
A Method for Automatically Generating Schema
Diagrams for OWL Ontologies

Cogan Shimizu1, Aaron Eberhart1, Nazifa Karima1, Quinn Hirt1, Adila
Krisnadhi2, and Pascal Hitzler1

1 Data Semantics Laboratory, Wright State University, Dayton, OH, USA
2 Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

Abstract. Interest in Semantic Web technologies, including knowledge
graphs and ontologies, is increasing rapidly in industry and academics. In
order to support ontology engineers and domain experts, it is necessary
to provide them with robust tools that facilitate the ontology engineering
process. Often, the schema diagram of an ontology is the most important
tool for quickly conveying the overall purpose of an ontology. In this
paper, we present a method for programmatically generating a schema
diagram from an OWL file. We evaluate its ability to generate schema
diagrams similar to manually drawn schema diagrams and show that it
outperforms VOWL and OWLGrEd. In addition, we provide a prototype
implementation of this tool.

1 Introduction

Engineering an ontology is a complex and time-consuming process [15]. Providing
a broad and sophisticated set of tools and methodologies to support ontology
engineers can help mitigate these factors. This method is part of an overall thrust
at improving the ontology engineering process. Specifically, we focus on so-called
Modular Ontology Modelling

In this paper we describe an algorithm that generates a schema diagram
from an OWL file and evaluate a corresponding prototype implementation. The
evaluation shows that our approach is superior to the related visualization tools
WebVOWL3[14] and OWLGrEd4[2] specifically for the type of schema diagrams
that we have found to be most useful. Our prototype tool, SDOnt, is publicly
available online.5

A schema diagram is a commonly used and invaluable tool for both under-
standing and developing ontologies. A survey we conducted shows that it ranks
among the most important components in the documentation of an ontology
[11]. Schema diagrams provide a view, albeit limited, of the structure of the
relationships between concepts in an ontology. Frequently, a schema diagram is
generated manually during the design phase of the engineering process. At that

3 http://vowl.visualdataweb.org/
4 http://owlgred.lumii.lv/
5 http://dase.cs.wright.edu/content/sdont



time the diagram is a conceptual, mutable document. After the schema diagram
has been created, an OWL file is created to model the diagram with OWL axioms
which precisely capture its semantics. We call this a diagram-informed OWL file.
As we discuss in Section 5, this method may lead to unforeseen problems, e.g.
whether an OWL file faithfully represents its diagram. A tool that generates
a schema diagram programmatically allows for ontology engineers to create an
OWL-informed diagram. Additionally, it would provide a mechanism by which
schema diagrams may be easily updated in the case of a newer versioned OWL
file.

In this paper, we describe our method for generating schema diagrams from
OWL files. The programmatically generated schema diagrams visualize the same
information as those that are manually generated following a specific visualiza-
tion paradigm which we found to be most effective in practice. We evaluate its
effectiveness by comparing it to two existing OWL visualization tools, VOWL
and OWLGrEd. We would like to note that for now we are ignoring layout ques-
tions; we consider only the question of what content should be in a graph. We
intend to explore layout issues in follow-up work.

The rest of the paper is organized as follows. Section 2 describes existing visu-
alization tools and how they differ from our method and tool. Section 3 describes
the process of schema diagram generation. Section 4 gives a very brief description
of our implementation and our method. Section 5 evaluates our method, details
possible points of improvement, and discusses the results. Finally, in Section 6
we conclude and outline our next steps and future work.

2 Related Work

Visualization is critical to understanding the purpose and content of an ontology
[4, 5, 11]. There are many tools that provide visualization capabilities. We are
interested in how meaningfully they construct a visualization, rather than the
details of their implementations. For instance, many of these tools offer some sort
of interactivity, such as drag and drop construction and manipulation or folding
for dynamic exploration. This differs from our intent to provide a method for
constructing a diagram that portrays the relationships between concepts. Our
approach also does not provide specific support for visualizing an ABox; our
emphasis is on supporting the creation and use of schema diagrams.

Below, we have selected for comparison a few tools that are representative in
their functionality. For a more complete survey see [6]. VOWL and OWLGrEd
were chosen for comparison to our method. They are described in Section 5.

