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Abstract

A significant and recent development in neural-
symbolic learning are deep neural networks that
can reason over symbolic knowledge bases (KBs)
and perform scalable reasoning tasks. Initial
neural-symbolic systems that can deduce the en-
tailment of a KB have been presented, but they
are theoretically and practically limited: current
systems learn fact relations and entailment pat-
terns specific to a particular KB and hence do not
truly learn to reason, and must be retrained for
each KB they are tasked with entailing. To ad-
dress this generalization limitation, we propose a
differentiable end-to-end deep memory network
that learns over abstract, generic symbols to dis-
cover entailment patterns common to any reason-
ing task. A key component of the system is a
simple but highly effective normalization process
for continuous representation learning of KB enti-
ties within memory networks. Our results show
how the model, trained over a set of KBs, can
effectively entail facts from test KBs, even when
the domain of test KBs is completely different
from the training KBs.

1. Background

With the recent revival of interest in artificial neural net-
works, they have been applied vastly for the completion
of KBs. These methods (Chang et al., 2014; Nickel et al.,
2012; Riedel et al., 2013; Socher et al., 2013; Toutanova
et al., 2015; Trouillon et al., 2016; Yang et al., 2014) heav-
ily rely on the subsymbolic representation of entities and
relations learned through maximization of a scoring objec-
tive function over valid factual triples. Thus, the current
success of such models hinges primarily on the power of
those subsymbolic continuous real-valued representations in
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encoding the similarity/relatedness of entities and relations.
Recent attempts have focused on neural multi-hop reasoners
(Das et al., 2016; Neelakantan et al., 2015; Peng et al., 2015;
Shen et al., 2017; Weissenborn, 2016) to equip the model to
deal with more complex reasoning. More recently, a Neural
Theorem Prover (Rocktidschel & Riedel, 2017) has been
proposed in an attempt to take advantage of both symbolic
and sub-symbolic reasoning.

Despite their success, the main restriction common to neu-
ral reasoners is that they are unable to generalize to new
domains. This inherent limitation follows from both the
representation functions used and the learning process. The
major issue comes from the mere reliance of these models
on the representation of entities learned during the train-
ing or in the pre-training phase stored in a lookup table.
Consequently, these models have difficulty to deal with
out-of-vocabulary(OOV) entities. Although the small-scale
OOV problem has been addressed in part in the natural
language processing (NLP) domain by taking advantage
of character-level embedding (Ling et al., 2015), learning
embeddings on the fly by leveraging text descriptions or
spelling (Bahdanau et al., 2017), copy mechanism (Eric &
Manning, 2017) or pointer networks (Raghu et al., 2018),
still these solutions are insufficient for transferring purposes.
(Talman & Chatzikyriakidis, 2018) shows the success of
natural language inference (NLI) methods is heavily bench-
mark specific. An even greater source of concern is that
reasoning in most of the above sub-symbolic approaches
hinges more on the notion of similarity and geometric-based
proximity of real-valued vectors (induction) as opposed to
performing transitive reasoning (deduction) over them. In
short, to the best of our knowledge, to date, there is no
sub-symbolic reasoning work, which is able to transfer the
learning capability from one KB to unseen one. In fact, since
previous works have focused to conduct reasoning on the
unseen part of the same KB, they have tried to gain general-
ization ability through induction and robustness to missing
edges(Guu et al., 2015) as opposed to deduction. Likewise,
recent years have seen some progress in zero-shot relation
learning in sub-symbolic reasoning domain(Neelakantan
et al., 2015; Rocktischel et al., 2015; Xiong et al., 2017).
Zero-shot learning refers to the ability of the model to infer
new relations where that relation has not been seen before in
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training set(Bordes et al., 2011). This generalization capa-
bility is still quite limited and fundamentally different from
our work in terms of both methodology and purpose.

