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Abstract. We present the Emi reasoner, based on a new interpreta-
tion of the tableau algorithm for reasoning with Description Logics with
unique performance characteristics and specialized advantages. Emi turns
the tableau inside out, solving the satisfiability problem by adding ele-
ments to expressions rather than adding expressions to element node
labels. This strategy is inspired by decidable reasoning algorithms for
Horn Logics and EL++ that run on a loop rather than recursive graph-
based strategies used in a tableau reasoner. Because Emi solves the same
problem there will be a simple correspondence with tableaux, yet it will
feel very different during execution, since the problem is inverted. This
inversion makes possible many unique and straightforward optimizations,
such as paralellization of many parts of the reasoning task, concurrent
ABox expansion, and localized blocking techniques. Each of these op-
timizations contains a design trade-off that allows Emi to perform ex-
tremely well in certain cases, such as instance retrieval, and not as well
in others. Our initial evaluations show that even a naive and largely un-
optimized implementation of Emi is performant with popular reasoners
running on the JVM such as Hermit, Pellet, and jFact.

1 Introduction

Knowledge graph schema are complex artifacts that can be very useful, but are
often difficult and expensive to produce and maintain. This is especially true
when encoding them in OWL (the Web Ontology Language) as ontologies for
data management or reasoning. The high expressivity of OWL is a boon, in that
it makes it possible to describe complex relationships between classes, roles,3 and
individuals in an ontology. At the same time, however, this high expressivity is
often an obstacle to its correct usage that can limit adoption, and can hamper any
practical reasoning applications by adding complexity to the reasoning process.

To manage the complexity of OWL some prefer to accept hardness as it is and
develop tools to manage or simplify the tricky parts. However, it occasionally
is the case that problems appear difficult when they are actually quite intuitive
when expressed differently. When this happens it can be helpful to start again

3 We refer to properties as roles, unless a distinction is relevant, as this is the standard
description logic term. These include both object properties and data properties.
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from the beginning and re-imagine what is possible by trying something entirely
different. This will of course not alter the fundamental proven computational
complexity of any reasoning or modeling problem. But it can lead to algorithms
and design patterns that are more easily understandable, and potentially uncover
unique use cases and optimizations.

In this spirit we have used a new API for OWL called (f OWL) [2] for
our experiment that can represent and better facilitate ontology data for the
reasoning tasks we want it to perform. A custom reasoning algorithm called
Emilia4 (Emi) was implemented specifically to leverage the unique advantages
of the new API, and with time the two will be able to seamlessly work within a
single framework. The Emi reasoner will be able solve all of the same problems
that current reasoners are able to solve, but its execution follows an iterative
rule-like path rather than recursive tableau.

This type of experiment may seem equivalent and redundant to logicians and
mathematicians, and looking at it only in a purely formal sense this can seem
to be the case, however Emi works entirely differently from current systems and
presents many opportunities for new research. The reasoner presented here is a
prototype which demonstrates that the technique is valid and no less efficient
than other comparable Java Virtual Machine (JVM) reasoners – the potential for
new unique research directions and optimization techniques using this method
will be the subject of future works. Initial testing is underway of Emi, and it
is already performing competitively with other state-of-the-art systems in use
today, and is particularly efficient with instance retrieval, despite being a naive
prototype system written in a high level language with only the most basic and
straightforward of optimizations.

2 ALCH

The Emi algorithm currently supports ALCH reasoning, and the syntax and
semantics of that logic are given below. Future extensions will likely expand
expressivity for additional description logics.

2.1 Syntax

The signatureΣ for the Description LogicALCH is defined asΣ = ⟨NI , NC , NR⟩
where:

– NI is a set of individual element names.
– NC is a set of class names that includes ⊤ and ⊥.
– NR is a set of role names.
– NI , NC , NR are pairwise disjoint

Expressions in ALCH use the following grammar:

4 Eager Materializing and Iterating Logical Inference Algorithm
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R ::= NR

C ::= NC | ¬C | C ⊓C | C ⊔C | ∃R.C | ∀R.C

2.2 Semantics

An interpretation I =
(
∆I , ·I

)
maps NI , NC , NR to elements, sets, and rela-

tions in ∆I with function ·I . An axiom A in ALCH is satisfiable if there is an
interpretation where ·I maps all elements, sets, and relations in A to ∆I . An
ontology O is a set of axioms formed from ALCH expressions, and is satisfiable if
there is an interpretation that satisfies all axioms it contains, this interpretation
being a model for O. ·I is defined in Table 1 below.

