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historic perspective, pre-2017, which complements the other chapters in this volume that
primarily focus on the time period past 2017.

Abstract. The study and understanding of human behaviour is relevant to computer sci-
ence, artificial intelligence, neural computation, cognitive science, philosophy, psychol-
ogy, and several other areas. Presupposing cognition as basis of behaviour, among the
most prominent tools in the modelling of behaviour are computational-logic systems,
connectionist models of cognition, and models of uncertainty. Recent studies in cogni-
tive science, artificial intelligence, and psychology have produced a number of cogni-
tive models of reasoning, learning, and language that are underpinned by computation.
In addition, efforts in computer science research have led to the development of cogni-
tive computational systems integrating machine learning and automated reasoning. Such
systems have shown promise in a range of applications, including computational biol-
ogy, fault diagnosis, training and assessment in simulators, and software verification.
This joint survey reviews the personal ideas and views of several researchers on neural-
symbolic learning and reasoning. The article is organised in three parts: Firstly, we frame
the scope and goals of neural-symbolic computation and have a look at the theoretical
foundations. We then proceed to describe the realisations of neural-symbolic computa-
tion, systems, and applications. Finally we present the challenges facing the area and
avenues for further research.

1.1. Overview

The study of human behaviour is an important part of computer science, artificial intel-
ligence (AI), neural computation, cognitive science, philosophy, psychology, and other
areas. Presupposing that behaviour is generally determined and guided by cognition and
mental processing, among the most prominent tools in the modelling of behaviour are
computational-logic systems mostly addressing high-level reasoning and thought pro-
cesses (classical logic, nonmonotonic logic, modal and temporal logic), connectionist
models of cognition and the brain mostly addressing lower-level dynamics and emer-
gent processes (feedforward and recurrent networks, symmetric and deep networks, self-
organising networks), and models of uncertainty addressing the often vague or proba-
bilistic nature of many aspects of cognitive processing (Bayesian networks, Markov de-
cision processes, Markov logic networks, probabilistic inductive logic programs).

Recent studies in cognitive science, artificial intelligence, and psychology have pro-
duced a number of cognitive models of reasoning, learning, and language that are un-
derpinned by computation [1, 2, 3]. In addition, recent efforts in computer science have
led to the development of cognitive computational systems integrating machine learning
and automated reasoning [4, 5, 6]. Such systems have shown promise in a range of ap-
plications, including fault diagnosis, computational biology, training and assessment in
simulators, and software verification [7, 8].

Forestalling the presentation of the theoretical foundations in Section 1.2, the in-
tuition motivating neural-symbolic integration as an active field of research is the fol-
lowing: In neural computing, it is assumed that the mind is an emergent property of the
brain, and that computational cognitive modelling can lead to valid theories of cogni-



tion and offer an understanding of certain cognitive processes [3]. From this it is in turn
assumed that connectionism should be able to offer an appropriate representational lan-
guage for artificial intelligence as well. In particular, a connectionist computational the-
ory of the mind should be able to replicate the parallelism and kinds of adaptive learning
processes seen in neural networks, which are generally accepted as responsible for the
necessary robustness and ultimate effectiveness of the system in dealing with common-
sense knowledge. As a result, a purely symbolic approach would not be sufficient, as
argued by Valiant in [9].

On the other hand, logic is firmly established as a fundamental tool in the modelling
of thought and behaviour [10, 11] and by many has been viewed generally as the “cal-
culus of computer science”. In this context, often also nonclassical logics play an im-
portant role: Temporal logic, for instance, has had significant impact in both academia
and industry [12], and different modal logics have become a lingua franca for, among
others, the specification and analysis of knowledge and communication in multi-agent
and distributed systems [13]. Research on practical reasoning in AI has been dominated
by nonmonotonic formalisms. Intuitionistic logic can provide an adequate logical foun-
dation for several core areas of theoretical computer science, including type theory and
functional programming [14]. Finally, description logics—which are similar to Kripke
models—have been instrumental in the study of the semantic web [15].

However, when building models that combine learning and reasoning, one has to
conciliate the methodologies of distinct areas—namely predominantly statistics and
logic—in order to combine the respective advantages and circumvent the shortcomings
and limitations. For instance, the methodology of neural-symbolic systems aims to trans-
fer principles and mechanisms between (often nonclassical) logic-based computation and
neural computation. In particular, it considers how principles of symbolic computation
can be implemented by connectionist mechanisms and how subsymbolic computation
can be described and analysed in logical terms. Here, connectionism provides the hard-
ware upon which different levels of abstraction can be built according to the needs of the
application. This methodology—looking at principles, mechanisms, and applications—
has proven a fruitful way of progressing the research in the area of neural-symbolic in-
tegration for more than two decades now as evidenced by, for instance, the results sum-
marised in the overview by [16], collected in the books by [17] and [5], and reported in
the present survey.

For example in [5], the described approach has led to a prototypical connectionist
system for nonclassical reasoning in an attempt to find an adequate balance between com-
plexity and expressiveness. In this framework—known as a neural-symbolic system—
artificial neural networks (ANNs) provide the machinery for parallel computation and
robust learning, while logic provides the necessary explanation for the network models,
facilitating the necessary interaction with the world and other systems. In the integrated
model, no conflict arises between a continuous and a discrete component of the system.
Instead, a tightly-coupled hybrid system exists that is continuous by nature (the ANN),
but that has a clear discrete interpretation (its logic) at various levels of abstraction.

From a more practical perspective, rational agents are often conceptualised as per-
forming concept acquisition (generally unsupervised and statistical) and concept manip-
ulation (generally supervised and symbolic) as part of a permanent cycle of perception
and action. The question of how to reconcile the statistical nature of learning with the
logical nature of reasoning, aiming to build such robust computational models integrat-



ing concept acquisition and manipulation, has been identified as a key research challenge
and fundamental problem in computer science [18]. Against this backdrop we see neural-
symbolic integration as a way of addressing stated challenge through the mechanisms
of knowledge translation and knowledge extraction between symbolic logic systems and
subsymbolic networks.

There are also important applications of neural-symbolic integration with high rel-
evance for industry applications. The merging of theory (known as background knowl-
edge in machine learning) and data learning (i.e. learning from examples) in ANNs has
been shown more effective than purely symbolic or purely connectionist systems, espe-
cially in the case of real-world, noisy, unstructured data [7, 8, 19]. Here, successfully ad-
dressed application scenarios include business process modelling, service-oriented com-
puting (trust management and fraud prevention in e-commerce), synchronisation and co-
ordination in large multi-agent systems, and multimodal processing and integration.

In multimodal processing, for example, there are several forms of reasoning: a scene
classification can be achieved by the well-trained network giving an immediate answer
following a number of assumptions. A change in the scene, however, may require more
specific temporal, nonmonotonic reasoning and learning from data (based, for example,
on the amount of change in the scene). Some assumptions may need to be revised, in-
formation from an image annotation may provide a different context, abduction and sim-
ilarity reasoning by intersecting network ensembles may be needed, probability distri-
butions may have to be reasoned about, and so on. The integrated system will need to
respond quickly, revise its answers in the presence of new information, and control the
inevitable accumulation of errors derived from real-world data (i.e. prove its robustness).
This provides an excellent opportunity for the application of neural-symbolic systems.

The remainder of the paper is structured as follows. In Section 1.2, we describe
the principles of neural-symbolic computation, revisit the theoretical underpinnings of
the endeavour, and give a prototypical example of how one can combine learning and
reasoning in an integrated fashion. In Section 1.3 we illustrate the application of the
methodology using NSCA, a neural-symbolic agent endowed with learning and reason-
ing capabilities, as a first detailed example. Section 1.4 relates concepts underpinning the
theories of mind in psychology and cognitive science and their counterparts in neural-
symbolic computation, before Section 1.5 outlines work addressing the binding problem
(introduced in the preceding section), thus enabling first-order inference computed by
neural-symbolic systems. Section 1.6 then highlights the more technical foundations of
first-order (predicate) logic learning in connectionist systems, followed in Section 1.7
by an introduction to Markov logic and corresponding networks as a combination be-
tween logic and graphical models. This leads into the conceptual considerations given in
Section 1.8 which relate neural-symbolic computation to recent developments in AI and
the reinvigorated interest in (re-)creating human-level capacities with artificial systems,
notably recently for instance in the area of language modelling and processing. Finally,
Section 1.9 summarises selected currently ongoing and widely recognised approaches
to solving core questions of neural-symbolic integration arising from neighbouring re-
search efforts and disciplines, before Sections 1.10 and 1.11 present suggested directions
for further research and conclude the survey.



1.2. Prolegomena of Neural-Symbolic Computation

The goals of neural-symbolic computation are to provide a coherent, unifying view for
logic and connectionism, to contribute to the modelling and understanding of cognition
and, thereby, behaviour, and to produce better computational tools for integrated machine
learning and reasoning. To this end, logic and network models are studied together as
integrated models of computation. Typically, translation algorithms from a symbolic to
a connectionist representation and vice-versa are employed to provide either (i) a neural
implementation of a logic, (ii) a logical characterisation of a neural system, or (iii) a
hybrid learning system that brings together features from connectionism and symbolic
artificial intelligence.

From a theoretical perspective, these efforts appear well-founded. According to our
current knowledge and understanding, both symbolic/cognitive and sub-symbolic/neural
models—especially when focusing on physically-realisable and implementable systems
(i.e. physical finite state machines) rather than strictly abstract models of computation,
together with the resulting physical and conceptual limitations—seem formally equiva-
lent in a very basic sense: notwithstanding partially differing theoretical arguments such
as given by [20], both paradigms are considered in practice equivalent concerning com-
putability [21]. Also from a tractability perspective, for instance in [22], equivalence
in practice with respect to classical dimensions of analysis (i.e. interchangeability ex-
cept for a polynomial overhead) has been established, complementing and supporting
the prior theoretical suggestion of equivalence in the widely accepted Invariance The-
sis of [23]. Finally, [24] provided an in principle existence result, showing that there is
no substantial difference in representational or problem-solving power between dynam-
ical systems with distributed representations and symbolic systems with non-monotonic
reasoning capabilities.

But while these findings provide a solid foundation for attempts at closing the gap
between connectionism and logic, many questions nonetheless remain unanswered espe-
cially when crossing over from the realm of theoretical research to implementation and
application, among others switching from compositional symbols denoting an idealised
reality to virtually real-valued vectors obtained from sensors in the real world: Although
introducing basic connections and mutual dependencies between the symbolic and the
subsymbolic paradigm, the levels of analysis are quite coarse and almost all results are
only existential in character. For instance, while establishing the in principle equivalence
described above, [24] does not provide constructive methods for how to actually obtain
the corresponding symbolic counterpart to a sub-symbolic model and vice versa.

Still, over the last decades several attempts have been made at developing a general
neural-symbolic framework, usually trying to apply the most popular methods of their
respective time—such as currently modular deep networks. Growing attention has been
given recently to deep networks where it is hoped that high-level abstract representations
will emerge from low-level unprocessed data [25]. Most modern neural-symbolic sys-
tems use feedforward and recurrent networks, but seminal work in the area used symmet-
ric networks [26] of the kind applied in deep learning, and recent work starts to address
real applications of symmetric neural-symbolic networks [7]. There, in general each level
of a neural-symbolic system represents the knowledge evolution of multiple agents over
time. Each agent is represented by a network in this level encoding commonsense (non-
monotonic) knowledge and preferences. The networks/agents at different levels can be



combined upwards to represent relational knowledge and downwards to create speciali-
sations, following what is known as a network-fibring methodology [27].

Fibring—which will continue to serve as general example throughout the remainder
of this section—offers a principled way of combining networks and can be seen as one
of the general methodologies of neural-symbolic integration. The main idea of network
fibring is simple: fibred networks may be composed of interconnected neurons, as usual,
but also of other networks, forming a recursive structure. A fibring function defines how
this network architecture behaves; it defines how the networks should relate to each other.
Typically, the fibring function will allow the activation of neurons in one network A to
influence the change of weights in another network B. Intuitively, this may be seen as
training network B at the same time that network A is running. Albeit being a combi-
nation of simple and standard ANNs, fibred networks can approximate any polynomial
function in an unbounded domain, thus being more expressive than standard feedforward
networks.

Fibring is just one example of how principles from symbolic computation (in this
case, recursion), can be used by connectionism to advance the research in this area. In
the remainder of this section, we discuss in more detail—also in way of a manifesto
summarising our view(s) on neural-symbolic integration—the principles, mechanisms
and applications that drive the research in neural-symbolic integration.

1.2.1. Principles of Neural-Symbolic Integration

From the beginning of connectionism [28]—arguably the first neural-symbolic system
for Boolean logic—most neural-symbolic systems have focused on representing, com-
puting, and learning languages other than classical propositional logic [29, 30, 4, 5, 31,
2], with much effort being devoted to representing fragments of classical first-order logic.
In [5], a new approach to knowledge representation and reasoning has been proposed,
establishing connectionist nonclassical logic (including connectionist modal, intuitionis-
tic, temporal, nonmonotonic, epistemic and relational logic). More recently, it has been
shown that argumentation frameworks, abductive reasoning, and normative multi-agent
systems can also be represented by the same network framework. This is encouraging
to the extent that a variety of forms of reasoning can be realised by the same, simple
network structure that specialises in different ways.

A key characteristic of many neural-symbolic systems is modularity. One way of
building neural-symbolic networks is through the careful engineering of network ensem-
bles, where modularity then serves an important role for comprehensibility and mainte-
nance. Each network in the ensemble can be responsible for a specific task or logic, with
the overall model being potentially very expressive despite its relatively simple compo-
nents. Still, although being fairly common, modularity is not a strict necessity: alterna-
tively, as described in Section 1.5, one can start with an unstructured network (i.e. not
modular) and let weight changes shape its ability to process symbolic or subsymbolic
representations.

