523.673 16 423.34% | 0375 NA 0,606 0.608 0660 0.608

*DL DL-lLearner

DL FIC (1) : DL-Learner fast instance check with runtime capped at execution time of ECI1 DF

® DL FIC (2} : DL-Leamer fast instance check with runtime capped at execution time of ECII KCT
TECH DF : ECIN default Pirameaters

= ECII KCT : ECII keep common types and other default parameiers

T Runtimes for DL-Leamer were capped at 600 seconds.

£ Runtimes for [DL-Leamer were capped at £.500 seconds.
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ECII vs. DL-Learner

1ol

Moral ADE20k | ADE20k ADE20k ADE20k

\/

Yinyang Trains Forte Poker

Etime DL-Learner Otime EC

Figure 1: Runtime comparison between DL-Learner and
ECII. The vertical scale is logarithmic in hundredths of sec-
onds, and note that DL-Learner runtime has been capped at
4.500 seconds for ADE20k III and IV. For ADE20k I it was

capped at each run at 600 seconds.
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Yinyang Trains Forte Poker Moral ADE20k IADE20k Il ADE20k ADE20k

‘\‘I
W accuracy DlLlearner DOaccuracy EC

Figure 2: Accuracy (a3) comparison between DL-Learner
and ECII. For ADE20k IV it was not possible to compute an
accuracy score within 3 hours for ECII as the input ontology
was too large.
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Proof of Concept Experiment

Positive: Negative:

.\l
e . © e PYIB MR o l,;‘.“”‘ #ﬁ\%ﬁﬁ
K WQIW = TRra iy an AIKP, July 2022
UN :



Images

Come from the MIT ADE20k dataset eLab
http://groups.csail.mit.edu/vision/datasets/ADE20K/

They come with annotations of objects in the picture:

001
002
005
006
007
008
009
011
001
002
009

H OHFHFEH R R K H H HEHE
P PP OOOOOOODOo
HHF FEHE R HEH HEH HHE
©O O OO O O o o o oo
H HF HFEHE B H HHF HF K

KANSAS STATE
UNIVERSITY

sky # sky # "
road, route # road # ""

sidewalk, pavement # sidewalk # "
burlding, edifice # building # ""

truck, motortruck # truck # ""

hovel, hut, hutch, shack, shanty # hut # "
pallet # pallet # ""
box # boxes # "'
door # door #
window # window #
wheel # wheel # "

, July 2022


http://groups.csail.mit.edu/vision/datasets/ADE20K/

Mapping to SUMO

Simple approach: for each known object in image, create an
individual for the ontology which is in the appropriate SUMO

class:

contains roadl
contains window1
contains doorl
contains wheell
contains sidewalk1
contains truckl
contains box1
contains buildingl

KANSAS STATE
UNIVERSITY

AIKP, July 2022
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SUMO

* Suggested Merged Upper Ontology eLab
http://www.adampease.org/OP/

e Approx. 25,000 common terms
covering awide range of domains

 Centrally, arelatively naive class hierarchy.

 Objects in image annotations became individuals (constants),
which were then typed using SUMO classes.

KANSAS STATE AIKP, July 2022
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http://www.adampease.org/OP/

DL-Learner input
Positive: ELab

imgl: road, window, door, wheel, sidewalk, truck,
box, building

img2: tree, road, window, timber, building, lumber

Img3: hand, sidewalk, clock, steps, door, face, building,
window, road

Negative:
img4: shelf, ceiling, floor
img5: box, floor, wall, ceiling, product
Img6: ceiling, wall, shelf, floor, product

DL-Learner results include: Elcontains,Transitwa,y

Jecontains.LandArea

KANSAS STATE AIKP, July 2022
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Proof of Concept Experiment

Positive:

Jcontains.Transitway
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Experiment 2

Positive (selection): Negative (selection): “ab

Jcontains.Sentient Agent
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UNIVERSITY



Experiment 5

Positive:

Jcontains.BodyOfWater

KANSAS STATE AIKP, July 2022
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ldea Recap

» Generate explanation of the whole model
. aSe Lab
» Global explanation

Training data CNN to classify images
= | Positije
i %ﬂ et - B2 instantes
— BBEANBA ' ] L'Pl:L| \\\ o =
N\ 3
. HT’FJ%W jﬁ:ﬁl%& % X
| : ' RN N N
: = U?TF y, L