Inspired by these observations, we take a different approach
by investigating the emulation of deductive symbolic rea-
soning using memory networks. Memory networks (Weston
et al., 2014) are a class of learning models capable of con-
ducting multiple computational steps over an explicit mem-
ory component before returning an answer. They have been
recently applied successfully to a range of NLP tasks such
as question answering (Hill et al., 2015; Sukhbaatar et al.,
2015), language modeling (Sukhbaatar et al., 2015), and di-
alogue tasks (Bordes et al., 2016; Dodge et al., 2015). End-
to-end memory networks (MemN2N) (Sukhbaatar et al.,
2015) are a less-supervised, more general version of these
networks, applicable to the settings where labeled support-
ing memories are not available. We have selected such
networks since we believe that they are a primary candidate
to perform well for deductive logical entailment. Their se-
quential nature corresponds, conceptually, to the sequential
process underlying some deductive reasoning algorithms.
The attention modeling corresponds to pulling only rele-
vant information (logical axioms) necessary for the next
reasoning step. And their success in NLI is also promis-
ing: while NLI does not follow a formal logical semantics,
logical deductive entailment is nevertheless akin to some
aspects of natural language reasoning. Besides, as attention
can be traced over the run of a memory network, we will
furthermore get insights into the “reasoning” underlying the
network output, as we will be able to see which pieces of
the input KB are taken into account at each step.

The main contribution of this paper, however, is a recipe
involving a simple but effective KB triple normalization
before learning their representation within a MemN2N. To
perform logical inference in more abstract level, and thereby
facilitating the transfer of reasoning expertise from one KB
to another, the normalization maps entities and predicates
in a knowledge to a generic vocabulary. Facts in additional
KBs are normalized using the same vocabulary, so that the
network does not learn to overfit its learning to entity and
predicate names in a specific KB. This emulates symbolic
reasoning by neural embeddings as the actual names (as
strings) of entities from the underlying logic such as vari-
ables, constants, functions, and predicates are insubstantial
for logical entailment in the sense that a consistent renaming
across a theory does not change the set of entailed formulas
(under the same renaming). Thanks to the term-agnostic fea-
ture of our representation, we are able to create a reasoning
system capable of performing reasoning over an unseen set
of vocabularies in the test phase.

2. Problem Formulation

We wish to train a neural model that will learn to reason
over one set of theories, and can then transfer that learning
to new theories over the same logic. One of the key obsta-
cles we face with our task is to understand how to represent
training and test data. To use standard neural approaches,
symbols will have to be represented over the real coordinate
space R as vectors (points), matrices or tensors. Many em-
beddings for KBs have been proposed (Bordes et al., 2013;
Lin et al., 2015; Trouillon et al., 2016; Wang et al., 2014),
but we are not aware of an existing embedding that captures
what seems important for the deductive reasoning scenario.
Indeed, the prominent use case explored for KB embeddings
is not deductive in nature; rather, it concerns the problem
of the discovery or suggestion of additional links or edges
in the graph, together with appropriate edge labels. In this
link discovery setting, the actual labels for nodes or edges
in the graph, and as such their commonsense meanings, are
likely important, and most existing embeddings reflect this.
However, for deductive reasoning the names of entities are
insubstantial and should not be captured by an embedding.
Another inherent problem in the use of such representations
across KBs is the OOV problem. While a word lookup table
can be initialized with vectors in an unsupervised task or
during training of the reasoner, it still cannot generate vector
representations for unseen terms. It is further impractical to
store the vectors of all words when vocabulary size is huge
(Ling et al., 2015). Similarly, memory networks usually
rely on word-level embedding lookup tables, i.e., learned
with the underlying rationale that words that occur in sim-
ilar supervised scenarios should be represented by similar
vectors. That is why they are known to have difficulties
dealing with OOV, as a word lookup table cannot provide a
representation for the unseen, and thus has difficulty to do
NLI over new words (Bahdanau et al., 2017), and for us this
would pose a challenge in the transfer to new KBs.