Table 1. ALCH Semantics

Description Expression Semantics

Individual x xI ∈ ∆I

Top ⊤ ∆I

Bottom ⊥ ∅
Class B BI ⊆ ∆I

Role R RI ⊆ ∆I ×∆I

Negation ¬B ∆I \BI

Conjunction B ⊓ C BI ∩ CI

Disjunction B ⊔ C BI ∪ CI

Existential Restriction ∃R.B { x | there is y ∈ ∆I such that (x, y) ∈ RI and y ∈ BI }
Universal Restriction ∀R.B { x | for all y ∈ ∆I where (x, y) ∈ RI , we have y ∈ BI }

Class Assertion B(a) aI ∈ BI

Role Assertion R(a, b) (a, b) ∈ RI

Negated Role Assertion ¬R(a, b) (a, b) ̸∈ RI

Class Subsumption B ⊑ C BI ⊆ CI

Class Equivalence B ≡ C BI = CI

Role Subsumption R ⊑ S RI ⊆ SI

3 (f OWL)

We use (f OWL)[2] because it includes many novel optimizations that streamline
ontology and reasoner development. True to the functional paradigm (f OWL)
uses functions and shuns classes. Indeed all OWL ontology objects can be created
directly with (f OWL) functions. And since these functions are not bound up
in an arbitrary class hierarchy, they can operate on independent data structures
that are internally typed to represent OWL semantics. A (f OWL) ontology
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itself is simply another data structure made of collections of smaller similar
structures. This means that in most cases an expression, an axiom, even an
ontology can be traversed recursively as-is without writing more functions. The
use of immutable data structures by (f OWL) in standard Clojure style also
permits straightforward implementation of concurrent processes that operate on
ontology data.

3.1 (f OWL) and Emi

Emi makes use of many features of (f OWL), some of which are uniquely advan-
tageous in that they have no comparable alternative in other reasoners or APIs.
One major advantage with using (f OWL) is the ontology-as-data-structure ap-
proach, which means that once (f OWL) has loaded the ontology into memory,
Emi can efficiently traverse and manipulate expressions in the ontology with-
out worrying about concurrency, since a (f OWL) ontology is immutable. Once
the ontology is processed and elements in the signature are assigned mutable
memory for use during reasoning, it is straightforward to define a partially par-
alellizable reasoning process with Clojure built-in functions that can be precisely
lazy or eager when needed. The optimal configuration for when to choose each
strategy is subject to many design trade-offs and does not have an objective best
answer, though we believe we have developed a decent strategy. Emi processes
axioms eagerly, but sets of axioms lazily and in parallel when possible due to the
general observation that many non-synthetic ontologies contain a large number
of axioms, most of which are rather small. This can affect performance on syn-
thetic datasets where the occurrence of large or complex axioms is potentially
higher and a different strategy may work better.

4 Emi Reasoner

As mentioned in the introduction, the new reasoner we are developing works
iteratively without a graph, and is more like reasoning in EL++ or datalog where
the process runs on a loop that eventually terminates rather than an expansive
graph traversal. To reason iteratively we effectively need to turn the tableau
inside out so we can work directly with axioms instead of a graph of elements.
This means we will need to look at each axiom individually and add elements to
or remove elements from expressions according to the tableau expansion rules as
if they were backwards. This process slowly builds up a model for the ontology
by partially realizing expressions until they become satisfiable and no longer
need to be modified. Since every element is inspected for every axiom and the
inverted tableau rules are followed in expressions we know this will be consistent.
We assume that all expressions in our algorithm will be converted into Negation
Normal Form (NNF); it is important to emphasize that absolutely no other
logical preprocessing is used in the algorithm. In this section we assume that
readers are familiar with the basics of tableau reasoning, if not they can consult
[1] for further information.
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4.1 Partial Interpretations

This algorithm works by directly attempting to realize an ontology and even-
tually build a consistent interpretation using the axioms as they are written in
NNF, by adding and removing elements until all axioms are satisfiable or the on-
tology is shown to be unsatisfiable. We refer to the changing states of a program
as partial interpretations.