Negative
hasMapping instanceg
i T [
cronledge Granh » Concept Induction
Mountain subClassof UpLandArea Explanations

___________ UpLandArea M LandForm
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From SUMO to Wikipedia Concept Hierarchy

» Wikipedia CH (curated) produces better coverage score e =
« Reason behind this is the large number of concepts it has.
e approx. 2M concepts

Experiment name #Images | #Positive images | Wikipedia SUMO
#Solution | Coverage  #Solution | Coverage

Market vs. 96 37 286 72 240 T2

WorkRoom and

wareHouse

Mountain vs. Market |181 85 195 .61 190 .53

and workRoom

OutdoorWarehouse 55 3 128 .94 102 .89

vs. IndoorWarehouse

Warehouse vs. 59 55 268 .56 84 .24

Workroom

Workroom vs. 59 4 128 .93 93 .84

Warehouse

KANSAS STATE AIKP, July 2022

UNIVERSITY



Work in Progress

« Value of Explanations (end-to-end) to “ab

— humans
— detect bias
— Improve deep learning accuracy

 Explaining hidden neuron activation patterns
— scalability challenges
— background knowledge challenges

KANSAS STATE AIKP, July 2022
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Copseran

« Two current trends:
— Neuro-Symbolic Artificial Intelligence
— Knowledge Graphs
 And their convergence:
— Added Value for Deep Learning
 Example: Explainable Al
— Added Value for Knowledge Graphs
 Example: Deep Deductive Reasoning

KANSAS STATE AIKP, July 2022
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Added Value for Knowledge Graphs

KANSAS STATE AIKP, July 2022

UNIVERSITY



Copseran

DL systems to assist with
— schema (ontology) modeling
— KG construction based on schema
— schema alignment
— co-reference resolution
— data quality assurance
— KG reasoning
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler,
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners.
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.
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Deep Deductive Reasoners

« We trained deep learning systems to do deductive reasoning. mb

 Why is this interesting?
— For dealing with noisy data (where symbolic reasoners do
very poorly).
— For speed, as symbolic algorithms are of very high
complexity.
— Out of principle because we want to learn about the
capabilities of deep learning for complicated cognitive tasks.

— To perhaps begin to understand how our (neural) brains can
learn to do highly symbolic tasks like formal logical
reasoning, or in more generality, mathematics.

A fundamental quest in Cognitive Science.

KANSAS STATE AIKP, July 2022
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Reasoning as Classification

« Given a set of logical formulas (a theory). ELab
« Any formula expressible over the same language is either
— alogical consequence or

— not a logical consequence.

 This can be understood as a classification problem for machine
learning.

|t turns out to be areally hard machine learning problem.
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Knowledge Materialization

« Given aset of logical formulas (a theory). “ab

 Produce all logical consequences under certain constraints.

 Without the qualifier this is in general not possible as the set of
all logical consequences is infinite.

« So we have to constrain to consequences of, e.g., a certain
syntactic form. For relatively simple logics, this is often
reasonably possible.
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Published deep deductive reasoning work

b
paper logic transfer | generative scale performance [} ek
[12] RDFS yes no moderate high /2
[25] RDFS no yes low high
[10] ELT no yes moderate low
[20] | OWL RL no* no low high
6] FOL no yes very low high
(new) RDFS yes yes moderate high?
(new) EL+ yes yes moderate high?

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler,
AAAI-MAKE 2021

25]: Makni, Hendler, SWJ 2019

10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
20]: Hohenecker, Lukasiewicz, JAIR 2020

6]: Bianchi, Hitzler, AAAI-MAKE 2019

(new): Ebrahimi, Eberhart, Hitzler (preliminary report)
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RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie,
Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler,

Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment.
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart
and Brayden Pankaskie
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Memory Network based on MemN2N
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Experiments: Performance

?