Another common organisational property of neural-symbolic networks is—similar
to deep networks—their generally hierarchical organisation. The lowest-level network
takes raw data as input and produces a model of the dataset. The next-level network takes
the first network’s output as its input and produces some higher-level representation of
the information in the data. The next-level network then further increases the level of



abstraction of the model, and so on, until some high-level representation can be learned.
The idea is that such networks might be trained independently, possibly also combining
unsupervised and supervised learning at different levels of the hierarchy. The resulting
parallel model of computation can be very powerful as it offers the extra expressiveness
required by complex applications at comparatively low computational costs [5].

1.2.2. Mechanisms of Neural-Symbolic Integration

We subscribe to the view that representation initially precedes learning. Neural-symbolic
networks can represent a range of expressive logics and implement certain important
principles of symbolic computation. However, neural-symbolic computation is not just
about representation. The mechanisms of propagation of activation and other message
passing methods, gradient-descent and other learning algorithms, reasoning about uncer-
tainty, massive parallelism, fault tolerance, etc. are a crucial part of neural-symbolic in-
tegration. Put simply, neural-symbolic networks are efficient computational models, not
representational tools. It is the mechanisms in place in the form of efficient algorithms
that enable the computational feasibility of neural-symbolic systems.

Returning to the example of fibring, also fibred networks are computational models,
not just graphical models or mathematical abstractions like graphs or networks generally.
The neural-symbolic networks can be mapped directly onto hardware which promises,
for instance, an implementation in a Very-large-scale integration (VLSI) chip to be
straightforward and cost effective. The main architectural constraint, which here is brain-
inspired, is that neural-symbolic systems should replicate and specialise simple neuronal
structures to which a single algorithm can be applied efficiently at different levels of
abstraction, with the resulting system being capable of exhibiting emergent behaviour.

It is precisely this emergence as common characterising feature of connectionist ap-
proaches which prompts the need for mechanisms of knowledge extraction. The cycle of
neural-symbolic integration therefore includes (i) translation of symbolic (background)
knowledge into the network, (ii) learning of additional knowledge from examples (and
generalisation) by the network, (iii) executing the network (i.e. reasoning), and (iv) sym-
bolic knowledge extraction from the network. Extraction provides explanation, and fa-
cilitates maintenance and incremental or transfer learning.

In a general neural-symbolic system, a network ensemble A (representing, for exam-
ple, a temporal theory) can be combined with another network ensemble B (representing,
for example, an agent’s epistemic state). Again using fibring as exemplary mechanism,
meta-level knowledge in one network can be integrated with object-level knowledge in
another network. For example, one may reason (in the meta-level) about the actions
that are needed to be taken (in the object-level) to solve inconsistencies in a database.
Relational knowledge can also be represented in the same way, with relations between
concepts encoded in distinct (object-level) networks potentially being represented and
learned through a meta-level network. More concretely, if two networks denote concepts
P(X ,Y ) and Q(Z) containing variables X , Y and Z, respectively, a meta-level network
can be used to map a representation of P and Q onto a new concept, say R(X ,Y,Z), such
that, for example, the relation P(X ,Y )∧Q(Z)→ R(X ,Y,Z) is valid [5].

Figure 1 illustrates a prototypical neural-symbolic system. The model, in its most
general form, allows a number of network ensembles to be combined at different levels
of abstraction through, for instance, fibring. In the figure, each level is represented by



Figure 1. General conceptual overview of a neural-symbolic system [5].

a network ensemble in a horizontal plane, while network fibring takes place vertically
among networks at different ensembles. Specialisation occurs downwards when a neu-
ron is fibred onto a network. Relational knowledge is represented upwards when mul-
tiple networks are combined onto a meta-level network. Knowledge evolution through
time occurs at each level, as do alternative outcomes, and nonmonotonic and epistemic
reasoning for multiple, interacting agents. Modular learning takes place inside each net-
work, but is also applicable across multiple networks in the ensemble. The same brain-
inspired structure is replicated throughout the model so that a single algorithm is applied
at each level and across levels.

1.2.3. Applications of Neural-Symbolic Integration

As so often, it will ultimately be through successful implementations and real-world
applications that the usefulness and importance of neural-symbolic integration will be
widely acknowledged. Practical applications are a crucial ingredient and have been a
permanent feature of the research on neural-symbolic computation. On the theory side—
in parallel to the quest for understanding the interplay and integration between connec-
tionism and symbolism as the basis of cognition and intelligence—we are interested
in finding the limits of representation and developing better machine learning methods
which may open up new applications for consideration. In practice, already at the current
state of the research, real applications are possible in areas with societal relevance and/or
potentially high economic impact, like bioinformatics, semantic web, fault diagnosis,
robotics, software systems verification, business process modelling, fraud prevention,
multimodal processing, noisy text analytics, and training and assessment in simulators.

All these different application areas have something in common: a computational
system is required that is capable of learning from experience and which may reason
about what has been learned [29, 18]. For this learning-reasoning process to be suc-
cessful, the system must be robust (in a way so that the accumulation of errors result-
ing from the intrinsic uncertainty associated with the problem domain can be controlled
[18]). The method used by the research on neural-symbolic integration to enable some
of the above applications has been (i) to apply translation algorithms between logic and
networks (making use of the associated equivalence proofs), (ii) to study the systems
empirically through case studies (following the practical motivation from statistical ma-
chine learning and neural computation), and (iii) to focus on the needs of the application



(noting that some potentially interesting applications require just even rudimentary log-
ical representations, e.g. [32]). An example of a neural-symbolic system that is already
providing a contribution of this type to problems in bioinformatics and fault diagnosis is
the Connectionist Inductive Learning and Logic Programming (CILP) System [33, 4].
Similarly, the NSCA system discussed in Section 1.3 has successfully been applied, for
instance, to behaviour modelling in training simulators.

1.2.4. Neural-Symbolic Integration in a Nutshell

In summary, neural-symbolic computation encompasses the high-level integration of
cognitive abilities (including induction, deduction, and abduction) and the study of how
brains make mental models [34], among others also covering the modelling of emotions
and attention/utility. At the computational level, it addresses the study of the integration
of logic, probabilities, and learning, and the development of new models of computation
combining robust learning and efficient reasoning. With regard to applications, successes
have been achieved in various domains, including simulation, bioinformatics, fault diag-
nosis, software engineering, model checking, visual information processing, and fraud
prevention.

In the following section, in order to further familiarise the reader with the overall
mindset we will have a detailed look at one such system—namely a neural-symbolic
cognitive agent architecture called NSCA—aligning the presentation with the three cat-
egories principles, methods, and applications.

1.3. NSCA as Application Example for Neural-Symbolic Computing

It is commonly agreed that an effective integration of automated learning and cognitive
reasoning in real-world applications is a difficult task [18]. Usually, most applications
deal with large amounts of data observed in the real-world containing errors, missing
values, and inconsistencies. Even in controlled environments, like training simulators,
integrated learning and reasoning is not very successful [35, 36]. Although the use of
simulated environments simplifies the data and knowledge acquisition, it is still very dif-
ficult to construct a cognitive model of an (intelligent) agent that is able to deal with
the many complex relations in the observed data. For example, when it comes to the as-
sessment and training of high-level complex cognitive abilities (e.g. leadership, tactical
manoeuvring, safe driving, etc.) training is still guided or done by human experts [37].
The reason is that expert behaviour on high-level cognition is too complex to model,
elicit, and represent in an automated system. Among others, there can be many tempo-
ral relations between low- and high-order aspects of a training task, human behaviour
is often non-deterministic and subjective (i.e. biased by personal experience and other
factors like stress or fatigue), and what is known is often described vaguely and limited
to explicit (i.e. “explainable”) behaviour.

Several attempts have been made to tackle these problems. For instance [38] de-
scribes a number of systems that use machine learning to learn the complex relations
from observations of experts and trainees during task execution. Although these systems
are successful at learning and generalisation, they lack the expressive power of symbolic
systems and are therefore difficult to interpret and validate [39]. Alternatively, one could



add probabilistic reasoning to logic-based systems [36]. These systems perform better in
expressing their internal knowledge as they use explicit symbolic representations and are
able to deal with many of the most common types of inconsistencies in the data by rea-
soning with probabilities. Unfortunately, when it comes to knowledge representation and
modelling, these systems still require either statistical analyses of large amounts of data
or knowledge representation by hand. Therefore, both approaches are time expensive and
are not appropriate for use in real-time applications, which demand online learning and
reasoning.

1.3.1. Principles of Neural-Symbolic Integration Exemplified

The construction of effective cognitive agent models is a long-standing research en-
deavour in artificial intelligence, cognitive science, and multi-agent systems [18, 40].
One of the main challenges toward achieving such models is the provision of integrated
cognitive abilities, such as learning, reasoning, and knowledge representation. Neural-
symbolic systems seek to do so within the neural computation paradigm, integrating
inductive learning and deductive reasoning (cf. [5, 41] for examples). In such models,
ANNs are used to learn and reason about (an agent’s) knowledge about the world, repre-
sented by symbolic logic. In order to do so, algorithms map logical theories (or knowl-
edge about the world) T into a network N which computes the logical consequences of T .
This provides also a learning system in the network that can be trained by examples us-
ing T as background knowledge. In agents endowed with neural computation, induction
is typically seen as the process of changing the weights of a network in ways that reflect
the statistical properties of a dataset, allowing for generalisations over unseen examples.
In the same setting, deduction is the neural computation of output values as a response to
input vectors (encoding stimuli from the environment) given a particular set of weights.
Such network computations have been shown equivalent to a range of temporal logic for-
malisms [42]. Based on this approach, an agent architecture called NEURAL SYMBOLIC

COGNITIVE AGENT (NSCA) has been proposed in [8]. NSCA uses temporal logic as
theory T and a Restricted Boltzmann Machine (RBM) as ANN N. An RBM is a partially
connected ANN with two layers, a visible layer V and a hidden layer H, and symmetric
connections W between these layers [43].

An RBM defines a probability distribution P(V = v,H = h) over pairs of vectors v
and h encoded in these layers, where v encodes the input data in binary or real values and
h encodes the posterior probability P(H|v). Such a network can be used to infer or recon-
struct complete data vectors based on incomplete or inconsistent input data and there-
fore implement an auto-associative memory or an autoencoder. It does so by combining
the posterior probability distributions generated by each unit in the hidden layer with a
conditional probability distribution for each unit in the visible layer. Each hidden unit
constrains a different subset of the dimensions in the high-dimensional data presented
at the visible layer and is therefore called an expert on some feature in the input data.
Together, the hidden units can form a “Product of Experts” model that constrains all the
dimensions in the input data.

NSCA is capable of (i) performing learning of complex temporal relations from un-
certain observations, (ii) reasoning probabilistically about the knowledge that has been
learned, and (iii) representing the agent’s knowledge in a logic-based format for valida-
tion purposes. This is achieved by taking advantage of neural learning to perform ro-



bust learning and adaptation, and symbolic knowledge to represent qualitative reasoning.
NSCA was validated in a training simulator employed in real-world scenarios, illustrat-
ing the effective use of the approach. The results show that the agent model is able to
learn to perform automated driver assessment from observation of real-time simulation
data and assessments by driving instructors, and that this knowledge can be extracted in
the form of temporal logic rules [8].

1.3.2. Mechanisms of Neural-Symbolic Integration Exemplified

Using a Recurrent Temporal Restricted Boltzmann Machine (RTRBM) [44] as spe-
cialised variant of the general RBM concept, NSCA encodes temporal rules in the form
of hypotheses about beliefs and previously-applied rules. This is possible due to recurrent
connections between hidden unit activations at time t and the activations at time t −1 in
the RTRBM. Based on the Bayesian inference mechanism of the RTRBM, each hidden
unit H j represents a hypothesis about a specific rule R j that calculates the posterior prob-
ability that the rule implies a certain relation in the beliefs b being observed in the visi-
ble layer V , given the previously applied rules rt−1 (i.e. P(R|B = b,Rt−1 = rt−1)). From
these hypotheses the RTRBM selects the most applicable rules r using random Gaussian
sampling of the posterior probability distribution (i.e. r ∝ P(R|B = b,Rt−1 = rt−1)) and
calculates the conditional probability or likelihood of all beliefs given the selected rules
are applied (i.e. P(B|R = r)). The difference between the observed and inferred beliefs
can be used by NSCA to train the RTRBM (i.e. update its weights) in order to improve
the hypotheses about the observed data. For training, the RTRBM uses a combination of
Contrastive Divergence and backpropagation through time.

In the spirit of [45]’s Belief, Desire, Intention (BDI) agents, the observed data (e.g.
simulation data or human assessments) are encoded as beliefs and the difference between
the observed and inferred beliefs are the actual implications or intentions of the agent on
its environment (e.g. adapting the assessment scores in the training simulator). The value
of a belief represents either the probability of the occurrence of some event or state in the
environment (e.g. Raining = true), or a real value (e.g. Speed = 31.5). In other words,
NSCA deals with both binary and continuous data, for instance, by using a continu-
ous stochastic visible layer [46]. This improves the agent’s ability to model asymmetric
data, which in turn is very useful since measured data coming from a simulator is often
asymmetric (e.g. training tasks typically take place in a restricted region of the simulated
world).

Due to the stochastic nature of the sigmoid activation functions, the beliefs can be
regarded as fuzzy sets with a Gaussian membership function. This allows one to represent
vague concepts like f ast and slow, as well as approximations of learned values, which
is useful when reasoning with implicit and subjective knowledge [47].

The cognitive temporal logic described in [42] is used to represent domain knowl-
edge in terms of beliefs and previously-applied rules. This logic contains several modal
operators that extend classical modal logic with a notion of past and future. To express
beliefs on continuous variables, this logic is extended with the use of equality and in-
equality formulae (e.g. Speed < 30, Raining = true). As an example, consider a task
where a trainee drives on an urban road and approaches an intersection. In this scenario
the trainee has to apply a yield-to-the-right rule. Using the extended temporal logic, one
can describe rules about the conditions, scenario, and assessment related to this task. In



rules (1) to (4) in Table 1, ⋄A denotes “A is true sometime in the future” and ASB denotes
“A has been true since the occurrence of B”.