We thus need representations that are agnostic to the terms
used as primitives in the KB. To build such a representa-
tion, we use syntactic normalization: a renaming of primi-
tives from the logical symbols to a set of predefined entity
names that are used across different normalized theories.
By randomly assigning the mapping for the renaming, the
network’s learning will be based on the structural informa-
tion within the theories, and not on the actual names of the
primitives. Note that this normalization not only plays the
role of “forgetting” irrelevant label names, but also makes
it possible to transfer learning from one KB to the other.
Indeed, the network can be trained with many KBs, and
then subsequently tested on completely new ones.
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Figure 1. Diagram of the proposed model, for K=1 ’
3. Model Architecture describes the computation within a single hop. The inter-

We consider a model architecture that adapts the MemN2N
with fundamental alterations necessary for abstract reason-
ing. A high-level view of our model is shown in Figure 1.
It takes a discrete set G of normalized RDFS statements
(called triples) t1, ..., t,, that are stored in memory, a query
g, and outputs a “yes” or “no” answer to determine if ¢ is
entailed by G. Each of the normalized ¢; and ¢ contains sym-
bols coming from a general dictionary with V' normalized
words shared among all of the normalized RDFS theories in
both training and test sets. The model writes all triples to
the memory and then calculates a continuous embedding for
G and ¢q. Through multiple hop attention over those continu-
ous representations, the model then classifies the query. The
model is trained by back-propagation of error from output to
the input through multiple memory accesses. More Specifi-
cally, the model is augmented with an external memory that
stores the embeddings of the normalized triples in our KB.
This memory is defined as an n x d tensor where n denotes
the number of triples in the KB and d is the dimensionality
of the embeddings. The KB is stored in the memory vectors
from two continuous representations of m,; and c; obtained
from two input and output embedding matrices of A and C
with size d x V where V is the size of vocabulary. Similarly,
the query ¢ is embedded via a matrix B to obtain an internal
state u. In each reasoning step, those memory slots useful
for finding the correct answers should have their contents
retrieved. To enable this, we use an attention mechanism for
@ over memory input representations by taking an internal
product followed by a softmax:

p; = Softmax(u” (m;)) (1)
Equation (1)calculates a probability vector p over the mem-
ory inputs, the output vector o is computed as the weighted
sum of the transformed memory contents c; with respect to
their corresponding probabilities p; by o = >, p;c;. This

nal state of the query vector updates for the next hop as
uF*tt = uF + oF. The process repeats K times where K is
the number of computational hops. The output of the K **
hop is used to predict the label a by passing o® and u
through a weight matrix of size V' x d and a softmax:

a = Softmax (W (uf+1)) = Softmax(W (u* + o*)).

Figure 1 shows the model for K = 1. The parameters to be
learned by backpropagation are A, B, C, and W matrices.

Memory Content An RDFS KB is a collection of state-
ments stored as triples (el, r, e2) where el and e2 are called
subject and object, respectively, while r is a relation binding
el and e2 together. Every entity in an RDFS KB is rep-
resented by a unique Universal Resource Identifier (URI).
We normalize these triples by systematically renaming all
URIs which are not in the RDF or RDFS namespaces as
discussed previously. Each such URI is mapped to a set of ar-
bitrary strings in a predefined set A = {ay, ..., a, }, where
n is taken as a training hyper-parameter giving an upper
bound for the largest number of entities in a KB the system

will be able to handle. Note that URIs in the RDF/RDFS
namespaces are not renamed, as they are important for the

deductive reasoning according to the RDFS model-theoretic
semantics. Consequently, each normalized RDFS KB will
be a collection of facts stored as triples {(a;, a;, ax)}

It is important to note that each symbol is mapped into an
element of A regardless of its position in the triple. Yet
the position of an element within a triple is an important
feature to consider. Thus we employ a positional encoding
(PE) (Sukhbaatar et al., 2015) to encode the position of each
element within the triple. Each memory slot thus represents
the positional-weighted summation of each triplet. The

PE ensures that the order of the elements now affects the
encoding of each memory slot m;.
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Training Dataset Test Dataset Our moﬁglc urac}l;aseline
OWL-Centric Linked Data 96 43
OWL-Centric(90%) OWL-Centric (10%) 90 82
OWL-Centric OWL-Centric Test Set - 69 61
OWL-Centric Synthetic Data 52 48

* Completely Different Domain.
Table 1. Experimental results of the proposed model