Before continuing to the definition, it is important to stop and emphasize the
subtle difference between partial interpretations and standard interpretations. A
partial interpretationmay be equivalent to some interpretation, and indeed when
Emi terminates and determines we have a satisfiable ontology this final partial
interpretation is a model. However partial interpretations are not necessarily
models and represent the states of the program as different assignments are at-
tempted in order to find a model. This difference may be confusing at first for
logicians who are used to only seeing standard interpretations, but the distinc-
tion is important not just for showing a simple proof but also for describing the
actual implementation of the algorithm as well. Our terminology deliberately
corresponds much more closely to how an actual implemented algorithm, rather
than a theoretical proof of one, would function by avoiding whenever possible
notions of infinity or concepts that would need to be represented by global vari-
ables that are pervasive in proofs and inconvenient or impossible to implement.
We do this intentionally so that it can be understood by programmers as well
as logicians; we hope not just to show correctness but that it is clear to anyone
how they could actually write a reasoner such as this.

Definition 1. A partial interpretation representing the current state of the al-
gorithm when a function is called is I∗ = (RI∗

, ·I∗
) where ·I∗

is a function that
maps elements, sets, and relations in an ontology O to a realization RI∗

of O.

Definition 2. A realization of ontology O is a set of assertions that states for
every class name A and element x in O that x ∈ AI∗

or x ̸∈ AI∗
and for every

role name R and element pair (x, y) in O that (x, y) ∈ RI∗
or (x, y) ̸∈ RI∗

.

Each partial interpretation in this algorithm corresponds to some realization
with a function ·I∗

. Note that there is no restriction against inconsistent real-
izations and partial interpretations, only that they must be complete. A partial
interpretation I∗ with realization RI∗

of ontology O is said to be a model of O
iff there is an interpretation I of O ∪RI∗

.

As mentioned previously, while I often denotes a single consistent interpre-
tation, I∗ denotes the current interpretation when a function is evaluated in the
algorithm, and as such may change over time and contain information that is
later proved to be incorrect. Frequently we will say things like “Add x to EI∗

”,
and this indicates that the partial interpretation I∗ will henceforth be modified
in the program state to represent the described change to ·I∗

that produces the
desired realization.
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4.2 Inverted Tableau Expansion Rules

Inverting the tableau rules is straightforward when we turn the standard tableau
terminology, such as occurs in [1,6], on its head and assume that “labels” rep-
resent the action of the ·I∗

function on class and role names in an ontology to
produce a realization, and that for any class or role name E that EI∗

= L(E).
To connect this idea with labelling terminology in a graph we use a labelled
object, which can represent both notions.

Definition 3. A labelled object E is an object that is associated with some set
L(E), or label.

First we note that nodes and labels do not necessarily need to be connected
in a graph to represent the semantics of ALCH, and can be reinterpreted as
freely associating labelled objects. A labelled object can be a node in a tableau
graph or simply an isolated named object with no inherent graph connections.
This means that a label for a complex expression can be defined recursively
to match the semantics of a partial interpretation I∗, e.g. when an expression
C⊔D is satisfiable after applying the inverted tableau rules we have L(C⊔D) =
(C⊔D)I

∗
= CI∗∪DI∗

. We can represent axioms equivalently as labelled objects
without actually needing to make a graph as long as all names in the signature
are not duplicated in expressions but actually reference the same labelled objects.

For this algorithm we consider the inverted ALC tableau rules sufficient for
deciding ALCH satisfiability, since the addition of the H fragment does not
permit complex role expressions and they do not require expansion to check.
The RBox axioms that are not included here will be described in Table 4 with
the TBox axioms. In Table 2 we show the tableau expansion rules for ALC [1]
and assume the standard notion of blocking for them, which can be found with
the original proofs, then show the inversions in Table 3 where blocking is defined
in Subsection 4.4.

the following expansion rules apply to element x when x is not blocked
⊓-rule if 1. (C ⊓D) ∈ L(x)