Conditions: (1) (Weather > good)
meaning: the weather is at least good
Scenario: (2) ApproachingIntersection∧⋄(ApproachingTraffic = right)
meaning: the car is approaching an intersection and sometime in the future traffic is
approaching from the right
(3) ((Speed > 0)∧HeadingIntersection)S(DistanceIntersection < x)→ ApproachingIntersection
meaning: if the car is moving and heading towards an intersection since it has been
deemed close to the intersection, then the car is approaching the intersection.
Assessment: (4) ApproachingIntersection∧ (DistanceIntersection = 0)∧ (ApproachingTraffic =
right)∧ (Speed = 0)→ (Evaluation = good)
meaning: if the car is approaching an intersection and arrives at the intersection when
traffic is coming from the right and stops then the trainee gets a good evaluation

Table 1. Situations and assessments from a driving simulator scenario.

Rule (4) is an example of an uncertain notion that is highly subjective (the distance x
at which a person is regarded as approaching an intersection is dependent on the situation
and personal experience). When this rule is encoded in an RTRBM, it becomes possible
to learn a more objective value for x based on the observed behaviour of different peo-
ple in various scenarios. This exemplifies a main objective of combining reasoning and
learning.

The temporal logic rules are represented in NSCA by setting the weights of the
connections in the RTRBM. Therefore the rules need to be translated to a form that
relates only to the immediately previous time step (denoted by the temporal operator •).
A transformation algorithm for this is also described in [42]. Then we can encode any
rule as a stochastic relation between the hidden unit that represents the rule, the visible
units that represent the beliefs, and the previous hidden unit activations that represent the
applied rules in the previous time step. For example, the rule αSβ can be translated to
the following rules: β → αSβ and α ∧•(αSβ )→ αSβ , where α and β are modelled by
visible units, αSβ by a hidden unit, and •(αSβ ) is modelled by a recurrent connection
to the same hidden unit. [48] shows how to map these logic-based propositions into the
energy function of a symmetric network and how to deal with uncertainty by introducing
a notion of confidence, called a penalty, as discussed further below.

1.3.3. Applications of Neural-Symbolic Integration Exemplified

NSCA has been developed as part of a three-year research project on assessment in driv-
ing simulators. It is implemented as part of a multi-agent platform for Virtual Instruction
[49] and was used for an experiment on a driving simulator. In this experiment five stu-
dents participated in a driving test consisting of five test scenarios each. For each attempt
all data from the simulator (i.e. 43 measurements, like relative positions and orientations
of all traffic, speed, gear, and rpm of the student’s car) and numerical assessments scores
on several driving skills (i.e. vehicle control, economic driving, traffic flow, social-, and
safe driving) that were provided by three driving instructors present during the attempts
were observed by NSCA in real-time. NSCA was able to learn from these observations
and infer assessment scores that are similar to those of the driving instructors [7, 8].



The NSCA system has also been applied as part of a Visual Intelligence (VI) sys-
tem, called CORTEX, in DARPA’s Mind’s Eye program [50]. This program pursues the
capacity to learn generally-applicable and generative representations of actions between
entities in a scene (e.g. persons, cars, objects) directly from visual inputs (i.e. pixels), and
reason about the learned representations. A key distinction between Mind’s Eye and the
state-of-the-art in VI is that the latter has made large progress in recognising a wide range
of entities and their properties (which might be thought of as the nouns in the description
of a scene). Mind’s Eye seeks to add the ability to describe and reason about the actions
(which might be thought of as the verbs in the description of the scenes), thus enabling a
more complete narrative of the visual experience. This objective is supported by NSCA
as it seeks to learn to describe an action in terms of entities and their properties, provid-
ing explanations for the reasoning behind it. Results have shown that the system is able
to learn and represent the underlying semantics of the actions from observation and use
this for several VI tasks, like recognition, description, anomaly detection, and gap-filling
[51].

Most recently, NSCA has been included in an Intelligent Transport System to reduce
CO2 emissions [52]. Results show that NSCA is able to recognise various driving styles
from real-time in-car sensor data and outperforms state-of-the-art in this area. In addition,
NSCA is able to describe these complex driving styles in terms of multi-level temporal
logic-based rules for human interpretation and expert validation.

1.3.4. NSCA in a Nutshell

In summary, NSCA is an example for a cognitive model and agent architecture that of-
fers an effective approach integrating symbolic reasoning and neural learning in a unified
model. This approach allows the agent to learn rules about observed data in complex,
real-world environments (e.g. expert behaviour for training and assessment in simula-
tors). Learned behaviour can be extracted to update existing domain knowledge for vali-
dation, reporting, and feedback. Furthermore the approach allows domain knowledge to
be encoded in the model and deals with uncertainty in real-world data. Results described
in [7, 8] show that the agent is able to learn new hypotheses from observations and ex-
tract them into a temporal logic formula. But although results are promising, the model
requires further evaluation by driving experts. This will allow further validation of the
model in an operational setting with many scenarios, a large trainee population, and mul-
tiple assessments by driving instructors. Other on-going work includes research on using
Deep Boltzmann Machines [53, 54] to find higher-level rules and the application of an
RTRBM to facilitate adaptive training. Overall, this work illustrates an application model
for knowledge representation, learning, and reasoning which may indeed lead to realis-
tic computational cognitive agent models, thus addressing the challenges put forward in
[18, 40].

1.4. Neural-Symbolic Integration in and for Cognitive Science: Building Mental
Models

Thus far, we elaborated on the general theoretical and conceptual foundations of neural-
symbolic integration and discussed NSCA as example of a successful implementation



and application deployment of a neural-symbolic system. In what follows, we now re-
turn in more detail to some of the most pressing theoretical and applied core questions—
including the binding problem, connectionist first-order logic (FOL) learning, the com-
bination of probabilities and logic in Markov Logic Networks, and the relationship be-
tween neural-symbolic reasoning and human-level AI—and describe our current state of
knowledge, as well as potential future developments, in the following sections. We start
with an introduction to the intimate relation between neural-symbolic integration and
core topics from cognitive science.

To fully explain human cognition, we need to understand how brains construct and
manipulate mental models. Clarification of this issue would inform the development of
(artificially) intelligent systems and particularly neural-symbolic systems. The notion of
mental model has a long history, perhaps most notably being used by Johnson-Laird to
designate his theory of human reasoning [55]. Taking partial inspiration from [56] and
[57], we interpret a mental model as a cognitive representation of a real or imagined
situation, the relationship amongst the situation’s parts and, even perhaps, how those
parts can act upon one another. These models will necessarily preserve the constraints
inherent in what is represented, and their evaluation and manipulation has been argued
to be key to human reasoning [55]. For example, sight of an empty driveway and a
scattering of broken glass, might conjure a mental representation (i.e. a model) of a felon
breaking the window of your car, leading you to reason that your car had been stolen. As
a more abstract example, when pondering on why the Exclusive Or problem is linearly
inseparable in the context of network learning, one might visualise a two dimensional
plane containing four regularly-placed crosses (two for true, two for false) and mentally
consider placement of classification boundary lines. By exploring such a mental model,
one might convince oneself that a line partitioning true and false outputs cannot be found.

It has particularly been argued that construction and inference on mental models
might play a major role in abductive reasoning and, even, creativity [34], our car theft ex-
ample being a case of the former. Exactly how mental models and their manipulation are
neurally realised, though, remains largely uncertain. Central to construction of a mental
model is the formation of a combined (superordinate) whole representation from sets of
(subordinate) part representations. For example, in the car theft example, a composite
of your car and a hooded figure breaking a window might be created from memory and
imagination of car and figure in isolation.

The most basic requirement of a neural realisation of such representation combi-
nation is a solution to the so called “binding problem”, i.e. identification of a general
neural mechanism to represent which individual assemblies of active neurons (e.g. those
representing red Ford and those representing hooded figure) are associated and which
are not (also see Section 1.5.2). Many proposals have been made for the brain’s bind-
ing mechanism, e.g. temporal synchrony [58], conjunctive codes [59, 60, 61] and even
convolution-based approaches [34]. Of these, conjunctive codes seem to involve the
smallest step from traditional rate-coded ANNs, e.g. spiking and oscillatory dynamics
are not assumed, and would thus seem most naturally integrable with neural-symbolic
systems as currently formulated.

Under the conjunctive codes approach, it is assumed that units that respond selec-
tively to the coactivation of multiple item representations are available. Such conjunctive
units might reside in a widely accessible binding resource, such as, say, the Binding Pool



in [60]. Two challenges to conjunctive code binding approaches (and, by extension, to
neural representation of mental models) are, (i) scalability, and (ii) novel conjunctions:

• A binding resource that exhaustively enumerates all possible combinations of rep-
resentations as unique (localist) units does not scale. Thus, realistic conjunctive
codes typically assume that the binding resource employs distributed representa-
tions, which provide more compact, and indeed scalable, codings of binding asso-
ciations, see for example, the explorations of this issue in [61] and [62].

• We often experience representation combinations that we have never experienced
before. A standard example is the proverbial blue banana or, in the context of the
car theft example, it is likely that a mental model conjoining a hooded figure, a red
Ford, and a particular driveway would never have been previously experienced.
(Indeed, the fact that every experience must—necessarily—have a first occurrence
makes the point.) As a result, conjunctive coding approaches propose randomly
preconfigured binding resources with such discrimination capacity that they can
effectively conjoin any combination of item representations that might arise in the
future; the model of Frontal lobe function in [61] is such an approach.

Neural conjunctive coding methods of this kind would, then, seem prerequisite to brain-
based theories of mental models.

Clearly, a capacity to construct mental models is of limited value unless it helps
us to make decisions and, in general, to reason, e.g. to determine that a crime has been
committed and that the Police should be called. Two ways in which modern cognitive
neuroscience suggests such reasoning could arise is through either statistical inference,
or deliberative exploration. The former of these may employ statistical inference based
upon pattern matching, in the manner of classic ANNs, as reflected in use of the descrip-
tor “associative learning” in this context. In contrast, the latter would be more explicitly
deliberative in nature and, accordingly, would involve the serial exploration of a space
of hypothetical possibilities. Such a process might most naturally be framed in terms
of classic symbolic computation and, perhaps, search in production system architectures
[63]. In addition, the statistical inference process might be viewed as more opaque to
conscious awareness than deliberation.

Dual process theories of reasoning, e.g. [64], have argued that a subdivision of this
kind is fundamental to human reasoning. With regard to our main interest here, though,
the second of these forms of reasoning, deliberative exploration, seems most naturally
to embrace the notion of mental model, with its connotation of forming conscious hypo-
thetical representations.

Modern cognitive neuroscience also emphasises the role of emotion/body-state eval-
uations in reasoning. In particular, emotion may be viewed as providing an assessment of
the evaluative quality of a situation or alternative, much in the manner of [65]’s somatic
markers. But importantly, theories of affect, such as, say, appraisal theory [66], suggest
a multidimensional space of emotionally-charged feelings, richer than that required of
simple reward and punishment or utility function. For instance, both disgust and fear
are negatively valenced, marking, if you like, punishing experiences; however, the aver-
sive responses to the two are typically quite different. In particular, only fear is likely
to engage highly urgent flight or fight responses, associated with immediate physical
risk. Indeed, it could be argued that a key function of emotions is to mark out response
types and, at least in that sense, the distinctions between emotions on many dimensions



are cognitively significant. This is relevant to cognitive and neuroscientific accounts of
neural-symbolic integration in that mental models might, then, be viewed as “stamped”
with affective evaluations, which would be bound (in the manner previously discussed)
to nonaffective portions of a mental model, yielding a rich affect-coloured high dimen-
sional representation.

1.4.1. Cognitive Neuroscience and Neural-Symbolic Methods

Cognitive neuroscience (Gazzaniga, Ivry et al. 1998) is a major current scientific project,
with the explanation of cognitive capacities (such as, perception, memory, attention, and
language) in terms of their implementation in the brain as central objective. Computa-
tional modelling (especially when ANN-based) is a key ingredient of the research pro-
gramme. Conceptually, such modelling provides the “glue” between cognition and the
brain: it enables concrete (disproveable) explanations to be formulated of how cognitive
capacities could be generated by the brain. In this sense, models that explain cognitive
behaviour as well as neuroimaging data do a particularly good job of bridging between
the cognitive and the neural. Examples of such models include (Bowman 2006; Chennu,
Craston et al. 2009; Cowell and Cottrell 2009; Craston, Wyble et al. 2009), and the whole
Dynamic Causal Modelling project (Friston, Harrison et al. 2003) can be seen to have
this objective.

This then brings to the fore the suitability of different cognitive modelling paradigms
in Cognitive Neuroscience; that is, how should computational models in Cognitive Neu-
roscience be formulated? If we consider the cognitive and brain sciences in very broad
definition, although computational models of many varieties have been employed, there
are two dominant traditions. The first of these is symbolic modelling, which would most
often be formulated in Production System architectures, such as SOAR [63], EPIC [67]
and ACT-R [68, 69]. In contrast, the second tradition is network modelling, ranging
from abstract connectionist, e.g. [70], to neurophysiologically detailed approaches, e.g.
[71, 72]. From the earliest computation-based proposals for the study of mind and brain,
which probably date to the 1950s, pre-eminence has oscillated between symbolic and
neural network-based. However, modern interest in the brain and mapping cognition to it,
has led to a sustained period of neural network pre-eminence and, certainly in the cogni-
tive neuroscience realm, symbolic modelling is now rare; the most prominent exceptions
being [69, 73].

There does though remain a minority who dissent from the neural networks empha-
sis. Some have taken a very strongly anti-neural networks perspective, e.g. [74], arguing
that thought is fundamentally symbolic—indeed linguistic, c.f. [75]—and that it should
thus necessarily be studied at that level. Computer systems are often taken as a justifi-
cation for this position. It is noted that software is the interesting level, which governs a
computer’s functional behaviour at any moment. In contrast, it is argued that the map-
ping to hardware implementation, e.g. compilation down to assembly code, is a fixed
predefined transformation that does not need to be reprogrammed when the algorithm
being run is changed. That is, the algorithm being executed is determined by software,
not the mapping to hardware, or to paraphrase, in computer systems, software is where
the functional complexity resides. The key point being that software is symbolic. If one
views cognition as marked by its functional richness, one might then conclude that cog-
nition is most appropriately studied symbolically and that the mapping to the brain is a



fixed uninteresting implementation step, which does not reflect the richness and variety
of cognitive experience and behaviour.