NavigOWL6 is a plugin for the popular tool Protégé7. NavigOWL provides a
graph representation of the loaded ontology such that the representation follows
a power-law distribution, which is a type of force-directed graph representation.
It also provides a mechanism for filtering out different relational edges while
exploring an ontology [1]. This tool is not supported in the current version of

6 http://home.deib.polimi.it/hussain/navigowl/
7 https://protege.stanford.edu/



Protégé.8 It is particularly well suited to visualizing the ABox, which is outside
the scope of our intent and method.

OWLviz is also a Protégé plugin. It generates an IS-A hierarchy for the loaded
ontology rooted with the concept owl:Thing. OWLviz displays only subclass re-
lations between concepts and does not extract properties from those axioms.
Hovering over the nodes in the graph representation provides axioms related to
the class represented by that node. This plugin is not supported by the current
version of Protégé. The lack of relational specificity per edge is non-ideal for our
purposes. Furthermore, information accessible only through interaction is not
desired in a reference diagram.

TopBraid Composer is a standalone tool similar in functionality to Protégé
with OWLviz; it is developed, maintained, and sold by TopQuadrant, Inc.9 There
is no free version for academic purposes.

OntoTrack is a standalone tool for visualizing the subsumption hierarchy
of an ontology rooted at owl:Thing. Properties are not extracted from axioms
and used to label edges. The tool only supports ontologies in the deprecated
OWL-Lite− and automatically augments the visualization with subsumptions
found with the reasoner RACER10 [13]. Between the limitations on OWL and
the interactivity, this tool is not strictly suitable for creating schema diagrams.

MEMO GRAPH was developed to be a memory prosthesis for users suffering
from dementia [6]. As such, it is particularly focused on representing the relations
between family members. It is not currently available for public use.

RDF Gravity is a standalone tool that provides a visualization for an ontology
via graph metrics. The tool generates a force-directed graph representation of
the underlying ontology. We could not find any data on how it handles blank
nodes, represents class disjointness, and other non-graph metrics, as, at time of
this writing, the tool is unavailable, no publication on its method can be found,
and it seems to be survived only by screenshots. We include this entry for the
sake of completeness.

OntoGraf 11 is a plugin for Protégé that supports interative navigation through
OWL ontologies. In particular, it allows the user to navigate and filter rela-
tionships and nodes based on certain criteria (e.g. subclass, individuals, do-
main/range object properties, and equivalence). OntoGraf is not supported on
newer versions of Protégé (5.0+).

In all, we note that there are many tools for visualizing ontologies, however
many of them older and no longer supported or provide only limited support past
graph-metric data, which in our experience is insufficient for conveying the pur-
pose of an ontology. It also seems that out of this general line or research, VOWL
and its associated tools (e.g., WebVOWL) emerged as the prominent paradigm
- yet a paradigm that addresses different use cases than those of concern for us.

8 https://protegewiki.stanford.edu/wiki/NavigOWL
9 https://www.topquadrant.com/products/

10 https://www.ifis.uni-luebeck.de/index.php?id=385
11 https://protegewiki.stanford.edu/wiki/OntoGraf



3 Method

A schema diagram does not necessarily aim to represent all information encoded
in an ontology. As mentioned in Section 2, there are several tools that attempt
to do so, in particular, VOWL and OWLGrEd. However our experiences with
ontology modeling with domain experts from many different fields shows us that
it is necessary to strike a good balance between complexity and understandabil-
ity. In fact, in these collaborations we gravitate towards diagrams that merely
capture classes and the relationships between them. This omits most semantic
aspects such as whether a relationship between classes does or does not indicate
domain or range restrictions or even more complex logical axioms. We find that
the exact semantics are better conveyed using either natural language sentences
or logical axioms (preferably in the form of rules [17]) in conjunction with a very
simplified diagram.

Typically, we create ontologies by first drawing schema diagrams with do-
main experts and then capturing the exact logical axioms that constitute the
ontology. In this paper we reverse the process: start with the logical axioms and
automatically derive the schema diagrams.12 We do this to help us to deal with
ontologies constructed by others for which no suitable schema diagrams are pro-
vided. As we will see later in Section 5, our visualization approach can also be
helpful in finding errors in OWL files or in manually drawn schema diagrams.

To maximize information and minimize clutter we define some guidelines:

– All classes inherit from owl:Thing, so it is unhelpful to clutter a diagram with
subclass edges from concepts to owl:Thing.