2. {C,D} ̸∈ L(x)
then L(x) → L(x) ∪ {C,D}

⊔-rule if 1. (C ⊔D) ∈ L(x)
2. {C,D} ∩ L(x) = ∅

then either L(x) → L(x) ∪ {C}
or else L(x) → L(x) ∪ {D}

∃-rule if 1. ∃R.C ∈ L(x)
2. there is no y s.t. L((x, y)) = R and C ∈ L(x)

then create a new node y and edge (x, y) with L(y) = {C} and L((x, y)) = R
∀-rule if 1. ∀R.C ∈ L(x)

2. there is some y s.t. L((x, y)) = R and C ̸∈ L(x)
then L(y) → L(y) ∪ {C}

Table 2. ALC Tableau Expansion Rules
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⊓-rule if 1. x ∈ L(C ⊓D)
2. x ̸∈ L(C) ∩ L(D)

then L(C) → L(C) ∪ {x}
L(D) → L(D) ∪ {x}

⊔-rule if 1. x ∈ L(C ⊔D)
2. x ̸∈ L(C) ∪ L(D)

then either L(C) → L(C) ∪ {x}
or else L(D) → L(D) ∪ {x}

∃-rule if 1. x ∈ L(∃R.C)
2. there is no y s.t. (x, y) ∈ L(R) and y ∈ L(C)
3. there is no z s.t. x is blocked by z

then create a new element y with y ∈ L(C) and (x, y) ∈ L(R)
∀-rule if 1. x ∈ L(∀R.C)

2. there is some y s.t. (x, y) ∈ L(R) and y ̸∈ L(C)
then L(C) → L(C) ∪ {x}

Table 3. Inverted ALC Tableau Expansion Rules

The labelling terminology is used in this subsection to show tableau cor-
respondence, though in general we avoid it since it is more obvious what is
happening to non-logicians when we show our algorithm as an implementable
process that produces interpretations, rather than a convoluted mathematical
abstraction. Specifically, we believe it is more natural to think of a predicate
that represents a set as a labelled object where the label represents the set asso-
ciated with the predicate, than it is to invert this and represent all the elements
as labels for connected sets of predicate names.

4.3 ABox Expansion

One of the more useful optimizations that this algorithm permits is the expan-
sion of ABox axioms into many additional, unstated, expressions which must
hold in every possible model. This expansion begins while the algorithm eval-
uates the ABox and detects any immediate clashes. Later while evaluating the
TBox the expansion detects any clashes that cannot possibly be fixed to allow
the algorithm to terminate quickly, and it can be done concurrently whenever
the algorithm adds or removes elements from expressions. In Definition 4 we
maintain the assumption that all expressions are NNF and use ¬ to simplify the
appearance of equivalent expressions.

Definition 4. For partial interpretation I∗, expression E, and element/pair x:

1. A clash means x ∈ EI∗
and x ∈ ¬EI∗

2. x must be in E iff there is no I∗ where modifying ·I∗
to obtain x ∈ ¬EI∗

does not cause a clash
3. x must not be in E iff there is no I∗ where modifying ·I∗

to obtain x ∈ EI∗

does not cause a clash
4. An unresolvable clash means x must be in EI∗

and x must not be in EI∗
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The set of all elements that must be in an expression EI∗
, denoted EI∗

m , is
a subset of the elements of EI∗

, and the set of all elements that must not be
in EI∗

, written EI∗

m , is a subset of the elements of ¬EI∗
. Like the expressions

themselves, the exact members of EI∗

m and EI∗

m are unknown at the beginning of
the algorithm, so EI∗

m and EI∗

m indicate the additional knowledge of constraints
on satisfiability that grow as the algorithm runs and are thus referred to with the
I∗ as well. When we talk about element(s) being “added” to these sets (nothing
is ever removed), it is to indicate the change in ·I∗

that must hold in all future
I∗. Sets of elements that must (not) be in a complex expression can be computed
in a straightforward way from the components of the expression they are in, for
example (B ⊓ C)I

∗

m ≡ BI∗

m ⊓ CI∗

m and (B ⊓ C)I
∗

m ≡ BI∗

m ⊔ CI∗

m (note the use of
DeMorgan for m).