This position does, of course, hinge upon an analogy between the structure of com-
puter systems and the structure of the mind-brain. Many would reject this analogy. In-
deed, the majority of those that express dissent from network modelling, take a less
extreme line. While acknowledging the relevance of brain implementation, they argue
that ANNs are expressively limited as a cognitive modelling method, or—at least—
emphasise that ANNs do not lead to natural modelling of certain cognitive functions.
The following are cases in point.

(i) Rule-guided problem solving: Duncan has explored the human capacity to en-
code and apply sequences of rules governing how to perform mental tasks [76]. Such
task rules state that fulfilment of a set of properties mandates a response of a particular
kind. Furthermore, these properties and the relationships between them could be quite
complex, e.g. “if all the letters on one side of the screen are in capitals and an arrow
points diagonally up to the right on the other side then respond in the direction indicated
by the big triangle”. Duncan and co-workers have shown that performance on their task
rule experiments is strongly correlated with fluid intelligence and thus, with IQ. Perfor-
mance is also associated with activation of brain areas believed to be involved in effortful
task-governed behaviour [77]. Thus, these task rule experiments seem to be revealing the
neurocognitive underpinnings of intelligence and problem solving; a key concern for sci-
ence. A natural way to think about these task rules is as symbolic operations with logic
preconditions and actions that define a particular response. In this context, participants
are seeking to correctly evaluate preconditions against presented stimuli and apply the
corresponding (correct) action. Clearly, this perspective could be directly reflected in a
production system model. Finally, one of the key questions for task rule research is char-
acterising how errors are made. To a large extent, errors seem to arise from precondi-
tions and/or actions migrating between operations (i.e. between rules). Again, such errors
could naturally be modelled in a production system formulation in which preconditions
and actions could misbind to one another.

(ii) Central Executive Function: The notion of a centralised control system that
guides thought (a Central Executive) is common in information processing theories of
cognition, c.f. Baddeley and Hitch’s working memory model [78], Shallice’s Supervi-
sory Attentional System [79] and the Central Engine in Barnard’s Interacting Cognitive
Subsystems [80]. The Central Executive is, for example, hypothesised to direct sensory,
perceptual, and motor systems, particularly overriding prepotent (stereotyped) responses.
Accordingly, it would be involved in mapping the organism’s current goals to a strategy
to realise those goals (a, so called, task set). In addition, it would impose that task set
upon the brain’s processing through centralised control. Indeed, the Central Executive
would be involved in encoding and applying task rules of the kind just discussed, and
also conscious exploration of sequences of alternatives in search of a strategy to obtain a
goal, i.e. what in AI terms would be called planning. Neurophysiological localization of
the Central Executive has focused on the Frontal lobe and particularly problem solving
deficits arising from frontal lobe damage [79]. A number of the most prominent workers
in this field have formulated their models in symbolic production systems, rather than
ANNs. One such approach employs the COGENT high-level modelling notation [81],
in which components, coded in production systems, execute in parallel, subject to inter-
component interaction. In particular, symbolic AI methods seem well suited to modelling



some classic Central Executive (frontal lobe) tasks such as, Towers of Hanoi, Towers of
London, and planning in general [81].

(iii) Syntactic structures: A long running debate in psycholinguistics has contrasted
rule-based and association-based explanations of language morphology, with Pinker typ-
ically carrying the flag for the former and McClelland and co-advocates for the latter
[82]. The hottest debate has been focused on a particularly distinctive (U-shaped) profile
of developmental data arising when children learn the English past tense inflection; i.e.
when they determine that addition of an “ed” suffix enforces a past tense interpretation
(e.g. “stay” to “stayed”), subject to many exceptions (e.g. “run” to “ran”). Although fo-
cused on one specific aspect of language, this debate serves as a sounding-board for a
broader consideration: are the regular syntactic and morphological aspects of language
in general, best viewed as symbolic rules or as emergent from the training of a Parallel
Distributed Processing (PDP)-style network. This debate is specific to regular aspects of
language; there is more agreement that exceptions could be naturally handled by PDP
networks. The critical point for the connectionists is that, in the PDP case, there is no
sense to which any particular rule or, indeed, an abstract notion of rule, is built into
the network a priori; the network, in a sense, “discovers” regularity; indeed, if you like,
the concept of regularity. Although the rules vs. associations debate will surely run and
run, in terms of our focus here, it demonstrates an—at the least perceived—mismatch
between classic connectionist approaches and the characteristics of cognitive behaviour.
Furthermore, the proposed response to this mismatch is a symbolic modelling metaphor,
which could naturally be realised in classical AI methods, such as, production systems,
logic programming, etc.

(iv) Compositionality: One characterisation of the problem connectionism suffers
is that it does not naturally reflect the representational compositionality inherent to many
cognitive capacities [74]. For example, when parts are combined into wholes, those parts,
at least to a large extent, carry their interpretation with them, e.g. “John” in “John loves
Jane” has, ostensibly, the same meaning as it does in “Jane loves John”. Although differ-
ent classes of ANNs adhere to this characteristic to different extents, it certainly seems
that classic PDP-style models do not automatically generate representational composi-
tionality. At least when taken on face value, PDP models exhibit position-specific coding
schemes; that is, the same item (e.g. “John”) would have to be separately learned in po-
sition X and position Y, with no automatic interpretational carry-over from one position
to the other. Consequently, the item may have a very different interpretation in the two
positions and, indeed, what has been learned about “John” from its appearance at posi-
tion X (where it might have been seen frequently) would not automatically inform the
understanding of “John” at position Y (where it might have been seen rarely, if at all).
This does not fit with subjective experience: the first time we see “John” in a particular
grammatical position, having seen it elsewhere frequently, does not, it would seem, man-
ifest as a complete unfamiliarity with the concept of “John”. Although not always explic-
itly framed in terms of compositionality, the intermittent attacks on PDP approaches by
proponents of localist neural coding schemes have a similar flavour [83]. Indeed, local-
ists’ criticism of the slot-coding used in PDP models of word reading [84] is very much
a critique of position-specific coding.

This dissatisfaction with connectionism suggests a symbolic perspective, since sym-
bolic models are foundationally compositional in the fashion ANNs are argued not to
be. If one accepts this weight of argument, one is left with the perspective that while the



link to the brain is certainly critical (indeed, the brain does only have neurons, synapses,
etc., to process with), it may not be practical to map directly to neural implementation.
Rather, cognitive modelling at an intermediate symbolic level may be more feasible.

In particular, ANNs have certainly made a profound contribution to understanding
cognition. This though has been most marked for a specific set of cognitive faculties.
For example, compelling models of sensory processes have been developed, e.g. stages
of the “what” visual processing pathway (i.e. the ventral stream), c.f. [85, 86, 87]; and
face-specific processing within the what pathway, cf. [88, 89]. Mature neural models
of visual attention through both space and time have also been proposed, e.g. [90, 91,
92, 60]. There are also sophisticated neural models of memory systems and learning in
general, e.g. [93, 94, 95]. Furthermore, many of these models are compelling in their
neurophysiological detail.

However, as justified above, there are areas where neural modelling has had less
success. In general terms, architectural-level neural models are scarce, i.e. models that
are broad-scope, general-purpose, and claim relevance beyond a specific cognitive phe-
nomenon. There are, though, many symbolic architecture-level models of mind, e.g.
SOAR [63]—possible reasons for this situation have been discussed, among others, in
[96]. It may also be the case that neural explanations become less compelling as cog-
nitive functions become more high-level; that is, they are well suited to characterising
“peripheral” systems, such as, vision, audition, and motor action, but they do less well
as one steps up the processing hierarchy away from input and output. In particular, what
Sloman would call deliberative processing [97], which might embrace Duncan’s task
rule experiments, planning and, at least elements of, Central Executive function, are less
naturally modelled with ANNs. To emphasise again, we are not saying that such cogni-
tive capacities cannot in some fundamental sense be neurally modelled, but rather we are
suggesting it might not be the most natural method of description.

As already suggested, a possible response to this situation is to consider whether
mapping to a neural substrate could be expedited by breaking the modelling problem into
two steps: the first a symbolic modelling of cognitive behaviour and the second a map-
ping from symbolic to neural. From a philosophical perspective, one would be arguing
that the symbolic intermediary more directly reflects the functional characteristics of the
cognitive capacity in question, leading the modeller to a, somehow, more faithful model
at the cognitive level. Furthermore, the suggestion would be that such a functional char-
acterisation would also strongly constrain the neural implementation and vice-versa, via
a direct mapping to ANNs, i.e., effectively a compilation step (which may nevertheless
be necessary computationally for the sake of efficiency).

The first, cognitive behaviour to symbolic model, step might very naturally yield
some form of computational logic model, perhaps formulated in a production systems
architecture, such as SOAR [63], ACT-R [68] or EPIC [67], or as a logic program.
Either way, the second mapping would involve some form of computational logic to
ANN transformation—exactly the topic of the neural-symbolic project. Thus, in this
respect, application of the results of neural-symbolic research could make a significant
contribution to Cognitive Neuroscience.

However, such an application raises a number of research topics. Perhaps the most
significant of these is to develop mappings from computational logic to neurophysiolog-
ically plausible neural networks. This requires consideration of more complex activa-
tion equations that directly model ion channels and membrane potential dynamics (e.g.



based upon Hodgkin-Huxley equations [98]); it also suggests approaches that treat ex-
citation and inhibition distinctly and employ more biologically-realistic learning, such
as contrastive Hebbian learning, as arises in, say, O’Reilly and Munakata’s Generalised
Recirculation Algorithm. A good source for such neural theories is [99].

1.5. Putting the Machinery to Work: Binding and First-Order Inference in a
Neural-Symbolic Framework

While it should have become clear that it seems plausible to assume that human cog-
nition produces and processes complex combinatorial structures using neural networks,
on the computer science and systems engineering side such systematic and dynamic cre-
ation of these structures presents challenges to ANNs and for theories of neuro-cognition
in general [74, 100, 101, 102]. We now will zoom in on concrete work relating to the
problem of representing such complex combinatorial structures in ANNs—with empha-
sis on FOL representations—while efficiently computationally learning and processing
them in order to perform high-level cognitive tasks. Similar to the presentation of NSCA
in Section 1.3 as application example for the theoretical and conceptual considerations
from Section 1.2, the following shall—besides presenting a relevant body of work from
neural-symbolic integration—provide a practical counterpart and grounding for some of
the cognition and cognitive neuroscience-centred discussion of the previous Section 1.4.

Specifically, this section describes how predicate logic can efficiently be represented
and processed in a type of recurrent network with symmetric weights. The approach
is based on a (variable) binding mechanism which encodes compactly first-order logic
expressions in activation. Processing is then done by encoding symbolic constraints in
the weights of the network, thus forcing a solution to an inference problem to emerge in
activation.

1.5.1. A Computational View on Fodor, Pylyshyn, and the Challenge(s) for Modelling
Cognition

One of the computationally most influential and relevant positions relating cognition and
neural-symbolic computation has been developed by [74]. There, two characteristics are
deemed essential to any paradigm that aims at modelling cognition: (i) combinatorial
syntax and semantics for mental representations and (ii) structure sensitivity of processes.
The first characteristic allows for representations to be recursively built from atomic
ones in a way that the semantics of a non-atomic structure is a function of the semantics
of its syntactic components. The second characteristic refers to the ability to base the
application of operations on a structured representation, on its syntactic structure.

Several works partially answered their call, yet none could capture the full expres-
sive power of FOL: Even with limited expressiveness, most attempts to address Fodor’s
and Pylyshyn’s challenges are extremely localist, have no robustness to neural damage,
have limited learning ability, have large size-complexity, and require ad hoc network en-
gineering rather than using a general purpose mechanism which would be independent
of the respective knowledge base (KB) [103, 104, 5, 105, 106, 107, 101]. Additionally,
only few systems used distributed representations—and even those which do typically
suffer from information loss, and little processing abilities [108, 109, 110].



1.5.2. The Binding Problem Computationally Revisited

Despite the large body of work (non-exhaustively) summarised in Section 1.4 and the
corresponding many attempts to approach Fodor’s and Pylyshyn’s criticism, computa-
tional neural modelling of high-level cognitive tasks and especially language processing
is still considered a hard challenge. Many of the problems in modelling are taken to very
likely be related to the already previously described “binding problem”. Following the
definition by [102], in short the general binding problem concerns how items, which are
encoded in distinct circuits of a massively parallel computing device, can be combined
in complex ways, for various cognitive tasks. In particular, binding becomes extremely
challenging in language processing and in abstract reasoning [111, 112, 100, 101], where
one must deal with a more demanding, special case: variable binding. The underlying
question is narrowed down to: How are simple constituents glued to variables and then
used by several and distinct parts of a massively parallel system, in different roles? Fol-
lowing [112], the binding problem can be further decomposed into four constitutive chal-
lenges: (i) the massiveness of the binding problem, (ii) the problem of multiple instances
of a fact, (iii) the problem of associating values to variables and (iv) the relation between
bindings in short-term working memory (WM) as opposed to bindings in long-term
memory (LTM). When jointly looking at all four, the binding mechanism seems to be the
fundamental obstacle as each individual item depends on it. But even if a binding mech-
anism should exist and enables the representation of complex structures in neuron-like
units, it is not clear how they are processed in order to achieve a goal and how the pro-
cedural knowledge needed for such processing is encapsulated in the synapses. Specif-
ically, in the computational case, when FOL expressions shall be processed using just
neural units with binary values, how should the respective formulae be encoded? How
are neural-ensembles, representing simple constituents, glued together to form complex
structures? And how are these structures manipulated for unification and ultimately for
reasoning?