– We do not represent any logical connectives (e.g. disjunction) or complex
axioms (e.g. a domain restriction that contains an intersection) since, in our
experience, this type of information is better conveyed non-visually.

– Disjointness of classes does not need explicit graphical representation. In
most cases, disjointness is immediately clear for a human with some knowl-
edge about the domain.

– Inverse relations are not represented, as they are syntactic sugar for any
relation.

– The ABox [9] is disregarded; instances of classes are not represented.

With these assumptions in mind, we detail our method using the rules below:

Steps 3 and 4 may be omitted if there are no direct domain or range restric-
tions given. However, because there are multiple ways of expressing the same
information in OWL, domain and range may appear in the declarations of the
Object or the Datatype Properties.

In Step 5 it is important to note the differences between logical and schematic
equivalence. Schematic equivalence between two ontologies means they share the

12 At this time, we do not consider owl:Imports as the tool is completely offline.
Additionally, we wish to only generate a schema diagram for those axioms directly
in the OWL file of interest.



1. Create a node for each class in the ontology’s signature.
2. Create a node for each datatype in the ontology’s signature.
3. Generate a directed edge for each Object Property based on its domain and

range restrictions, if such are given. The source of the edge is the Property’s
domain and the target of the edge is the Property’s range.

4. Generate a directed edge for each Datatype Property, in the same manner as
for an Object Property, if domain and range restrictions are present.

5. For each other axiom in the TBox:
Case 1: if the subclass and superclass are atomic, generate a subclass edge
between them.

Case 2: if the axiom is of the forms presented in (1) and (2) below, generate
the associated directed edge.

Case 3: apply rules (3) to (6), as listed below, recursively until the resulting
axiom sets can be handled by Cases 1 and 2.

6. Display.

Fig. 1: The algorithm for generating a schema diagram.

same graphical representation. Consider, for example, the definitions for scoped
domain and range restrictions:

∃R.B v A (1)

A v ∀R.B (2)

Logically, (1) and (2) convey two different meanings. Schematically, though, they

may be represented by the same artifact in a graph: A
R−→ B. Thus we consider

them schematically equivalent. We may also break down more complex axioms
using the rules defined in (3) through (6). These rules hold for both intersection
(u) and union (t). We list only the union versions. Note that not all of these
are logically equivalent transformations.

A v ∀R.(B t C t · · · )⇒


A v ∀R.B

A v ∀R.C
...

(3)

and

∃R.(B t C t · · · ) v A⇒


∃R.B v A

∃R.C v A
...

(4)



(5) and (6) are used only in the union case as shown here. (5) is not a logically
equivalent transformation.

B t C t · · · v A⇒


B v A

C v A
...

(5)

A v B t C t · · · ⇒


A v B

A v C
...

(6)

We may recursively apply (3) through (6) for non-atomic concepts A,B, · · · until
we have reached axioms of the form (1) and (2) or atomic subclass relationships.

The time complexity for this process is minimal. If c is the maximum num-
ber of concepts and datatypes in any axiom in the ontology then there are at
most

(
c
2

)
so-called “simple” axioms that together are schematically equivalent

to the “complex axiom.” Thus, there are at most
(
c
2

)
· n edges to parse per on-

tology, where n is the number of axioms in the TBox, giving our method a time
complexity of O(n). This calculation ignores algorithms for the graph layout.

The goal of our approach is to generate a static schema diagram for a par-
ticular OWL file. However, there are practical limitations. For sufficiently large
number of classes and properties (and connectivity, thereof), nearly any graph
visualization will become essentially unreadable. Indeed, our approach is pri-
marily meant for smaller (i.e. limited number of classes and properties) OWL
files, such as ontology design patterns [7] or ontology modules [12]. For use with
this approach, ontologies of the former variety (many classes, properties, etc.)
should be organized into modules and the tool applied to each module in order
to create a collection of interrelated schema diagrams. In fact, this would likely
result in a better engineered ontology [10].

4 Implementation

Our prototype implementation, SDOnt, is a pipeline consisting of three parts: a
GUI, a parser module, and a rendering module. SDOnt is developed in Java and
provided as an executable JAR file. Ontology manipulations are done using the
OWLAPI. Online we provide the source code, test set, evaluation results, and a
tutorial for the tool’s use.13

The GUI is implemented using Java Swing and serves as an interface for
navigating and loading ontologies into the program. The Ontology Parser is an
implementation of our algorithm as described in Section 3. The parser provides
a set of nodes to the rendering module that represent the classes and datatypes
in the ontology’s signature and the node-edge-node artifacts that represent their
properties, domains, and ranges for the visualization.