Expansion occurs during TBox evaluation by, whenever possible, propagating
the elements that must (not) be in expressions from antecedent to consequent,
e.g. if we have axioms {A(x), A ⊑ B} then x ∈ Am, and when we check A ⊑ B it
is often possible to conclude x ∈ Bm. This is not always possible for expressions
containing disjunction and negation except in certain very specific cases. Re-
gardless the effect is powerful. Maintaining these sets allows us to explore only
potentially correct solutions by preemptively avoiding actions that will be in-
consistent in every model and also detect unresolvable clashes so the evaluation
can terminate more quickly.

4.4 Local Blocking

The notion of blocking is also required for termination due to the new elements5

created by the existential function. Our notion of blocking corresponds to the
usual definition in that it references the same cyclic patterns in roles, however
Emi cannot use blocking in reference to the global role hierarchy which is not
computed explicitly, so cycles are detected locally by tracing the dependency
paths that emerge as new elements are created to satisfy expressions.

Definition 5. A new element x was created to satisfy expression ∃R.B in an
algorithm A if there are partial interpretations I∗, I∗′ for A where for some y
we have (y, x) ∈ RI∗

, x ∈ BI∗
, y ∈ ∃R.BI∗

and y ̸∈ ∃R.BI∗′
if x ̸∈ ∆I∗′

.

Definition 6. For expression ∃R.BI∗
, an element x is blocked by element z

if (z, x) ∈ RI∗
and x was created to satisfy ∃R.B, or if for (z, y0) ∈ RI∗

where y0 was created to satisfy ∃R.B we have n ≥ 0 pairs of elements such
that

⋃n
k=1(yk−1, yk) ∪ {(yn, x)} ⊆ ∆I∗ ×∆I∗

.

Fortunately this restriction is rather intuitive to implement: we simply need
the function for an existential to not create new elements when checking new
elements that exist as a result of a prior application of the same function on

5 When we say ‘new element’ this is equivalent to a fresh element symbol. It is written
this way because we are avoiding terminology that refers to an infinite set of names
and instead refer to what a program really does here, i.e. create something new
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the same existential, since this will induce a cycle. It is effectively as if elements
have a ‘history’ represented by the chain of pairs that they inherit from the
element that created them and which also contains their own origin. An element
will therefore not generate new elements in a function with the existential that
created it, and not if the function for the existential created an element that it
depends on for its existence, or that is in its ‘history’.

4.5 Termination Condition

The final component necessary for the algorithm to work is a termination con-
dition. Unlike a tableau, this algorithm will run on a loop and will actually
attempt to directly realize the ontology. How then do we know that the algo-
rithm has correctly realized all of the axioms? This is actually rather simple. If
the algorithm begins an iteration of checking all axioms with initial state I∗a and
ends this iteration with state I∗b without encountering any unresolvable clashes,
then we know it can terminate successfully if I∗a = I∗b . Since we know that each
I∗ represents a possible interpretation, it is clear that I∗ is a model when no
clash occurs after every axiom is checked and all elements remain the same in
all expressions.

Definition 7. A partial interpretation I∗ is said to equal partial interpretation
I∗′, or I∗ = I∗′, iff ∀E ∈ NC ∪NR we have EI∗

= EI∗′
.

Equality can be verified by checking if the names in the signature have not
changed any of their memberships. If an element has been added to the signature,
or has moved into or out of any class or role, the algorithm must check the axioms
one more time to see if these changes cause side effects. Otherwise the algorithm
will have checked every axiom and found them to be satisfiable without making
any changes and has produced a model.

4.6 Algorithm Definition

An outline of Emi is shown in Algorithm 1 that uses functions from Table 4.

Backtracking Explicit backtracking in this algorithm is handled by ‘reporting’
clashes and unresolvable clashes.

Definition 8. A report for Algorithm 1 immediately terminates execution of
whatever process is occurring and returns to the function that handles this report.

A report is meant to act like a programming exception. For example, when an
unresolvable clash is directly reported while evaluating the ABox the behavior
is clear, the ontology is unsatisfiable so all reasoning stops and the algorithm
immediately exits by returning False.