As a first step, a binding mechanism is required that will allow to “glue” together
items in a KB, such as predicates, functions, constants, and variables, and then apply it
in manipulating these structures. Correspondingly, several attempts have been made to
tackle the variable binding problem [103, 111, 113, 114, 101]. But while the respective
approaches have greatly contributed to our understanding of possible mechanisms at
work, it turned out that they each still have signifiant shortcomings related to limited
expressiveness, high space requirements, or central control demands.

1.5.3. Inference Specifications as Fixed Points of ANNs

Instead of developing a bottom-up, modular solution to performing reasoning with
ANNs, let us examine the opposite approach: specifying what should be the possible re-
sults of a reasoning process as fixed points (or stable states) of an ANN. In every ANN
that reaches equilibrium, converging onto a stable state (instead of oscillating), the fixed
points of the network—given clamped inputs—can be associated with solutions for the
problem at hand. In particular, ANNs with a symmetric matrix of weights such as, for
instance, the already discussed Boltzmann machines from Section 1.3, perform gradient
descent in an energy function, whose global minima can be associated with solutions
to the problem. Although symmetric (energy minimisation) networks are the straight-



forward architecture choice, other (non-symmetric) architectures may be used as long
as stable states emerge and those stable states correspond to solutions of the problem at
hand. When using symmetric networks, the general strategy is to associate the problem-
solutions with the global minima of the energy equation that corresponds to the network.
In particular, as the “problem” is FOL inference, valid inference chains are the solutions,
which are mapped into the global minima of the energy function.

It has been shown that high-order symmetric ANNs (with multiplicative synapses)
are equivalent to “standard” symmetric ANNs (with pairwise synapses) with hidden units
[26]. In the corresponding simulations, high-order variants of Boltzmann Machines are
therefore used, as they are faster to simulate and have a smaller search space than the
“standard” Boltzmann machines with hidden units and only pair-wise connections. The
declarative specifications (constraints) characterising valid solutions are compiled (or
learned) into the weights of a higher-order Boltzmann machine. The first-order KB is
either compiled into weights, or it is clamped onto the activation of some of the visi-
ble neurons. A query, short-term facts, and/or optional cues may also be clamped onto
the WM. Once the KB is in its place (stored as long-term weights) and queries or cues
are clamped onto the WM, the ANN starts performing its gradient descent algorithm,
searching for a solution for the inference problem that satisfies the constraints stored as
weights. When the network settles onto a global minimum, such a stable state is inter-
preted as a FOL inference chain proving queries using resolution-based inference steps
[115, 116, 117, 118].

1.5.3.1. ANN Specifications Using Weighted Boolean Constraints

The first step in the process is the specification of the problem (e.g., FOL inference) as
a set of weighted propositional logic formulae. These formulae represent Boolean con-
straints that enforce the neurons to obtain zero/one assignments that correspond exactly
to the valid FOL inference solutions.

Satisfying a propositional formula is the process of assigning truth-values (true/-
false) to the atomic variables of the formula, in such a way that the formula turns out
to be true. Maximally satisfying a weighted set of such formulae is finding truth-values
that minimise the sum of the weights of the violated formulae. By associating the truth-
value true with 1 and false with 0, a quadratic energy function is created, which basically
calculates the weighted sum of the violated constraints. Conjunctions are expressed as
multiplicative terms, disjunctions as cardinality of union, and negations are expressed as
subtraction from 1. In order to hint the network about how close it is to a solution, the
conjunction of weighted formulae is treated as a sum of the weights of Boolean con-
straints that are not satisfied. It is possible to associate the problem of maximal-weighted-
satisfiability of the original set of weighted formulae with finding a global minimum for
the energy equation that corresponds to the problem specification [26]. In other words,
not satisfying a clause would incur an increase of the system’s energy. One interesting
and powerful side effect of such a mapping is the possibility of partially satisfying an
otherwise unsatisfiable set of formulae. This phenomenon is used for specifying optimal
and preferred solutions as in: finding a shortest explanation or proof (parsimony), finding
most general unifications, finding the most probable inference or most likely explana-
tion, etc. When different levels of weights are associated with the formulae of the KB,
a non-monotonic inference engine is obtained based on Penalty Logic. In fact, in [48]
equivalence has been shown between minimising the energy of symmetric ANNs and



Figure 2. A symmetric 3-order network, characterised by a 3-order energy function: XY Z −3XY +2X +2Y .
Minima of this energy function are fixed points of the network. This network searches for satisfying solu-
tions for the weighted conjunctive normal form (CNF): (¬X ∨¬Y ∨Z)∧ (X ∨Y ). Note that the clauses of the
weighted CNF are augmented by penalties reflecting the importance of each constraint.

satisfiability of penalty logic, i.e., every penalty logic formula can be efficiently trans-
lated into a symmetric ANN and vice versa. Figure 2 gives an example for a network
instantiation of a satisfiability problem.

Based on these results, a compiler has been built that accepts solution specifications
as a form of index-quantified penalty logic formulae and generates ANNs that seek for
maximally satisfying solutions for the specified formulae. This compiler can then be used
to generate ANNs for a variety of FOL retrieval, unification, and inference problems,
involving thousands of neural units and tens of thousands of synapses. Alternatively to
compilation, these specification constraints could also be learned (unsupervised) using
an anti-Hebbian learning rule, whenever a fixed point is found that does not satisfy some
constraints [48].

1.5.3.2. ANN Specifications of FOL Inference Chains

There are two possible approaches to logical reasoning, one that uses Model Theory and
the other Proof Theory. Informally, Model Theory confirms that a statement could be
inferred by checking all possible models that satisfy a KB, while Proof Theory applies
inference steps to generate a proof for the statement in question. Most attempts at do-
ing FOL inferences in ANNs—or using propositional satisfiability in general—employ
model-theoretic techniques based on grounded KBs [119, 4, 120, 106]. However, ground-
ing results in either exponential explosion of the number of boolean variables (neurons)
or severe limitations to the expressive power of the FOL language (e.g. no function
symbols and no existential quantifiers). Proof Theory techniques may use ungrounded
FOL formulae and are more efficient in size. Another consequence of having a proof
for a query statement is that this proof can be seen as an explanation for that statement,
which is not always possible to obtain when model-theoretic methods are used. A proof-
theoretic approach was, for instance, used by [115] and allows for a variety of infer-
ence rules (e.g. Resolution, Modus Ponens, etc.) with either clamped KB or with the KB
stored in weights. In [116], a FOL theorem prover has been studied with resolution and a
knowledge base that is clamped entirely in activation. In [118] most general unification
with occurrence checking is implemented using a more recent binding mechanism with
a reduced size complexity.



After the query and/or cues had been clamped onto the WM, the network is set to
run until a solution emerges as a global minimum of the network’s energy function. This
stable state may be interpreted as a proof or a chain of FOL clauses. Each clause is ob-
tained by either retrieving it from the LTM, by copying it from previous steps (optionally
with collapse), or by resolving two previous clauses in the chain. In every step, the need
to unify resolved literals may cause literals to become more specific by variable binding.
It is possible to construct an ANN that searches for proofs by refutation (a complete strat-
egy that derives a contradiction when the negated query is added to the KB) or directly
infer a statement. Directly inferring the conclusion, though not a complete strategy, bears
more resemblance to human reasoning, and seems more cognitively plausible.

Variations of the above basic inference mechanism use competition among proofs
and can be used for inferring the most likely explanation for a query, most probable
explanation, most probable inference, least expensive plan or most preferable action (as
in Asimov’s robotic laws).

1.5.4. A Fault Tolerant Mechanism for Dynamic Binding

A compact binding mechanism is at the foundation of the described FOL encoding and
of the general purpose inference engine. The binding technique is the basic mechanism
upon which the WM is constructed and it is this mechanism that enables the retrieval of
the needed knowledge from LTM and then unification and inference.

Contrary to temporal binding [114], it uses spatial (conjunctive) binding which cap-
tures compositionality in the stable state of the neurons and is not sensitive to timing syn-
chronisation or time slot allocation. Although several conjunctive (non-temporal) bind-
ing mechanisms have been proposed, the one in [117] compactly uses only few ensem-
bles of neurons, each of which can bind any of the many knowledge items stored in the
LTM. This property has three side effects: (i) reduction in the number of neurons (units),
as binders are only needed to represent a proof (and not to capture all the KB), (ii) fault
tolerance, as each binding ensemble is general purpose and may take the place of any
other failed binding ensemble, and finally (iii) high expressive power, as any labelled
directed graph structure may be represented by this mechanism (FOL as a special case).

This binding technique applies crossbars of neurons to bind FOL objects (clauses,
literals, predicates, functions, and constants) using special neural ensembles called Gen-
eral Purpose (GP) binders. These GP-binders act as indirect pointers, i.e., two objects are
bound if and only if a GP-binder points to both of them. Since GP-binders can point to
other GP-binders, a nested hierarchy of objects may be represented using such binders
pointing at the same time to objects/concepts and to other binders. In fact, arbitrary di-
graphs may be represented and, as special cases, nested FOL terms, literals, clauses, and
even complete resolution-based proofs [115, 116]. Manipulation of such compound rep-
resentations is done using weighted Boolean constraints (compiled or learned into the
synapses), which cause GP-binders to be dynamically allocated to FOL objects, retrieved
from the LTM. Since the GP-binders can be used to bind any two or more objects, the
number of binders that is actually needed is proportional to the size of the proof. As a re-
sult only few such binders are actually needed for cognitively-plausible inference chains,
causing the size complexity of the WM to be drastically reduced to O(n · log(k)) where
n is the proof length and k is the size of the KB [118]. Interestingly, the fault tolerance
of this FOL WM is the result of the generic nature of the binders, which is due to redun-



dancy in synapses rather than to redundancy in units. GP-binders happen to address most
of the challenges stated by [112] and summarised above.

1.5.5. Examples of Inferences, Cues, and Deductive Associations

To illustrate the GP-binder approach, assume a KB consisting of the following rules:

• For every u, there exists a mother of u who is also a parent of u: Parent(mother(u),u)
• For all x,y,z: Parent(x,y)∧Parent(y,z)→ GrandParent(x,z)
• More KB items: facts and/or rules optionally augmented by weights

A general purpose resolution-based inference engine and a WM implemented in a
variation of Boltzmann Machines is compiled (or learned) with the above KB stored in
its synaptic connections. When clamping the query: GrandParent(V,Anne) onto some of
the visible units in the WM, while settling onto a global energy minimum, the network
is capable of binding the variable V to the term representing “the mother of the mother
of Anne” and finding the complete inference chain as a proof for that query:

1. Retrieving and unifying rule 1: Parent(mother(Anne),Anne)
2. Retrieving and unifying rule 2: ¬Parent(mother(mother(Anne)),mother(Anne))∨

¬Parent(mother(Anne),Anne)∨ GrandParent(mother(mother(Anne)),Anne)
3. Resolving 1 and 2: ¬Parent(mother(mother(Anne)),mother(Anne))∨

GrandParent(mother(mother(Anne)),Anne)
4. Retrieving rule 1 again but with different unification (multiple instances):

Parent(mother(mother(Anne)),mother(Anne))
5. QED by resolving 3 and 4: GrandParent(mother(mother(Anne)),Anne)

FOL clauses, literals, atoms, and terms are represented as directed acyclic graphs
while GP-binders act as nodes and labeled arcs. The GP-binders are dynamically allo-
cated without central control and only the needed rules are retrieved from the KB, in
order to infer the query (the goal). Other rules that are stored in the KB (in the LTM) are
not retrieved into the WM because they are not needed for the inference.

The query may be considered as a kind of cue in the WM, that directs the network’s
“attention” to searching for the grandparent of Anne; yet, other cues may be provided
instead or in addition to the query: for example, we can accelerate the system’s conver-
gence to the correct solution by specifying in the WM that rule 1 and/or rule 2 should be
used, or, even better, by clamping these rules onto the WM activation prior to the network
operation.

This ANN inference mechanism could also be interpreted as an intelligent associa-
tive memory because cues generate a chain of deduction steps that leads to complex as-
sociations. For example, instead of a query, if just “Anne” and “mother” are clamped as
cues in the WM this amounts to asking the system to infer something about the person
“Anne” and the concept “mother”. In this case the system will converge to one of sev-
eral possible inferences (each with a known probability). For instance, the system may
find that Anne has a parent who is her mother. Alternatively, it may find that Anne has
a grandparent (the mother of her mother), or that Anne’s mother has a mother and that
mother also has a mother. The likelihood of the possible emerging associations is deter-
mined by such factors as the weights of the LTM (i.e. penalties of the FOL KB items,
stored in the synapses) and the depth of the inference chains.



1.5.6. Can Neurons Be Logical? Fundamental Negative and Positive Results

The just described work provides evidence that unrestricted (but memory-bound) FOL
inference can be represented and processed by relatively compact, attractor-based ANNs
such as the previously introduced Boltzmann machines. Nevertheless, in [121] it has
also been shown that distributed neural mechanisms—among which also Boltzmann Ma-
chines count—may have pathological oscillations in ANNs that have cycles and may
never find a global solution. The related positive result is that when the ANN has no cy-
cles, it is possible to have a neural activation function that guarantees finding a global so-
lution. Once a cycle is added to the network, no activation function is able to eliminate all
the pathological scenarios above. Unfortunately, the outlined FOL networks have many
cycles and are therefore doomed to be incomplete even with a bound on the proof length.
Luckily with some plausible assumptions on the daemon, one can guarantee that such
pathological scenarios will not last forever. Another major obstacle for achieving good
performance is that Boltzmann Machines and other symmetric networks use stochastic
local search algorithms to search for a global minimum of their energy function. Theoret-
ically and practically, local minima may plague the search space, so such ANNs are not
guaranteed to find a solution in a finite time. Current research is trying to solve this prob-
lem by using many variations of Hebbian learning methods and variations of Boltzmann
machines to change the synapses of an ANN in a way that local minima are eliminated
and a global minimum is found faster. As it turns out, the recent success of deep learn-
ing mostly also emerges from the same variations but from a more practical perspective.
Learning styles of this type are called “speed-up practicing” as they aim to use learning
as a strategy for self-improvement.