13 http://dase.cs.wright.edu/content/sdont



The rendering module takes those node-edge-node artifacts and the node set
and combines them to create the visualization and render it to the screen. The
rendering module utilizes the library JGraphX14 for generating, laying out, and
displaying the schema diagram. JGraphX is an open source library written in
Java for displaying and manipulating graphs. However, the SDOnt code-base has
been written in such a way that any visualization library may be used. That is,
the algorithm is implemented in a modular fashion; an external developer may
code against the SDOnt code-base with no changes necessary to the method.

5 Evaluation

In this evaluation we describe the closest alternatives to SDOnt and their meth-
ods in Section 5.1, the method by which we conduct our evaluation in Section
5.2, our choice of test set in Section 5.3, and discuss the results of our evaluation
in Section 5.4.

5.1 Compared Tools

We evaluate SDOnt by comparison with author supplied visualizations, Web-
VOWL, and OWLGrEd.

Each of the ontologies in our test set, which is outlined in Section 5.3, has a
general visualization provided by the authors. We use these diagrams as a base-
line against which the tools can be judged and assume that these represent the
authors’ best attempt to generalize the semantics of the ontology. However, there
may be some irregularities in the methodologies different authors use to produce
these visualizations. Indeed, some of the methodologies are very distinct–some
are very minimal; others take inspiration from UML. Some of the diagrams ap-
pear to be created automatically from Protégé or some other automated tool,
while others are manually draw using a variety of graphing utilities. The varia-
tions in these sources may be partially responsible for suboptimal results, espe-
cially as none of the three compared tools use a UML-style visualization.

VOWL is a graphical notation tool for OWL. The specification can be viewed
in detail in [14]. VOWL represents ontologies using detailed force-directed graphs.
We use the web implementation WebVOWL15 to generate visualizations of our
ontologies. The website application has a high degree of potential customization.
In the settings, we choose to filter out only class disjointness axioms and set the
degree of collapsing to 0 since we use smaller ontologies.

WebVOWL is able to quickly produce a visualization for every valid OWL
file that we analyze. Usually the output animation clearly represents the intent
of the ontology. Occasionally, however, the result contains incomplete or missing
information. In our experience WebVOWL is often ambiguous when it tries to
display complex statements, which could be the cause of this.

14 https://github.com/jgraph/jgraphx
15 http://www.visualdataweb.de/webvowl/



OWLGrEd is a Graphical Ontology Editor that allows for interactive, drag-
and-drop creation of ontologies [2]. It utilizes UML-like visualizations for dis-
playing axioms associated to a class. In addition, it provides Manchester Syntax
translations of axioms. OWLGrEd displays all axioms, sometimes as additional
nodes. The visualization is hierarchical, so there is a subClass edge between an
owl:Thing node and every un-subsumed concept in the ontology’s signature.

Figure 2 shows examples of what each tool outputs in comparison to a man-
ually created schema diagram.16

5.2 Comparison Scheme

The method for constructing schema diagrams for ontology patterns and mod-
ules, as introduced in the previous section, results in a diagram similar to pub-
lished reference diagrams which follow the visualization paradigm that we found
most useful in interactive modeling sessions with domain experts. In order to
provide a meaningful evaluation, we use as gold-standard reference the manu-
ally drawn diagrams that have been published in papers or on websites by the
ontologies’ authors. These diagrams have been designed with human understand-
ability in mind and their creation pre-dates our automated diagram generation
method.

We compare the diagrams generated by SDOnt, WebVOWL and OWLGrEd
with the gold-standard diagrams taken from the respective publications or .

To define some terminology, we say a node represents a class or concept.
An edge represents a relationship or role, where the source of the edge is the
relationship’s domain and the head of the edge represents the relationship’s
codomain – domain and codomain are not meant to be formal technical terms in
the sense of OWL restrictions or RDFS domain/range declarations, but rather
intuitive notions that are ambiguous like a schema diagram. An edge from class
A to class B in the diagram indicates that A is in the domain of the relation
and B is in the codomain of the relation. There may also be an edge with the
same role label between two different classes C and D elsewhere in the diagram,
without making the classes A and C (or B and D) identical, as would happen if
these were formal domain or range declarations.