Standard clashes occur when the inverted tableau rules require an action
that is known to be inconsistent, but which could potentially be resolved by
making changes elsewhere. In this case the immediate action is to stop trying the
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obviously inconsistent task and instead do something different. This type of clash
is normally handled in Emi by the code that solves the inverted tableau rules in
the same way that a standard tableau might. However, there are cases where the
sat function must intervene, for instance when the antecedent of an axiom can
neither lack nor contain an element and both assignments have been attempted
to exhaustion. In this case we have indirectly found an unresolvable clash. If a
clash is reported but is able to be resolved, the algorithm merely proceeds along
as normal, and any problems that a removal causes will themselves be reported
and dealt with in the same way. Emi internally ensures that backtracking does
not return to an identical previous program state so that termination is not
a concern. ABox expansion greatly impacts this functionality by automatically
removing many impossible solutions from consideration, allowing these reports
to happen faster.

Parallelization Because we are not working with one single expanded concept
representing the entire set of axioms like a standard tableau, it is possible in this
algorithm to parallelize many operations on separate axioms. In the simplest
case, it is unproblematic for the algorithm to process more than one axiom at
the same time so long as they do not share any class or role names. Clashes that
occur as a result of two independent axioms will in either case still be detected
elsewhere and are dealt with regardless of the ordering. Additionally, this idea
can be extended in the implementation to allow for axioms that share names
to be evaluated concurrently as well, so long as shared names are not modified
in ways that can cause a clash and begin backtracking. Emi makes use of the
simplest case already and the implementation of more complex parallelization is
in development.

Table 4. sat function behavior for ALCH satisfiability of ontology O, class name A,
class expressions B,C, and roles R,S

Axiom Action

A(a) If a ∈ AI∗
m report an unresolvable clash, otherwise add a to AI∗

and AI∗
m

¬A(a) If a ∈ AI∗
m report an unresolvable clash, otherwise add a to AI∗

m

B(a) Add a new class A and the axiom A ⊑ B to O and replace B(a) with A(a)

R(a, b) If (a, b) ∈ RI∗
m report an unresolvable clash, otherwise add (a, b) to RI∗

and RI∗
m

¬R(a, b) If (a, b) ∈ RI∗
m report an unresolvable clash, otherwise add (a, b) to RI∗

m

B ⊑ C

For all x ∈ BI∗
add x to C using the inverted tableau expansion rules.

If a clash is reported, instead bactrack to remove x from B.

If both report a clash, report an unresolvable clash.

B ≡ C Do sat(B ⊑ C) and sat(C ⊑ B) and report any unresolvable clashes.

R ⊑ S
For all (x, y) ∈ RI∗

add (x, y) to S. If a clash is reported, instead backtrack to

remove (x, y) from R. If both report a clash, report an unresolvable clash.
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Algorithm 1: ALCH satisfiability for ontology O

Result: A realization that is a model of O when True, otherwise False
when an unresolvable clash occurs

// Initialize an empty set to represent a realization for O
I∗ ← {};
// Assume all E/Em/Em are empty and add them to I∗
for E ∈ NC ∪NR do

E ← {};
Em ← {};
Em ← {};
I∗ ← I∗ ∪ {E,Em, Em};

// Obtain NNF of all axioms

F ← NNF of ABox of O;
A ← NNF of TBox of O;

// Process ABox

for F ∈ F do
sat(F );

if an unresolvable clash is reported then
return False

// Process TBox

repeat
I∗old ← I∗;
for A ∈ A do

sat(A);

if an unresolvable clash is reported then
return False

until I∗ = I∗old;
return True

4.7 Correctness

The correctness of this algorithm follows from the direct correspondence between
the tableau rules and their inversions along with a few minor details. First we
will examine the inverted tableau rules. Each rule contains two distinct states
in both the standard and inverted rules, the antecedent ‘if’ clause where certain
conditions must hold, and the consequent ‘then’ clause where changes are made
to the state in order to find a model. Thus it will be sufficient to show that
each ‘if’ and ‘then’ clause from the inverted tableau rules is re-writable into the
corresponding clause in the standard tableau rules.
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⊓-rule
‘if’ This state in the inverted tableau rules corresponds to the standard

tableau rules, since in each case we know x should be in C ⊓D, but it is
either not in C or D or both.

‘then’ The change made in response to the ‘if’ clause is also equivalent, since
the inversion adding x to CI∗

andDI∗
represents the notion that we now

have x ∈ CI∗
and x ∈ DI∗

which is identical to the standard tableau
rules adding {C,D} to L(x).

