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Neuro-symbolic AI
Publications on neuro-symbolic AI in major conferences 
(research papers only):

See
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
AI Communications 34 (3), 197-209, 2022.
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2022, 17 chapters 2023, 30 chapters 

Neurosymbolic AI community slack
currently over 800 members
email hitzler@ksu.edu to get an invite

mailto:hitzler@ksu.edu
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Problem setting:
why we need strong explainabilty

for deep learning systems
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The black box problem

There have been enormous strides recently in methods and 
applications of Deep learning.

However
• Deep Learning system are black boxes
• Evaluation is only done statistically

This is insufficient for many application areas, and problematic for 
most.

5



UIUC, September 2023

COVID-19 detection

CNN classification accuracy:
Original images – 67%
Blank background images – 62%
Mere chance accuracy – 25%

Dhar, S., Shamir, L., 2021, Visual Informatics, 5(3), 92-101 – thanks to Lior Shamir for the slides input

Gastrointestinal disease detection 
(Kvasir dataset)

CNN classification accuracy:
Original images – 77%
Blank background images –
41%
Mere chance accuracy –
12%

Face recognition (Yale B)

CNN classification accuracy:
Original images – 99%
Blank background images –
87%
Mere chance accuracy – 4%

The black box problem
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Galaxy image annotation

Dhar, S., Shamir, L., 2022, Astronomy and Computing, 38, 100545

Classification to spiral galaxies and elliptical galaxies

Pan-STARRSSDSS

Training set and test set from the same part of the sky

Training set and test set from different parts of the sky

Training set and test set from the same part of the sky

Training set and test set from the same part of the sky

When the test set and training set are 
from the same part of the sky, the CNN 
shows a different Universe than when 
the training and test images come from 
different parts of the sky.
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Approach: Concept Induction for Hidden 
Layer Analysis
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Negative 
instances

Positive 
instances

Concept Induction
Knowledge Graph

Mountain subClassof UpLandArea
-----------
-----------

CNN to classify imagesTraining data

hasMapping

UpLandArea ⊓ LandForm

Explanations

Idea

New results based on: Abhilekha Dalal, Md Kamruzzaman Sarker, 
Adrita Barua, Eugene Vasserman, Pascal Hitzler https://arxiv.org/abs/2308.03999.

https://arxiv.org/abs/2308.03999
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Concept Induction

Some slides adapted from Joshua Schwartz, with permission.
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Concept Induction

Approach similar to inductive logic programming, but using 
Description Logics (the logic underlying OWL).

Positive examples:                               negative examples:

Task: find a class description (logical formula) which separates 
positive and negative examples.
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DL-Learner

Positive examples:                               negative examples:

DL-Learner result:

In FOL:

Theory and system: [Lehmann & Hitzler 2010], DL-Learner 
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How it looks to the computer
car(car_11).  car(car_12).  car(car_13).  
car(car_14).
car(car_21).  car(car_22).  car(car_23).
car(car_31).  car(car_32).  car(car_33).
car(car_41).  car(car_42).  car(car_43).  
car(car_44).
car(car_51).  car(car_52).  car(car_53).
car(car_61).  car(car_62).
car(car_71).  car(car_72).  car(car_73).
car(car_81).  car(car_82).
car(car_91).  car(car_92).  car(car_93).  
car(car_94).
car(car_101).  car(car_102).

train(east1).  train(east2).  train(east3).  
train(east4).  train(east5).
train(west6).  train(west7).  train(west8).  
train(west9).  train(west10).

// eastbound train 1

has_car(east1,car_11).
has_car(east1,car_12).
has_car(east1,car_13).
has_car(east1,car_14).

short(car_12).
closed(car_12).
long(car_11).
long(car_13).
short(car_14).
open_car(car_11).
open_car(car_13).
open_car(car_14).
shape(car_11,rectangle).
shape(car_12,rectangle).
shape(car_13,rectangle).
shape(car_14,rectangle).
load(car_11,rectangle).
load_count(car_11,three).
load(car_12,triangle).
load_count(car_12,one).
load(car_13,hexagon).
load_count(car_13,one).
load(car_14,circle).
load(car_14,one).
wheels(car_11,two).
wheels(car_12,two).
wheels(car_13,three).
wheels(car_14,two).
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Somewhat more formally…
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Algorithmically – Refinement Operator
Start with simple formula E (e.g.,   )
Loop: Expand E minimally in all possible ways to 