All three visualization tools generate directed edges. To conduct this com-
parison, we evaluate the following criterion for node-edge-node artifacts:

For every node-edge-node artifact in the generated diagram, does it appear
in the reference diagram, and vice-versa?

However, there are a few different cases, as we outline below. By using this
vocabulary it becomes natural to calculate an F1–measure for each diagram. We
report the average F1–measure for each tool in Table 1.

16 For this diagram, SDOnt utilized an “orthagonal layout” that is pre-defined in the
associated visualization library. Our method for generating a schema diagram, at
this time, makes no assertions about the placement of nodes in the graph.



– True Positive: the artifact appears in both generated and reference diagrams
– False Positive: the artifact appears in the generated diagram, but not the

reference diagram.
– False Negative: the artifact does not appear in the generated diagram, but

does appear in the reference diagram.

Of course, we cannot calculate True Negatives as there are an infinite number of
items that do not occur in the generated diagram nor in the reference diagram.

5.3 Test Set

In order to test our process, we constructed a test set of ontology design patterns.
Our process for selecting the patterns was simply searching the main publishing
outlets and ontologydesignpatterns.org and choosing those patterns that
had published diagrams, as well as unbroken links to their OWL files. All test
data and the complete set of ontologies we used for our evaluation can be found
on our tool’s website.17

In some cases, it was necessary to make minor changes to the OWL files
during this evaluation. Both OWLGrEd and WebVOWL produced errors on
importing certain external resources.18 Whenever removing an import allowed
us to continue with the analysis we did so, using the new OWL file for both
tools, even if the file worked for the others tools initially. However, there were
still some patterns that failed to work for any tool. Our results report only on
those OWL files that could be successfully processed by each of the compared
tools. After these criteria were met, our test set contains 63 ontology design
patterns. These 63 patterns are also available in the SDOnt portal.

5.4 Results & Discussion

The results of our evaluation are summarized in Tables 1 and 2. The node-edge-
node triple sets are determined manually. During this process we take care to
use a consistent naming format. This allows us to conduct our comparison pro-
grammatically. The code utilized for this comparison, with some documentation
for its use, is also available in the online portal.

We see that in Table 1, the F1–measures are very low. SDOnt has an F1–
measure of 0.465, OWLGrEd has an F1–measure of 0.269, and WebVOWL has
an F1–measure of 0.163. However, we also note that there are many stylistic
differences in the generation of diagrams. Many of the reference diagrams are
presented in UML-esque manner. Comparing these to a force directed graph,
such as those produced by WebVOWL would, of course, perform very poorly.

17 http://www.dase.cs.wright.edu/content/sdont
18 We note that there has been an update to both of these web application since we

conducted our evaluation. However, due to time constraints, we were unable to go
back and re-run the evaluation. Fortunately, we do not punish any tool for being
unable to render a document; we only compare performance against the subset of
patterns that every tool successfully processed.



(a) The Reference Diagram.
(b) Schema Diagram generated by
SDOnt.

(c) Schema Diagram generated by
VOWL.

(d) Schema Diagram generated by
OWLGrEd.

Fig. 2: The manually curated reference diagram (a) followed by the generated
schema diagrams by SDOnt, VOWL, and OWLGrEd, for the MicroblogEntry
ontology design pattern.

In this evaluation we do not encounter any false positives that are a misrep-
resentation of an axiom. Instead, false positives are strictly caused by the OWL
file containing more information than expected. The exact reasons for this seem
to vary from case to case. We speculate that in some cases the reason may be
that the diagram may look more elegant or the name of a concept may imply its
natural superclass. For example, in the Hazardous Event pattern [3], Hazardou-
sEvent is a subclass to Event, but this is not indicated in the reference diagram,
leading to a false positive. In other cases, the OWL file could be malformed.

To formally compare the performances we run three Wilcoxon signed rank
tests, with null hypothesis that there are no difference in performance. Our tests
show that SDOnt performs significantly better than OWLGrEd (p < 0.001), and
WebVOWL (p < 0.001). As well as that OWLGrEd performs significantly better
than WebVOWL (0.05 < p < 0.01)

There are also motivating cases for using schema diagrams as error checkers
during ontology development. The tools do poorly on many of the diagrams
simply because the respective OWL files do not actually contain the information



F1–Measure

SDOnt 0.465
OWLGrEd 0.269
WebVOWL 0.163

Table 1: F1–Measure for each of the tool’s performance.