⊔-rule
‘if’ This state in the inverted tableau rules corresponds to the standard

tableau rules, since in each case we know x should be in C ⊔D, but it is
neither in C nor in D.

‘then’ The change made in response to the ‘if’ clause is also equivalent, since
the inversion adding x to CI∗

or DI∗
represents the notion that we now

have x ∈ CI∗
or x ∈ DI∗

which is identical to the standard tableau rules
either adding {C} to L(x) or adding {D} to L(x).

∃-rule
‘if’ This state in the inverted tableau rules corresponds to the standard

tableau rules, since in each case we know x should be in ∃R.C, but the
current state means that there is either no (x, y) ∈ R such that y ∈ C
or there is no y ∈ C such that (x, y) ∈ R. The blocking condition (3)
only applies when x is blocked because it is a new individual that exists
as a (possibly indirect) result of an element previously created to satisfy
this expression. When x is blocked in this way it is clear that we have
completed the first iteration of a cycle and do not need to continue.

‘then’ The change made in response to the ‘if’ clause is also equivalent, since the
inversion creating some y such that y ∈ CI∗

and (x, y) ∈ RI∗
represents

the notion that x ∈ ∃R.C, which is identical to the standard tableau rules
creating a new node and edge for y with L(y) = {C} and L((x, y)) = R.

∀-rule
‘if’ This state in the inverted tableau rules corresponds to the standard

tableau rules, since in each case we know x should be in ∀R.C, but the
current state means that there is some y such that (x, y) ∈ R and y ̸∈ C.

‘then’ The change made in response to the ‘if’ clause is also equivalent, since
the inversion adding every y to CI∗

wherever (x, y) ∈ RI∗
represents the

notion that x ∈ ∀R.C, which is identical to the standard tableau rules
adding {C} to any y so that L(y) = {C}.

The only remaining thing to discuss is that Algorithm 1 and the sat func-
tion are sound and complete. For this it is simple to outline without a lengthy
proof, since as we mentioned previously, the sat functions will test all elements
in all expressions with the tableau expansion rules, exactly as you would have
in a tableau. It is unnecessary and in fact unhelpful in this algorithm to com-
bine all expressions into a connected whole since each axiom is itself evaluated
consistently.

The subsumption axioms are solved in such a way that they implicitly com-
pute a class and role hierarchy, so any inference dependent on a hierarchy will
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still be entailed. Next, the stop condition of Algorithm 1 when the interpretation
has not changed is identical with a completed tableau that no longer requires
expansion or backtracking since both are models. And of course all cases where
unresolvable clashes can occur are sound because they indicate instances where
an element simultaneously must be in and must not be in an expression so the
algorithm should terminate. As for completeness, it is again clear that whenever
an unresolvable clash occurs it is identical with a case when a tableau discovers
a clash but cannot backtrack to correct it.

5 Evaluation

The implementation of the Emi reasoner is evaluated against other popular
JVM reasoners such as Hermit6, Pellet7, and jFact8 [4,7,8] using Leiningen9,
which can run Clojure as well as Java programs. 500 ontologies were randomly
sampled, half from ODPs and Biomedical ontologies in [3], and half from the
Ontology Reasoner Evaluation 2015 competition dataset. These files were altered
by removing any axiom that is not expressible in ALCH for testing. Among
the 500 ontologies, 56 of them either timed out on all reasoners or caused our
evaluation program to crash in some unexpected way due to lack of heap. It is
not entirely clear from our logs which reasoner may be breaking in this way so
we omit them, though we are confident that Emi has no heap issues or memory
leaks (it is quite difficult to even intentionally create memory leaks with Clojure)
and it can load all files by itself without error.

All testing was done on a computer running Ubuntu 20.04.1 64-bit with an
Intel Core i7-9700K CPU@3.60GHz x 8, 47.1 GiB DDR4, and a GeForce GTX
1060 6GB/PCIe/SSE2.