E1,...,En
Check accuracy for E1 through En regarding P and N
Replace E by highest-scoring Ei

Exit loop if perfect solution found or other stopping 
criteria met

Return E

In reality, a list of formulas is returned, ranked by accuracy.
Accuracy can be f-measure, precision, recall, etc. 
Checking accuracy needs deductive reasoning, i.e., is expensive.

[Lehmann & Hitzler, Machine Learning, 2010], DL-Learner system
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Algorithmically – heuristic

• Restrict allowed syntax expansions (e.g., conjunctions only)
• Restrict complexity of logic in background knowledge (e.g., 

class hierarchy only)

[Sarker & Hitzler, AAAI, 2019]: ECII system
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Background Knowledge



UIUC, September 2023

Background knowledge

• Based on Wikipedia category hierarchy
• which is not a hierarchy because it has loops, caused by 

crowd-sourcing

• Heuristically curated by removing loops
• Resulting class hierarchy has approx. 2M concepts
• Broad coverage (all things in Wikipedia)
• Can easily refer to it from instances by mapping to Wikipedia 

pages and looking up the page categories.

[Sarker et al., KGSWC2020]
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Concrete Setting
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Negative 
instances

Positive 
instances

Concept Induction
Knowledge Graph

Mountain subClassof UpLandArea
-----------
-----------

CNN to classify imagesTraining data

hasMapping

UpLandArea ⊓ LandForm

Explanations

Idea
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Scenario

• Scene recognition (from images)

• MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/

• 10 overlapping scenes selected for our study

• Resnet50V2 trained (best of those we tried)
– Training accuracy 87.6%
– Validation accuracy 86.5%

21
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Images annotations

The ADE20k images come with annotations of 
objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""

We ignore everything but the types of object on each image. 
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Mapping to Background Knowledge

• String matching (Levenshtein with edit distance 0) from 
object types to Wikipedia categories

contains(img1,road1)
contains(img1, window1)
contains(img1, door1)
contains(img1, wheel1)
contains(img1, sidewalk1)
contains(img1, truck1)
contains(img1, box1)
contains(img1, building1)
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Label Hypothesis 
Generation and Confirmation
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Trained CNN

• Scene classification on ADE20k
• Resnet50V2; 64 hidden nodes in the dense layer

precision  recall  f1-score   support
bathroom      0.90      0.78      0.84       134
bedroom       0.89      0.88      0.88      277
building_facade 0.68      0.60     0.64        45
conference_room 0.77      0.91     0.83        33
dining_room 0.75      0.84      0.79        82
highway       0.96      0.88      0.92        59
kitchen       0.84      0.87      0.86       130
living_room 0.76      0.74      0.75       139
skyscraper      0.90      0.88      0.89        64
street       0.92      0.96      0.94       407

accuracy                      0.87      1370
macro avg       0.84      0.83      0.83      1370
weighted avg       0.87      0.87      0.87      1370
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workflow:  label hypothesis generation and 
confirmation of label hypothesis with new images from Google images
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Evaluation
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Approach

• Each row of the table is a hypothesis, e.g. “neuron 1 activates 
more strongly on cross_walk images (retrieved from Google 
images using keyword “cross_walk”) than on other images.”

• Null hypothesis: There is no difference in activations.

• There is no reason to assume a normal distribution,
• hence using Mann-Whitney U test for assessment.

30
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Evaluation results
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Discussion
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Note: “bushes, bush” is the third-highest concept induction output 
(coverage 0.993; 48.052% of target images activating the neuron)
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Going forward
We would really want to have 
labels with high target 
activation and low non-target 
activation.

• make use of more concept 
induction results

• better background 
knowledge

• optimize parameters (like 
thresholds)

• investigate neuron 
ensembles (   )

34



UIUC, September 2023

Concluding

• It works!

• But it needs to be refined.

35
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Thanks!
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Thanks!
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