Table 2: Significance of Pairwise comparison of the tools using the Wilcoxon
signed rank test.

SDOnt vs OWLGrEd SDOnt vs WebVOWL OWLGrEd vs WebVOWL

p < 0.001 p < 0.001 0.05 < p < 0.01

the diagram implies. This may be that they contain more information (e.g.
alignments to different patterns) or lack information (e.g. errors).

VOWL and OWLGrEd consistently performed worse than SDOnt for two
reasons. First, VOWL had many duplicated edges for different functional prop-
erties, even after adjusting settings in an attempt to prevent them. Secondly,
both OWLGrEd and VOWL had trouble extracting properties from complex
axioms. For OWLGrEd these axioms were represented as anonymous nodes,
leading to false positive artifacts. Set operation nodes in WebVOWL also lead
to additional false positive artifacts.

6 Conclusions

Our results are promising even if they do not present as such. A lack of a con-
sistent visual notation for diagrams in our test set and poor quality control in
the OWL files definitely contribute to a poor, raw showing. However, we note
that even given our low F1–measures the results are consistent. And we see that
SDOnt performs significantly better than both OWLGrEd and WebVOWL for
generating schema diagrams that are most similar to the reference diagrams.

To be fair, the test set against which we evaluated contained many UML-
esque diagrams, to which none of the evaluated tools are well-suited. VOWL and
OWLGrEd were used for comparison simply because they are the current state-
of-the-art for generalized ontology visualization and they are the tools which
produced the most similar diagrams to the desired ones. Our results do not
invalidate VOWL or OWLGrEd: they simply serve other purposes.

There are still many ways to improve our method and its implementation.
First, we see in many diagrams that namespaces are frequently color coded, as
well as providing different node styles for external patterns. As ontology en-
gineering practices mature, we expect to see these distinctions to be formally
encoded in the ontology, e.g., according to the Ontology Design Pattern Rep-
resentation Language (OPLa) as described in [8]. As such, once the necessary



tooling support for OPLa has been realized, SDOnt will be able to leverage the
annotations and inform style and placement of nodes for increased clarity in the
schema diagram. We will also explore different styles of incorporating UML-like
visualizations for datatypes. The manually created reference diagrams are falli-
ble or simply unclear from the perspective of the OWL file which information is
necessary to convey. We believe incorporating OPLa and augmenting SDOnt to
account for these annotations will also help in this regard.

Secondly, we intend to investigate the most effective ways of creating a good
layout beyond force-directed graphs and will explore the option of providing our
work as an additional rendering capability for the OWLAPI.

Finally, we will integrate SDOnt with other existing Protégé plugins devel-
oped in our lab, including ROWL,19 OWLax,20 and OWL2DL21 [16–18], in order
to work towards a well-rounded ontology engineering suite which supports the
Modular Ontology Modeling paradigm.

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area
Graduate Studies Institute (DAGSI). This work was partially supported by the
Air Force Office of Scientific Research under award number FA9550-18-1-0386.

References

1. Scalable visualization of semantic nets using power-law graphs. In Applied Math,
volume 8, pages 355–367, 01 2014.

2. J. Barzdins, G. Barzdins, K. Cerans, R. Liepins, and A. Sprogis. OWLGrEd: a
UML style graphical notation and editor for OWL 2. In Proceedings of the 7th
International Workshop on OWL: Experiences and Directions (OWLED 2010),
San Francisco, California, USA, June 21-22, 2010, volume 614 of CEUR-WS.org,
2010.

3. M. Cheatham, H. Ferguson, I. Charles Vardeman, and C. Shimizu. A modification
to the hazardous situtation ODP to support risk assessment and mitigation. In
Proceedings of WOP, volume 16, 2016.

4. A.-S. Dadzie and M. Rowe. Approaches to visualising linked data: A survey. Se-
mantic Web, 2(2):89–124, Apr. 2011.

5. V. Geroimenko and C. Chen. Visualizing the Semantic Web: XML-based Internet
and Information Visualization. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

6. F. Ghorbel, N. Ellouze, E. Métais, F. Hamdi, F. Gargouri, and N. Herradi. MEMO
GRAPH: An ontology visualization tool for everyone. Procedia Computer Science,
96(Supplement C):265–274, 2016.