1.6. Connectionist First-Order Logic Learning Using the Core Method

As has already become clear in the previous sections, one of the central problems at the
core of neural-symbolic integration is the representation and learning of first-order rules
(i.e. relational knowledge) within a connectionist setting. But there is a second motivation
besides the incentives coming out of cognitive science and cognitive neuroscience and
aiming at the modelling and (re-)creation of high-level cognitive processes in a plausible
neural setting: The aim to create a new, neurally-inspired computational platform for
symbolic computation which would, among others, be massively distributed with no
central control, robust to unit failures, and self-improving with time.

In this and the following section we take a more technical perspective—to a certain
extent contrasting the strongly cognitively-motivated Sections 1.4 and 1.5—and focus
on two prototypical examples for work on the computer science side of neural-symbolic
integration, namely (i) the approximation of the immediate consequence operator TP
associated to a FOL program P in a neural learning context, and (ii) Markov Logic as
probabilistic extension of FOL combining logic and graphical models. While relegating
elaborations on the latter topic to the following Section 1.7, we start with the question of
the consequence operator.

Assume a FOL program containing the fact p(X). Applying the associated TP-
operator once (to an arbitrary initial interpretation), leads to a result containing infinitely
many atoms, namely all p(X)-atoms for every X within the underlying Herbrand uni-



verse UL. Thus, one has to approximate the operator because even a single application
can lead to infinite results. And while in this simple example one might still be able
to define a finite representation, the problem might become arbitrary complex for other
programs. So-called rational models have been developed to tackle this problem [122].

Unfortunately, there is no way to compute an upper bound on the size of the result-
ing rational representation. Because we are not aware of any other finite representation,
we will in the following concentrate on the standard representation using Herbrand in-
terpretations. In principle, there are two options to approximate a given operator. On the
one hand, one can develop an approximating connectionist representation for a given ac-
curacy. This approximation in space leads to an increasing number of hidden layer units
in the resulting networks [123, 124]. Alternatively, a connectionist system can be con-
structed that approximates a single application of TP, and feeding its output back as input
to itself, thus resulting in an iteration. This approximation in time was used in [125] and
[126]. Networks constructed along the approximation in space approach are more or less
standard architectures with many hidden layer units, while the others are usually very
small but use non-standard architectures and units.

1.6.1. Feasibility of the First-Order Core Method and the Embedding of First-Order
Rules into Neural Networks

It is well-known that multilayer feed-forward networks are universal approximators for
all continuous functions on compact subsets [127]. If a suitable way to represent first-
order interpretations by (finite vectors of) real numbers could be found, then feed-
forward networks may be used to approximate the meaning functions of such programs.
It is necessary that such a representation is compatible with both, the logic programming
and the ANN paradigm. For this, one defines a homeomorphic embedding from the space
of interpretations into a compact subset of the real numbers. [128] showed the existence
of a corresponding metric homeomorphism, and [129] subsequently expanded this result
to the characterisation of a topological isomorphism. Following these insights, one can
use level mappings to realise this embedding. For some Herbrand interpretation I, a bi-
jective level mapping | · | : BL →N+, and b > 2, the embedding function η : BL →R and
its extension η : IL → R are defined as follows:

η : BL → R : A 7→ b−|A|
η : IL → R : I 7→ ∑

A∈I
η(A)

Here, Cb := {η(I)|I ∈ L} ⊂ R is used to denote the set of all embedded interpreta-
tions. This results in a “binary” representation of a given interpretation I in the number
system with base b. After embedding an interpretation and looking at its representation
within this number system one finds a 1 at each position |A| for all A ∈ I. As mentioned
above, the embedding is required to be homeomorphic (i.e. to be continuous, bijective
and to have a continuous inverse), because being homeomorphic ensures that η is at
least a promising candidate to bridge the gap between logic programs and connection-
ist networks. One can construct a real valued version fP of the immediate consequence
operator TP as follows:

fP : Cb →Cb : X 7→ η(TP(η
−1(X)))



Because η is a homeomorphism, fP is a correct embedding of TP in the sense that all
structural information is preserved. Furthermore, η is known to be continuous which
allows to conclude that fP is continuous for a continuous TP. Based on these insights, one
can construct connectionist networks to approximate TP. As mentioned above there are
in principle two options for the approximation—in space and in time. The embedding η

introduced above allows for both, as discussed in detail in [130, 124, 125, 126]. In [131],
methods have been described in full detail to construct standard sigmoidal networks, as
well as radial basis function networks for any given accuracy of approximation. That is,
if an interpretation I is fed into the network, the resulting output can be interpreted as an
interpretation J and the distance between J and TP(I) is limited by a given ε .

So far we have been concerned with the approximation of a single application of the
immediate consequence operator only. More interesting is whether the repeated appli-
cation of the approximating function converges to a fixed point relating to the model of
the underlying program. Convergence can be demonstrated by showing that a function is
contractive and by employing the Banach contraction mapping principle. Unfortunately,
it turns out that the approximating functions described above are not contractive on R in
general, but they are contractive if restricted to Cb. Therefore, one can conclude that not
only the meaning function TP can be approximated using a connectionist network, but
also the iteration of the approximation converges to a state corresponding to a model of
the underlying program provided that TP itself is contractive.

1.6.2. Learning in a First-Order Setting

Within a propositional setting, learning has been shown to be possible [4] and to be of
advantage [132]. As in the propositional case, training data is used to adapt the weights
and structure of randomly initialised networks. An approach built upon vector-based net-
works has first been proposed in [124] along with a specifically tailored learning method.
To show the applicability of that approach, a network had randomly been initialised and
pairs of interpretations and corresponding consequences (i.e. pairs of I and TP(I)), had
been used as training samples. After convergence of the training process the network was
evaluated by feeding random interpretations into the network and iterating the compu-
tation by feeding the outputs back into the input layer. The resulting sequence of inter-
pretations was found to converge to the model of the underlying program P. Hence it
can be concluded that the network indeed managed to learn the immediate consequence
operator to sufficient accuracy.

From a more practical perspective (acknowledging the above difficulties, yet recog-
nising their scientific, representational value), some have opted for connecting neural
computation with the work done in Inductive Logic Programming [133, 134]. Initial re-
sults, that take advantage of ILP methods for efficient FOL learning called propositional-
isation [135], have only started to emerge, but with promising results (cf., among others,
the Connectionist ILP system by [136], or the work by [137, 138]). Also within a more
practical approach, an extension of the above fixed-point method to multiple networks,
as shown in Figure 1, has been proposed in [5]. Such an extension, called connectionist
modal logic, is of interest here in relation to FOL learning because it has proven capable
of representing and learning propositional modal logics, which in turn are equivalent to
the fragment of FOL with two variables. Propositional modal logic has been shown to
be robustly decidable [139] and it can be considered, as a result, a candidate for offer-



English First-Order Logic Weight
Smoking causes cancer ∀x : Sm(x)→Ca(x) 1.5

Friends share smoking habits ∀x∀y : Fr(x,y)∧Sm(x)→ Sm(y) 1.1
Table 2.

Figure 3. A Markov network with two constants Anna (A) and Bob (B).

ing an adequate middle ground between the requirements of representation capacity and
learning efficiency.

1.7. Markov Logic Networks Combining Probabilities and First-Order Logic

As a second prototypical example for the more technical side of neural-symbolic integra-
tion besides the connectionist first-order learning application from the previous section,
we now turn our attention to Markov logic networks. Markov logic is a probabilistic ex-
tension of FOL [140, 141]. Classical logic can compactly model high-order dependen-
cies. However, at the same time it is deterministic and therefore brittle in the presence
of noise and uncertainty. The key idea of Markov logic is to overcome this brittleness
by combining logic with graphical models. To that end, logical formulae are softened
with weights, and effectively serve as feature templates for a Markov network or Markov
Random Field (MRF) [142], i.e., an undirected graphical model that allows arbitrary
high-order potentials, similar to (but potentially much more compact than) a high-order
Boltzmann distribution.

Concretely, a Markov logic network (MLN) is a set of weighted FOL formulae.
Together with a set of constants, it defines a Markov network with one node per ground
atom (a predicate with all variables replaced by a constant) and one feature per ground
formula. The weight of a feature is the weight of the first-order formula that originated
it. The probability of a state x in such a network is given by P(x) = 1

Z exp(∑i wi fi(x)),
where Z is a normalisation constant, wi is the weight of the i-th formula, fi = 1 if the i-th
formula is true, and fi = 0 otherwise.

As an example, Table 2 shows an MLN with two weighted formulae, and Figure 3
shows the corresponding Markov network with two constants, Anna (A) and Bob (B).

Exact and approximate inference methods for MRFs and other graphical models
can also be applied to MLNs. Popular choices include variable elimination or junction
trees for exact inference and message-passing or Markov chain Monte Carlo methods
for approximate inference. However, compared to standard MRFs, MLNs introduce new



challenges and opportunities for efficient reasoning. One challenge is that even modestly
sized domains can yield exceptionally large and challenging ground Markov networks.
For example, in a social network domain such as Table 2, the number of friendships
grows quadratically with the number of people, since any pair of people can be friends.
Worse, simple concepts such as transitivity (friends of your friends are likely to be your
friends as well) lead to a cubic number of ground formulae. Thus, a domain of 1000 peo-
ple has 1 million possible friendships and 1 billion possible transitivity relations. Stan-
dard inference methods do not scale well to these sizes, especially when formula weights
are large, representing strong interactions among the variables. The opportunity is that
these large models have a great deal of symmetry, structure that can be exploited by
“lifted” inference algorithms (cf. [143, 144]). Lifted inference works by grouping vari-
ables or variable configurations together, leading to smaller, simpler inference problems.
For example, when there is no evidence to differentiate Anna and Bob, the probabil-
ity that each smokes must be identical. Depending on the MLN structure and evidence,
lifted inference can compute exact or approximate probabilities over millions of variables
without instantiating or reasoning about the entire network. Another technique for scal-
ing inference is to focus on just the subset of the network required to answer a particular
query or set of queries [145]. Related methods include lazy inference [146, 147], which
only instantiates the necessary part of the network, and coarse-to-fine inference [148],
which uses more complex models to refine the results of simpler models.

The parameter values in an MLN are critical to its effectiveness. For some applica-
tions, simply setting the relative weights of different formulae is sufficient; for example,
a domain expert may be able to identify some formulae as hard constraints, others as
strong constraints, and others as weak constraints. In many cases, however, the best per-
formance is obtained by carefully tuning these to fit previously observed training data.
As with other probabilistic models, MLN weight learning is based on maximizing the
(penalized) likelihood of the training data. Given fully-observed training data, this is a
convex optimization problem that can be solved with gradient descent or second-order
optimization methods. However, computing the gradient requires running inference in
the model to compute the expected number of satisfied groundings of each formula. Fur-
thermore, the gradient is often very ill-conditioned, since some formulae have many more
satisfying groundings than others. The standard solution is to approximate the gradient
with a short run of Markov chain Monte Carlo, similar to persistent contrastive diver-
gence methods used to train restricted Boltzmann machines [149], and to precondition
the gradient by dividing by its variance in each dimension [150]. A popular alternative
is optimizing pseudolikelihood [151], which does not require running inference but may
handle long chains of evidence poorly.

Most recently, a new paradigm has emerged by tightly integrating learning with
inference, as exemplified by sum-product networks (SPNs) [152]. The development of
SPNs is motivated by seeking the general conditions under which the partition function
is tractable. SPNs are directed acyclic graphs with variables as leaves, sums and prod-
ucts as internal nodes, and weighted edges. Figure 4 (left) shows an example SPN imple-
menting a junction tree with clusters (X1 and X2) and (X1 and X3) and separator X1,
and Figure 4 (right) depicts a Naive Bayes model with variables X1 and X2 and three
components.

To compute the probability of a partial or complete variable configuration, set the
values of the leaf variables and compute the value of each sum and product node, starting



Figure 4. (left) Example SPNs implementing a junction tree with clusters (X1 and X2) and (X1 and X3) and
separator X1. (right) Naive Bayes model with variables X1 and X2 and three components.

at the bottom of the SPN. For example, to compute P(X1 = true,X3 = false) in the SPN in
Figure 4 (left), set the value of X1 and X3 to 0, since these variable values contradict the
specified configuration, and set all other leaves to 1. Each of the four lower sum nodes
is a weighted sum of two leaf values; from left to right, they evaluate to 1, 1, 0.5, and
0.3. The product nodes above them evaluate to 0.5 and 0.3, and the overall root equals
0.95 ·0.5+0.05 ·0.3 = 0.49. Thus, inference follows the structure of the SPN, allowing
arbitrary probability queries to be answered in linear time.

It has been shown that if an SPN satisfies very general conditions called complete-
ness and consistency, then it represents the partition function and all marginals of some
graphical model. Essentially all tractable graphical models can be cast as SPNs, but SPNs
are also strictly more general. SPNs achieve this by leveraging the key insight of dy-
namic programming, where intermediate results are captured (by internal sums and prod-
ucts) and reused. In this aspect, SPNs are similar to many existing formalisms such as
AND/OR graphs and arithmetic circuits. However, while these formalisms are normally
used as compilation targets for graphical models, SPNs are a general probabilistic model
class in its own right, with efficient learning methods developed based on backpropaga-
tion and EM. Experiments show that inference and learning with SPNs can be both faster
and more accurate than with standard deep networks. For example, SPNs perform image
completion better than many state-of-the-art deep networks for this task. SPNs also have
intriguing potential connections to the architecture of the cortex (cf. [152]).