4. Evaluation

Dataset We have collected RDFS datasets from the
Linked Data Cloud' and the Data Hub?.Our training set
(“OWL-centric”) is comprised of a set of RDFS KBs each of
size 1,000 triples, sampled from populating around 20 OWL
ontologies with different data. In order to test our model’s
ability to generalize to completely different datasets, we

have collected another dataset called the OWL-Centric Test
Set. To assure our evaluation represents real-world RDFS

data completely independent of the training data, we have
used almost all RDFS KBs listed in (Sam et al., 2018); we
call this the Linked Data test set. Furthermore, to test the
limitations of our model on artificially difficult data, we
have created a small synthetic dataset which requires long
reasoning chains if done with a symbolic reasoner. For each
KB we have created the finite set of inferred triples using
the Apache Jena® API. These inferred triples comprise our
positive class instances. We generated non-inferred triples
by random permutation of triple entities and removing those
triples which were entailed.

Results Trainings were done over 10 epochs using the
Adam optimizer with a learning rate of n = 0.005, a
learning rate decay of 1/2, and a batch size of 100 over
triples. All embeddings are vectors of size 20. We have
used K = 10. Adjacent weight sharing was used where the
output embedding of one layer is the input embedding of the
next one. All the weights are initialized by a Gaussian distri-
bution with ;x = 0 and ¢ = 0.1. Here we report the average
accuracy over all the KBs in the test set, obtained for both
valid and invalid sets of triples. We have considered the non-
normalized embedding version of our memory network as a
baseline. Our technique shows a significant advantage over
the baseline as shown in Table 1. A further even more impor-
tant benefit of using our normalization model is its training
time. In fact, this considerable time complexity difference
is the result of the remarkable size difference of embedding
matrices in the original and normalized cases. For instance,
the size of embedding matrices to be learned by our algo-
rithm for the normalized OWL-Centric dataset is 3, 033 x 20
as opposed to 811, 261 x 20 for the non-normalized one (and
1,974,062 x 20 for Linked Data which is prohibitively big).
That has caused a remarkably high decrease in training time
and space complexity. In case of the OWL-Centric dataset,
for instance, the space required for saving the normalized
model is 80 times less than the intact model. Likewise, the

normalized model is almost 40 times faster to train than the
non-normalized one for this dataset. Hence, the importance

of using normalization cannot be emphasized enough.

"https://lod-cloud.net/
2https://datahub.io/
3https://jena.apache.org/
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Figure 2. PCA projection of embeddings for the whole vocabulary

General Embeddings Visualization We have plotted a
Principal Component Analysis (PCA) two-dimensional vec-
tor visualization of embeddings computed for the RDF(S)
terms and all normalized words in the KBs, in Figure 2.
The embeddings were fetched from the matrix B (embed-
ding query lookup table) in the hop 1 of our model trained
over the OWL-Centric dataset. Words are positioned in
the plot based on the similarity of their embedding vectors.
As anticipated, all the normalized words tend to form one
cluster as opposed to multiple ones. The PCA projection
illustrates the ability of our model to automatically orga-
nize RDF(S) concepts and learn implicitly the relationships
between them. For instance, rdfs:domain and rdfs:range
have been located very close together and far from nor-
malized entities. rdf:subject, rdf:predicate and rdf:object
vectors are very similar, and the same for rdf:seesAlso and
rdf:isDefinedBy. Likewise, rdfs:container, rdf:bag, rdf:seq,
and rdf:alt are in the vicinity of each other.

5. Conclusions and Future Work

We have demonstrated that a deep learning architecture
based on memory networks and pre-embedding normaliza-
tion is capable of learning how to perform deductive reason-
ing over previously unseen RDFS KBs with high accuracy.
We believe that we have thus provided the first deep learning
approach that is capable of high accuracy RDFS deductive
reasoning over previously unseen KBs. Normalization ap-
pears to be a critical component for high performance of
our system. This obviates the need for supervised retraining
over the task of interest or unsupervised pretraining over
the external source of data for learning the representations
when encountered with a new KB. It also provides insights
into representation learning for rare or OOV words, transfer
learning, zero-shot learning, and domain adaptation in the
reasoning domain. We plan to properly investigate scalabil-
ity of our approach and to adapt it to other, more complex,
logics.
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