5.1 Results

Testing and development is ongoing for the Emi reasoner and these results are a
first example of the potential for this type of algorithm. A preliminary example
of the reasoning time can be found in Figure 1. In this example, 3 tests are per-
formed and timed on each reasoner: initialization from a file in memory shown
in Figure 2, satisfiability and consistency checking shown in Figure 3, and re-
trieval of the elements in all non-empty class and role names after reasoning has
completed shown in Figure 4.10 Each test was given a timeout of 5 minutes, and
when a test timed out more than 5 tests in a row for a reasoner it was prevented
from testing again on the same file to save time in the evaluation. Across all
tests, when we compare the percent difference between the reasoner time and
the average time for all reasoners we see that Emi is overall 9.8% faster than

6 Hermit Version 1.4.5.519
7 Openllet Version 2.6.5
8 jFact Version 5.0.3
9 https://leiningen.org/

10 Raw data and charts are available for inspection https://tinyurl.com/kgswc2023

https://leiningen.org/
https://tinyurl.com/kgswc2023


14 Aaron Eberhart, Joseph Zalewski, Pascal Hitzler

average, Hermit is 4.2% slower than average, Pellet is 42.3% faster than average,
and jFact is 55.9% slower than average. No reasoner was ever more than 100%
better than average or 300% worse than average. Emi, Hermit, and Pellet each
had 2 files when they failed due to an exception, while jFact failed on 70 files,
though this is largely due to an issue it has with anonymous individuals in the
ORE dataset.

As you can see in Figures 2 and 3, the Emi reasoner has a relatively slow
initialize time and time for satisfiability on small ontologies. This is partially due
to the fact that Emi solves all ABox axioms without complex expressions while it
loads the ontology. This allows it to preemptively reject any naively unsatisfiable
ABox, and the cost of this is usually only a few milliseconds. Emi seems to scale
better than other systems and its performance improves in comparison as the
number of axioms increases. Also, Emi is definitively faster in every single test
when asked to compute the elements of all non-empty classes and roles, except
the two tests where it had a timeout when computing satisfiability. Emi finishes
reasoning with this information already computed, it is in effect computing both
things at once, and only needs a variable amount of time to answer in our tests
because it has to sort out the anonymous elements from every expression for
comparison with the other reasoners where these elements are hidden by the
OWL API [5]. Otherwise it could answer this in constant time.

Looking more closely at the data, there are three large clusters at 163, 325,
and approximately 5500 axioms due to the synthetic ontologies in the ORE
dataset. As you can see, all reasoners appear to behave similarly across multiple
files of the same size in the clusters. Except for these clusters there appears to
be a mostly stochastic distribution in the performance of each reasoner across
different files with jFact doing great on small files but not scaling well, while
Hermit, Pellet, and Emi start off a bit slower and seem to scale much better on
very large files.

An interesting pattern we have noticed in the evaluation is that Emi usu-
ally outperforms other reasoners when it checks large ontologies with empty or
nearly-empty ABoxes. This case makes sense when you notice that in ALCH,
as long as all axioms do not contain either negation or Top in the antecedent,
there will always be a model where every predicate is empty. This is the default
state when Emi starts, so it simply checks everything and the initial realization
turns out to be fine after the first iteration.

6 Future Work

In the future there is quite a bit of work left to finalize and sufficiently verify
Emi. These improvements will be ongoing as part of any new extensions. Paral-
lelization in particular will likely prove difficult to formally pin down, though em-
pirically its use is not as yet seeming to be problematic when comparing against
the behavior of other reasoners. Some obvious extensions that are planned for
the near future are inverse roles, nominals, and cardinality expressions which
can work quite directly with some of the already existing code. Role chains are
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Fig. 1. All Reasoning Tests
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Fig. 2. Initialize

# Axioms, log scale

Ti
m

e 
(m

s)
, l

og
 s

ca
le

0

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Emi Hermit Pellet jFact

Fig. 3. Satisfiability
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Fig. 4. Non-Empty Classes and Roles

another interesting and useful addition we are considering, though these will be
difficult to implement efficiently so we will be cautious.

An interesting observation we have made while considering extensions is that
some of the common difficulty with nominals in reasoning may turn out to be
trivial in many cases for the Emi algorithm because nominals are not necessar-
ily connected to anything as long as we maintain sufficient information about
(in)equality. Once this is implemented and our hypothesis is checked it would
also be straightforward to extend nominals to nominal schemas, since Emi does
not normalize or pre-process away the original axioms. Initial testing suggest
there is an intuitive way to bind nominal variables within axioms to solve this
directly as Emi reasons.

Acknowledgement This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-18-1-0386.
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