Relational sum-product networks (RSPNs) extend SPNs to handle relational do-
mains such as social networks and cellular pathways [153]. Like MLNs, an RSPN rep-
resents a probability distribution over the attributes and relations among a set of objects.
Unlike MLNs, inference in an RSPN is always tractable. To achieve this, RSPNs define
a set of object classes. A class specifies the possible attributes of each object, the classes
of its component parts, and the possible relations among the parts. For example, Figure 5
shows a partial class specification for a simple political domain. A ‘Region’ may contain
any number of nations, and two nations within a region may be adjacent, in conflict, or
both. A ‘Nation’ contains a government object and any number of person objects, each
of which may or may not support the government. A class also specifies a tractable dis-
tribution over the attributes, parts, and relations. The structure and parameters of SPNs
can be learned from data. RSPNs have been applied to social network and automated
debugging applications, where they were much faster and more accurate than MLNs.

In summary, due to the achieved combination between symbolic representations and
subsymbolic (in this case, graphical) features and forms of reasoning, MLNs and related



class Region:

exchangeable part Nation

relation Adjacent(Nation,Nation)

relation Conflict(Nation,Nation)

class Nation:

unique part Government

exchangeable part Person

attribute HighGDP

relation Supports(Person,Government)

Figure 5. Partial class definition for a relational sum-product network in a simple political domain.

formalisms have found a growing number of applications and gained popularity in AI in
general. They can therefore be seen as success stories of symbolic-numerical integration
closely related to the original domain of neurally-plausible or -inspired implementations
of high-level cognitive reasoning, exemplifying valuable theory work with high relevance
to computer science and, thus, complementing the aforementioned examples—among
others given by NSCA and Penalty Logic—as relevant neural-symbolic applications on
the systems level.

1.8. Relating Neural-Symbolic Systems to Human-Level Artificial Intelligence

Following the quite technical exposition of the last two sections, we now return to more
conceptually-motivated considerations focusing on the relation between neural-symbolic
integration and research in Human-Level Artificial Intelligence (HLAI), before identify-
ing corresponding challenges and research opportunities.

HLAI, understood as the quest for artificially-created entities with human-like abil-
ities, has been pursued by humanity since the invention of machines. It has also been
a driving force in establishing artificial intelligence as a discipline in the 1950s. 20th-
century AI, however, has developed into a much narrower direction, focussing more and
more on special-purpose and single-method driven solutions for problems which were
once (or still are) considered to be challenging, like game playing, problem solving, nat-
ural language understanding, computer vision, cognitive robotics, and many others. In
our opinion, 20th-century AI can therefore be perceived as expert AI, producing and pur-
suing solutions for relevant specific tasks by using specialised methodologies designed
for the tasks in question. We do not aim to say that this is a bad development—quite to
the contrary, we think that this was (and still is) a very worthwhile and very successful
endeavour with ample (and in some cases well-proven) scope for considerable impact on
society.

However—although having been one of the core ideas in the early days of AI—the
pursuit of HLAI has been declining in the 20th century, presumably because the original
vision of establishing systems with the desired capabilities turned out to be much harder
to realise than expected in the beginning. Nevertheless, in recent years a rejuvenation of
the original ideas has become apparent, driven on the one hand by the insight that cer-
tain complex tasks are outside the scope of specialised systems, and on the other hand



by the discovery of new methodologies appropriate to address hard problems of general
intelligence. Some examples for such new methodologies are the numerous approaches
for machine learning, non-classical logic frameworks, or probabilistic reasoning, just to
mention some of them. Furthermore, rapid developments in the neurosciences based on
the invention of substantially refined means of recording and analysing neural activation
patterns in the brain influenced this development. These are accompanied by interdis-
ciplinary efforts within the cognitive science community, including psychologists and
linguists with similar visions.

It is apparent that the realisation of HLAI requires the cross-disciplinary integration
of ideas, methods, and theories. Indeed we believe that disciplines such as (narrow) arti-
ficial intelligence, neuroscience, psychology, and computational linguistics will have to
converge substantially before we can hope to realise human-like artificially intelligent
systems. One of the central questions in this pursuit is thus a meta-question: What are
concrete lines of research which can be pursued in the immediate future in order to ad-
vance in the right direction and to avoid progress towards—currently prominently dis-
cussed, albeit highly speculative—less desirable technological or social scenarios? The
general vision does not give any answers to this, and while it is obvious that we require
some grand all-encompassing interdisciplinary theories for HLAI, we cannot hope to
achieve this in one giant leap. For practical purposes—out of pure necessity since we can-
not, and for principled reasons should not even attempt to, shed our scientific inheritance
[154]—we require the identification of next steps, of particular topics which are narrow
enough so that they can be pursued, but general enough so that they can advance us into
the right direction. This brings us back to the topic of this survey article, neural-symbolic
integration.

The proposal for neural-symbolic integration as such a research direction starts from
two observations. These correspond to the two principled perspectives intersecting and
combining in neural-symbolic integration:

(i) The physical implementation of our mind is based on the neural system, i.e., on
a network of neurons as identified and investigated in the neurosciences. If we hope to
achieve HLAI, we cannot ignore this neural or subsymbolic aspect of biological intelli-
gent systems.

(ii) Formal modelling of complex tasks and human—in particular, abstract—
thinking is based on symbol manipulation, complex symbolic data structures (like
graphs, trees, shapes, and grammars) and symbolic logic. At present, there exists no vi-
able alternative to symbolic approaches in order to encode complex tasks.

These two perspectives however—the neural and the symbolic—are substantially
orthogonal to each other in terms of the state-of-the-art in the corresponding disciplines.
As also evidenced by the previous sections, symbolically understanding neural systems
is hard and requires significant amounts of refined theory and engineering while still
falling short of providing general solutions. Furthermore, it is quite unclear at present
how symbolic processing at large emerges from neural activity of complex neural sys-
tems. Therefore, symbolic knowledge representation and the manipulation of complex
data structures used for representing knowledge at the level required for HLAI is way
outside the scope of current artificial neural approaches.

At the same time humans—using their neural wetware, i.e. their brains—are able to
deal successfully with symbolic tasks, to manipulate symbolic formalisms, to represent
knowledge using them, and to solve complex problems based on them. In total, there is



a considerable mismatch between human neurophysiology and cognitive capabilities as
role models for HLAI on the one hand, and theories and computational models for neural
systems and symbolic processing on the other hand.

It is our belief that significant progress in HLAI requires the reconciliation of neural
and symbolic approaches in terms of theories and computational models. We believe that
this reconciliation is as much central for the advancement of HLAI as it is for cognitive
science and cognitive neuroscience (as described in Section 1.4). We also believe that the
pursuit of this reconciliation is timely and feasible based on the current state of the art,
and will continue by briefly mentioning some recent developments in neural-symbolic
integration which we consider to be of particular importance for the HLAI discussion.
Further pointers can be found, e.g., in [126, 17, 5].

The line of investigation we want to mention takes its starting point from compu-
tational models in (narrow) AI and machine learning. It attempts to formally define and
practically implement systems based on ANNs which are capable of learning and dealing
with logic representations of complex domains and inferences on these representations.
While this can be traced back to McCulloch & Pitts’ landmark paper on the relation be-
tween propositional logic and binary threshold ANNs [28], it has been largely dormant
until the 1990s, where (as already mentioned in previous sections) first neural-symbolic
learning systems based on these ideas were realised—cf., among others, [19, 33, 4].
While these initial systems were still confined to propositional logics, in recent years
systems with similar capabilities based on first-order logic have been realised—cf., for
instance, [155] or Section 1.6. It is to be noted, however, that these systems—despite the
fact that they provide a conceptual breakthrough in symbol processing by ANNs—are
still severely limited in their scope and applicability, and improvements in these direc-
tions do not appear to be straightforward at all. In order to overcome such problems,
we also require new ideas borrowed from other disciplines, in order to establish neural-
symbolic systems which are driven by the HLAI vision. Results from cognitive psychol-
ogy on particularities of human thinking which are usually not covered by standard log-
ical methods need to be included. Recent paradigms for ANNs which are more strongly
inspired from neuroscience—as discussed, for example, in [156]—need to be investi-
gated for neural-symbolic integration. On top of this, we require creative new ideas bor-
rowed, among others, from dynamical systems theory or organic computing to further
the topic.

The presented selection is considered to be exemplary and there are several other
efforts which could be mentioned. However, we selected this line of research for presen-
tation in the last paragraph as to us it appears to be typical and representative in that it
is driven by computer science, machine learning, and classical AI research augmented
with ideas from cognitive science and neuroscience.

1.9. (Most) Recent Developments and Work in Progress from the Neural-Symbolic
Neighbourhood

Before concluding this opinionated survey with two sections dedicated to future chal-
lenges and directions (Section 1.10) and to some short overarching remarks (Section
1.11), in the following we will highlight recent work surfacing outside the traditional
core field but in the topical proximity of neural-symbolic integration with high relevance
and potential impact for the corresponding core questions.



1.9.1. Other Paradigms in Computation and Representation Narrowing the
Neural-Symbolic Gap

We first want to direct the reader’s attention to a recently proposed neuro-computational
mechanism called “conceptors” [157]. Broadly speaking, conceptors are a proposed
mathematical, computational, and neural model combining two basic ideas, namely that
the processing modes of a recurrent neural network (RNN) can be characterised by the
geometries of the associated state clouds, and that the associated processing mode is se-
lected and stabilised if the states of the respective RNN are filtered to remain within a
certain corresponding state cloud. When taken together, this basically amounts to a pos-
sibility to control a multiplicity of processing modes of one single RNN, introducing a
form of top-down control to the bottom-up connectionist network. While the underlying
mathematical considerations are fairly elaborate, the overall approach can be conceptu-
alised as a two-step approach. First, the different elipsoids envelopping the differently
shaped state clouds a driven RNN exhibits when exposed to different dynamical input
patterns each give a different conceptor. Once the driving patterns have been stored in
the network (i.e., the network has learned to replicate the pattern-driven state sequences
in the absence of the driver stimuli, performing a type of self-simulation), they can be
selected and stably re-generated by inserting the corresponding conceptor filters (i.e., the
geometry of the elipsoid serves as decision mechanism of the filter) in the network’s up-
date loop. This partially geometric nature of the approach also offers another advantage
in that conceptors can be combined by operations akin (and partially co-extensional) to
Boolean logic, thus introducing an additional dimension of semantic interpretation espe-
cially catering to the symbolic side of neural-symbolic integration.

While conceptors are an approach to equipping sub-symbolic models in form of
RNNs with certain symbolic capacities and properties, the second recent research result
we want to mention aims at a connectionist implementation of Von Neumann’s com-
puting architecture [158] as the prototypical symbolic computer model. “Neural Turing
Machines” (NTMs), introduced in [159], basically couple RNNs with a large, address-
able memory yielding the end-to-end differentiable and gradient-decent trainable ana-
log of Turing’s memory-tape enriched finite-state machines. In terms of architecture, an
NTM is constituted by a neural network controller and a memory bank (see Figure 6).
The controller manages the interaction with the environment via input and output vec-
tors and interacts with a memory matrix using selective read and write operations. The
main feature of NTMs is their end-to-end differentiability which allows for training with
gradient-descent approaches. In order to introduce this capacity, read and write oper-
ations have been defined in a way which allows them to interact to different degrees
with all elements in the memory (modulated by a focus mechanism limiting the actual
range of interaction), resulting in a probabilistic mode of reading and writing (differ-
ent from the highly specific discrete read/write operations a Turing machine performs).
Also, interaction with the memory tends to be highly sparse, biasing the model towards
interference-free data storage. Which memory location to attend to is determined by spe-
cialised network outputs parameterising the read and write operations over the memory
matrix, defining a normalised weighting over the rows of the matrix. These network out-
puts thereby can focus attention to a sharply defined single memory location or spread
it out to weakly cover the memory at multiple adjacent locations. Several experiments
also reported in [159] demonstrate that NTMs are generally capable of learning simple



Figure 6. The basic structure of a Neural Turing Machine (taken from [159]): The controller network receives
external inputs and emits outputs during each update cycle. Simultaneously, it reads to and writes from a
memory matrix via parallel read and write heads.

algorithms from example data and subsequently generalise these algorithms outside of
the training regime.

Another approach to combining the learning capacities of connectionist networks
with a form of read- and writeable memory, as well as inference capacities, has been
presented in the form of so called “memory networks” [160]. A memory network con-
sists of an array of indexed objects (such as arrays or vectors) m constituting the mem-
ory component, an input feature map I converting incoming input to the respective in-
ternal feature representation, a generalisation G updating (and/or possibly compressing
and generalising) old memories given the new input, an output feature map O producing
a new output given the new input and the current memory state, and finally a response R
converting the output into the final format. Except for m, the remaining four components
I, G, O, and R could potentially be learned. Against this backdrop, if an input x arrives
at the memory network, x is converted to an internal feature representation I(x) before
updating the memories mi within m given x: ∀i : mi = G(mi, I(x),m). Subsequently, out-
put features o = O(I(x),m) are computed given the new input and the memory, and the
output features are decoded into a final response r = R(O). The flow of the model re-
mains the same during both training and testing, with the only difference being that the
model parameters I, G, O, and R stay unchanged at test time. Due to this very general
characterisation, memory networks can be flexible concerning the possible implementa-
tion mechanisms for I, G, O, and R, generally allowing the use of standard models from
machine learning (such as RNNs, SVMs, or decision trees). In [160] also an account of
an instantiation of the general model is given, describing an implementation of a mem-
ory network for application in a text-based question answering (QA) setting using neural
networks as components. The resulting system is then applied and evaluated separately
in a large-scale QA and a simulated QA setting (the latter also including some QA with
previously unseen words), before combining both setups in a final hybrid large-scale and
simulated QA system serving as proof of concept for the possible future capacities of the
approach.



1.9.2. Other Application Systems Narrowing the Neural-Symbolic Gap

Following the previous discussion of neural-symbolically relevant advances on the ar-
chitectural and methodological level, in this subsection we will focus on several recent
application systems which are partially or fully based on connectionist approaches but
are successfully applied to tasks of predominantly symbolic nature.