7. P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors. On-
tology Engineering with Ontology Design Patterns – Foundations and Applications,
volume 25 of Studies on the Semantic Web. IOS Press, 2016.

8. P. Hitzler, A. Gangemi, K. Janowicz, A. A. Krisnadhi, and V. Presutti. Towards
a simple but useful ontology design pattern representation language. Proceedings
WOP 2017, October 2017. To appear.

19 http://dase.cs.wright.edu/content/modeling-owl-rules
20 http://dase.cs.wright.edu/content/ontology-axiomatization-support
21 http://dase.cs.wright.edu/content/owl2dl-rendering



9. P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technolo-
gies. Chapman and Hall/CRC Press, 2010.

10. P. Hitzler and C. Shimizu. Modular ontologies as a bridge between human con-
ceptualization and data. In P. Chapman, D. Endres, and N. Pernelle, editors,
Graph-Based Representation and Reasoning - 23rd International Conference on
Conceptual Structures, ICCS 2018, Edinburgh, UK, June 20-22, 2018, Proceed-
ings, volume 10872 of Lecture Notes in Computer Science, pages 3–6. Springer,
2018.

11. N. Karima, K. Hammar, and P. Hitzler. How to document ontology design pat-
terns. In K. Hammar, P. Hitzler, A. Lawrynowicz, A. Krisnadhi, A. Nuzzolese,
and M. Solanki, editors, Advances in Ontology Design and Patterns, volume 32 of
Studies on the Semantic Web, pages 15–28. IOS Press, Amsterdam, 2017.

12. A. Krisnadhi and P. Hitzler. Modeling with ontology design patterns: Chess games
as a worked example. In P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi,
and V. Presutti, editors, Ontology Engineering with Ontology Design Patterns –
Foundations and Applications, volume 25 of Studies on the Semantic Web, pages
3–21. IOS Press, 2016.

13. T. Liebig and O. Noppens. Ontotrack: Combining browsing and editing with
reasoning and explaining for OWL lite ontologies. In S. A. McIlraith, D. Plex-
ousakis, and F. van Harmelen, editors, The Semantic Web - ISWC 2004: Third
International Semantic Web Conference,Hiroshima, Japan, November 7-11, 2004.
Proceedings, volume 3298 of Lecture Notes in Computer Science, pages 244–258.
Springer, 2004.

14. S. Lohmann, S. Negru, F. Haag, and T. Ertl. Visualizing ontologies with VOWL.
Semantic Web, 7(4):399–419, 2016.

15. A. D. Nicola, M. Missikoff, and R. Navigli. A software engineering approach to
ontology building. Information Systems, 34(2):258–275, 2009.

16. M. K. Sarker, A. Krisnadhi, D. Carral, and P. Hitzler. Rule-based OWL model-
ing with ROWLTab Protégé plugin. In E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler, and O. Hartig, editors, The Semantic Web – 14th Inter-
national Conference, ESWC 2017, Portorož, Slovenia, May 28 – June 1, 2017,
Proceedings, Part I, volume 10249 of Lecture Notes in Computer Science, pages
419–433, 2017.

17. M. K. Sarker, A. Krisnadhi, and P. Hitzler. OWLAx: A Protégé plugin to support
ontology axiomatization through diagramming. In T. Kawamura and H. Paulheim,
editors, Proceedings of the ISWC 2016 Posters & Demonstrations Track co-located
with 15th International Semantic Web Conference (ISWC 2016), Kobe, Japan,
October 19, 2016., volume 1690 of CEUR Workshop Proceedings. CEUR-WS.org,
2016.

18. C. Shimizu, P. Hitzler, and M. Horridge. Rendering OWL in description logic syn-
tax. In E. Blomqvist, K. Hose, H. Paulheim, A. Lawrynowicz, F. Ciravegna, and
O. Hartig, editors, The Semantic Web: ESWC 2017 Satellite Events - ESWC 2017
Satellite Events, Portorož, Slovenia, May 28 - June 1, 2017, Revised Selected Pa-
pers, volume 10577 of Lecture Notes in Computer Science, pages 109–113. Springer,
2017.