Base Inferred Invalid
Test Dataset RO - opaes T #Em0 [ %Css | %lndv [ %R | %Axiom. | #Facs | #EaL | %Class | %Indv | %R | %Axiom | #Facts
OWL-Centric 2d6d 1 99 832 14 19 3 ] 494 832 4 0.01 I 20 462 i
Linked Data 20527 | 999 181 3 22 J ] 124 87 3 0.006 1 83 124
OWL-Centric Test 5et | 21 622 400 36 41 3 0 837 400 36 3 1 12 476
Synthetic Dala 2 152 s06 52 0 1 0 126356 506 52 0 1 0.07 700
Table 2: Statistics of various datasets used in experiments
Baseline: non-normalized embeddings, same architecture
Training Datasct Test Dataset Valid TrlErle& Class Invalid Trl!:l]-f:}; Class Accuracy
Precision Recall F-measure | Precision Recall F-measure
’ {Sensitivity : {Specificity :
OWL-Centric Dataset Linked [ata K] U5 Ui Us U3 Y3 Ui
OWL-Centric Dataset (90%) | OWL-Centric Dataset (10%) | 88 01 89 20 88 89 9%
OWL-Centric Dataset OWL-Centric Test Set ® 79 62 68 70 84 16 69
OWL-Centric Dataset Synthetic Data 65 49 40 32 34 42 52
OWL-Centric Dataset Linked Data * KE | o8 10 o1 16 27 B6
OWL-Centric Dataset * Linked Data * 62 72 67 67 36 61 01
OWL-Centric Dataset(90%) *| OWL-Centric Dataset(10%) *| 79 72 75 74 g1 77 80
OWL-Centric Dataset OWL-Centric Test Set 7 38 68 62 62 30 M 38
OWL-Centric Dataset ® OWL-Centric Test Set 2° 77 57 65 66 82 73 73
OWL-Centric Dataset Synthetic Data * 70 51 40 47 52 38 51
OWL-Centric Dataset ® Synthetic Data ® &7 3 25 52 &0 62 50
Baseline
OWL-Centric Dataset Linked Data 73 o8 B3 PE] 46 61 43
OWL-Centric Dataset (909%) | OWL-Centric Dataset (10%) | 84 83 B4 84 84 B 82
OWL-Centric Dataset OWL-Centric Test Set 62 84 70 80 40 48 1
OWL-Centric Dataset Synthetic Data 35 41 32 48 35 45 45

® More Tricky Mos & Balanced Dataset
® Completely Different Domain.

Table 3: Experimental results of proposed model



Experiments: Reasoning Depth

Test Dataset o H-;}:u{p 0 - Hop 1 Hop 2 Hop3 Hop 4 Hop 3 Hop 6 Hop T HopE Hop 9 Hop 10
Tinked Data® | 0 | 0 | 0 | &0 | 99 | &5 | &9 | 97 | 9% | 17 | 94 Bh
Linked Data® | 2 D [0 [8 [ o1& |89 [98 9379|100 &8
]
3

OWLCenine™[ 19 [ 3 [ 7AETAEEE TR [HE[H [H[S [THE]6 T- - - - - - - - - - - - - - - - - -
Synthebc I EEIENEEA R sl e [de [ S 1 [ 5 [ [ 332414530 54302236 ]2

* LemonUby Ontology
A grovoe Oniology
£ Compleiely Dhifferent Domaim

Table 4: Experimental results over each reasoning hop

Dataset Hopl | Hop2 | Hop3 | Hop4 | Hop5 | Hop6 | Hop7 Hop 8 Hop 9 Hop 10
OWL-Centric* | 8% 67% 24% 0.01% | 0% 0% 0% 0% 0% 0%
Linked Data” 31% 50% 19%% 0% 0% 0% 0% 0% 0% 0%
Linked Data® 34% 46% 20% 0% 0% 0% 0% 0% 0% 0%
OWL-Centric® | 5% 64% 30% 1% 0% 0% 0% 0% 0% 0%
Synthetic Data | 0.03% | 1.42% | 1% 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65%

* Training Set

h LemonUby Ontology

“ Agrovoc Ontology

4 Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day
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Published deep deductive reasoning work

b
paper logic transfer | generative scale performance [} ek
[12] RDFS yes no moderate high /2
[25] RDFS no yes low high
[10] ELT no yes moderate low
[20] | OWL RL no* no low high
6] FOL no yes very low high
(new) RDFS yes yes moderate high?
(new) EL+ yes yes moderate high?

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler,
AAAI-MAKE 2021

25]: Makni, Hendler, SWJ 2019

10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
20]: Hohenecker, Lukasiewicz, JAIR 2020

6]: Bianchi, Hitzler, AAAI-MAKE 2019

(new): Ebrahimi, Eberhart, Hitzler (preliminary report)
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Conclusions
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« Two current trends:
— Knowledge Graphs
— Neuro-Symbolic Al

 Plenty of opportunities
— Improving DL systems with KG-based background knowledge
— Solving key KG problems using DL approaches.
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Thanks!
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