The first application area which recently has seen rapid development and systems
operating on a previously unachieved, qualitatively new level of performance is the do-
main of vision-based tasks such as the semantic labelling of images according to their
pictorial content. In [161] and [162] two approaches to related problems have been pre-
sented. While the generative, deep RNN model in [161] generates natural language sen-
tences describing the content of input images, [162] introduces an approach to recog-
nition and labelling tasks for the content of different image regions (corresponding to
different objects and their properties in the pictures). The model from [161] combines
an input convolutional neural network, used for encoding the image (the network is pre-
trained for an image classification task, and the last hidden layer serves as interface to
the following natural language decoder), with an output RNN, generating natural lan-
guage sentences based on the processed data of the input network. The result is a fully
stochastic gradient descent-trainable neural network combining, in its sub-networks a
vision and a language model, and—when put in application—significantly outperform-
ing previous approaches and narrowing the gap to human performance on the used test
sets. In [162], a region convolutional neural network is applied to the identification of
objects (and the corresponding regions) in images and their subsequent encoding in a
multimodal embedding space, together with a bidirectional RNN which computes word
representations from input sentences and also embeds them in the same space. Once this
mapping of images and sentences into the embedding space has been achieved, an align-
ment objective in terms of an image-sentence score (a function of the individual region-
word scores) is introduced, tying together both parts of the model. The resulting system
again performs better than previous approaches, showing state of the art performance in
image-sentence ranking benchmarks and outperforming previous retrieval baselines in
fullframe and region-level experiments. Both models and the corresponding implementa-
tion systems are remarkable in that classically tasks involving semantic descriptions had
been associated with databases containing some form of background knowledge, and the
relevant picture processing/computer vision approaches had for a long time also relied
on rule-based techniques. The described work gives proof that this type of task—which
clearly conceptually still operates on a symbolic level—generally can also be addressed
in practice in purely connectionist architectures.

Another closely related type of task is visual analogy-making as, for instance, ex-
emplified in transforming a query image according to an example pair of related images.
In [163], the authors describe a way how to tackle this challenge again applying deep
convolutional neural networks. In their approach a first network learns to operate as a
deep encoder function mapping images to an embedding space (which due to its internal
structure allows to perform some forms of reasoning about analogies via fairly standard
mathematical operations), before a second network serves as a deep decoder function
mapping from the embedding back to the image space. The resulting models are capable
of learning analogy-making based on appearance, rotation, 3D pose, and several object
attributes, covering a variety of tasks ranging from analogy completion, to animation



transfer between video game characters, and 3D pose transfer and rotation. Also here,
in general analogy models previously have mostly been symbol-based, and generative
models of images had to encode significant prior background knowledge and restrict the
allowed transformations, making the general task domain mostly symbolic in nature.

A different domain is addressed by the work described in [164]. There, a deep dis-
tributed recurrent Q-network is successfully applied to learning communication proto-
cols for teams of agents in coordination tasks in a partially observable multi-agent set-
ting. This type of task requires agents to coordinate their behaviour maximising their
common payoff while dealing with uncertainty about both, the hidden state of the envi-
ronment and the information state and future actions of the members of their team. In or-
der to solve this challenge, so called “deep distributed recurrent Q-networks” (DDRQN)
have been introdcued. These networks are based on independent deep Q-network agents
with Long Short-Term Memory (LSTM) networks [165]—a currently very popular type
of RNN for tasks involving the processing of sequential data—augmented by (i) sup-
plying each agent with its previous action as input on the following time step (enabling
agents to approximate their own action-observation history), (ii) sharing a single net-
work’s weights between all agents and conditioning on the agent’s ID (enabling fast
learning and diverse behaviour), and (iii) disabling experience replay (avoiding problems
with non-stationarity arising from the simultaneous learning of multiple agents). The
resulting system proves capable of solving (for limited numbers of agents) two classi-
cal logic riddles necessarily requiring collaborative communication and information ex-
change between players in their optimal solution strategies. While future work still will
have to prove the scalability of the approach, the work in [164] nonetheless is a proof
of concept for the ability of connectionist networks to learn communication strategies in
multi-agent scenarios—which is another instance of a genuinely symbolic capacity that
has successfully been implemented in a neural network architecture.

The final example of a successful application system addressing aspects of neural-
symbolic integration which we want to mention is the AlphaGo Go-playing system pre-
sented in [166]. While Go had for a long time proven to be computationally unfeasible
to solve due to the quickly growing game tree and corresponding search space, the au-
thors introduce an architecture equipped with deep neural network-based move selection
and position evaluation functions (learned using a combination of supervised learning
from human expert games and reinforcement learning from massively parallel self-play).
Integrating these, in the form of policy and value networks, with a Monte Carlo tree
search lookahead approach, the resulting high-performance tree search engine allows to
efficiently explore the game tree and play the game at a level on par with the world’s
best human players. Different from the previous examples from the visual domain, the
resulting architecture is closer to being genuinely neural-symbolic in its combination be-
tween trained connectionist networks for pruning and narrowing down the search space,
and the subsequent Monte Carlo algorithm selecting actions by lookahead tree search.
With its previously unachieved performance AlphaGo constitutes a prime example of
the possibilities introduced by combining connectionist and symbolic approaches and
techniques.

1.9.3. Other Research Efforts and Programs Narrowing the Neural-Symbolic Gap

In this final subsection we want to focus on three different lines of work which stand
out among the usual work in neural-symbolic integration in that they either start out



from a different perspective than neural computation or logic-based modelling, or apply
techniques and approaches which are not commonly used in the field. Examples for
such “non-classical neural-symbolic research programs” can be found, for instance, in
certain investigations into methods and mechanisms of multi-agent systems, in empirical
attempts at understanding RNNs by using language models as testbed providing data for
qualitative analyses, and in theoretical computer science and complexity theory projects
targeting the practical differences between symbolic and connectionist approaches with
theoretical means. We describe three recent suggestions as prototypical cases in point.

(i) Anchoring Knowledge in Interaction in Multi-Agent Systems: The typical
setting in multi-agent systems encompasses an agent exploring the environment, learning
from it, reasoning about its internal state given the input, acting and, in doing so, chang-
ing the environment, exploring further, and so on as part of a permanent cycle [167].
One of the biggest challenges in this context is the (bidirectional) integration between
low-level sensing and interacting as well as the formation of high-level knowledge and
subsequent reasoning. In [168] an interdisciplinary group of researchers spanning from
cognitive psychology through robotics to formal ontology repair and reasoning sketch
conceptually (what amounts to) a strongly cognitively-motivated neural-symbolic archi-
tecture and model of a situated agent’s knowledge acquisition through interaction with
the environment in a permanent cycle of learning through experience, higher-order de-
liberation, and theory formation and revision.

In the corresponding research program—further introduced and actually framed in
terms of neural-symbolic integration in [169]—different topics also mentioned in the
present survey article are combined for that purpose. Starting out from computational
neuroscience and network-level cognitive modelling (as represented, e.g., by the concep-
tors framework described above) combined with psychological considerations on embod-
ied interaction as part of knowledge formation, low-level representations of the agent’s
sensing are created as output of the ground layer of the envisioned architecture/model.
This output then is fed into a second layer performing an extended form of anchoring
[170] not only grounding symbols referring to perceived physical objects but also dy-
namically adapting and repairing acquired mappings between environment and internal
representation. The enhanced low-level representations as output of the anchoring layer
are then in turn fed to the—in terms of neural-symbolic integration most classical—
lifting layer, i.e., to an architectural module repeatedly applying methods combining neu-
ral learning and temporal knowledge representation in stochastic networks (as, e.g., al-
ready discussed in the form of RBMs in the context of the NSCA framework in Section
1.3) to continuously further increase the abstraction level of the processed information
towards a high-level symbolic representation thereof. Once a sufficiently general level
has been reached, a final layer combining elaborate cognitively-inspired reasoning meth-
ods on the symbolic level (such as, for instance, analogy-making, concept blending, and
concept reformation) then is used for maintaining a model of the agent and the world
on the level of explicit declarative knowledge [171], which nonetheless is intended to
feed back into the lower layers—among others by serving as guidance for the augmented
anchoring process.

(ii) Visualising and Understanding Recurrent Networks: LSTMs stand out be-
tween current deep network models due to their capacity to store and retrieve information
over prolonged time periods using built-in constant error carousels governed by explicit
gating mechanisms. Still, while having been used in several high-profile application stud-



ies, this far only little is known about the precise properties and representation capaci-
ties of LSTMs. In [172], a first step towards clarifying some of the relevant questions
is described and results are presented which are also relevant from a neural-symbolic
perspective. The authors empirically shed light on aspects of representation, predictions
and error types in LSTM networks, uncover the existence of interpretable cells within the
network which keep track of long-range dependencies in the respective input data, and
suggest that the remarkable performance of LSTMs might be due to long-range structural
dependencies.

In order to gain insight into the inner workings of LSTM networks, character-level
language models are used as an interpretable testbed for several computational experi-
ments. In theory, by making use of its memory cells an LSTM should be capable to re-
member long-range information and keep track of different attributes of the respective
input it is just processing. Also, using text processing as an example, manually setting
up a memory cell in such a way that it keeps track of whether it is inside a quoted string
or not is not overly challenging. Still, whether LSTMs actually resort to this type of in-
ternal structure (i.e., forming interpretable cells with dedicated, more abstract tasks) was
not as clear. The empirical findings in [172] indicate that such “task cells” indeed ex-
ist, in the case of processing program code as textual input ranging from cells checking
for parenthesis after an if statement to cells acting as line length counter or tracking the
indentation of blocks of code. In a second step, using finite horizon n-gram models as
comparandum, it is shown that LSTM networks are remarkably good at keeping track of
long-range interactions and dependencies within the input data.

From the neural-symbolic point of view, the work reported in [172] is important
in at least two ways. On the one hand, the findings relating to the existence of inter-
pretable long-range interactions and associated cells in the network setup actually take
LSTMs one step closer to the level of symbolic interpretability and away from the com-
pletely distributed and non-localised classical connectionist setting. On the other hand,
the overall approach and the set of methods applied in the corresponding empirical stud-
ies and analyses (including qualitative visualisation experiments, statistical evaluations
of cell activations, and the comparison to the n-gram models) suggest potential tech-
niques which could be used in more detailed follow-up studies about knowledge extrac-
tion from LSTMs and similar assessments of other types of recurrent neural networks in
general.

(iii) Identifying and Exploring Differences in Complexity: Contrasting the multi-
agent approach described in (i) and the empirical analysis of LSTM networks in (ii), the
second research program proposed in [169] approaches the differences between ANNs
and logics from the angle of theoretical computer science and complexity theory. In the
suggested line of work recent advances in the modelling and analysis of connection-
ist networks and new developments and tools for investigating previously unconsidered
properties of symbolic formalisms shall be combined in an attempt at providing an expla-
nation for the empirical differences in terms of applicability and performance between
neural and logical approaches very quickly showing up in application scenarios (which
seem to harshly contradict the formal equivalence between both described in Section
1.2).

To this end, it is suggested that the form and nature of the the polynomial over-
head as computational-complexity difference between paradigms should be examined
in more detail. The underlying hope is that a closer look at this overhead might shed



light on previously unconsidered factors as hitherto most complexity results have been
established using exclusively T IME and SPACE as classical resources for this form of
analysis, and most analyses have left out more precise investigations of the remaining
polynomial overhead after establishing tractability. Against this background, the work-
ing hypotheses for the program are that for a fully informative analysis other resources
might have to be taken into account on the connectionist side (such as the number of
spikes a spiking network requires during computation, or the number of samples needed
for convergence from an initial network state to the stationary distribution) and that ad-
ditional formal tools and techniques will have to be applied on the symbolic side (such
as parameterised-complexity methods which take into account problem- and application-
specific properties of problem classes, or descriptive-complexity theory which also con-
siders the polynomial-time and the logarithmic-time hierarchy).

The results of these efforts promise to contribute to resolving some of the basic
theoretical and practical tensions arising when comparing the suitability and feasibility
of an application of certain formalisms to different types of tasks and domains. Which,
in turn, then is expected to also successively provide information on general challenges
(and their potential remedies) which would have to be overcome for advancing towards
neural-symbolic integration on the formal and theoretical side.

1.10. Challenges and Future Directions

In this second-to-last section of our survey we give an overview of what we consider
the currently most pressing and/or—if addressed successfully—potentially most reward-
ing theoretical and practical questions and topics on the way towards bridging the gap
between connectionist computation and high-level reasoning.

As described throughout this article, if connectionism is to be an alternative
paradigm to logic-based artificial intelligence, ANNs must be able to compute symbolic
reasoning efficiently and effectively, combining the fault-tolerance of the connectionist
component with the “brittleness and rigidity” of its symbolic counterpart. On the more
architecturally-oriented side, by integrating connectionist and symbolic systems using
some of the previously sketched or similar approaches, hybrid architectures [173] seek
to tackle this problem and offer a principled way of computing and learning with knowl-
edge of various types and on different levels of abstraction. Starting out from multi-
modular approaches such as, for instance, the CLARION architecture [174] in cogni-
tive modelling or the vision of symbolic/sub-symbolic multi-context systems [175] in
data integration and reasoning, they have the potential to open up the way and serve as
foundation for the convergence between the paradigms and the development of fully-
integrated monolithic neural-symbolic systems. Nonetheless, the development of such
systems is currently still in its infancy and often is motivated much more by concrete en-
gineering imperatives on a case-by-case basis than by coordinated and targeted research
efforts aiming at testing general approaches and understanding the general mechanisms
and constraints at work.

On a more positive note, from a more formally-centred perspective it is possible to
identify several current points of approximation and potential confluence: deep belief
networks are based on Boltzmann machines as an early symmetric ANN model, and re-
lated to Bayesian networks. Certain neural-symbolic recurrent networks are very similar



to dynamic Bayesian networks. Connectionist modal logic uses modal logic as a lan-
guage for reasoning about uncertainty in a connectionist framework. Markov logic net-
works combine logical symbols and probability. In summary it can, thus, be observed that
the objectives indeed seem to be converging. Still, also here the current state of affairs is
not yet satisfactory as too often too little consideration is given to an integration on the
level of mechanisms, allowing them to remain varied instead of triggering convergence
also along this (potentially even more relevant) dimension.

In general, many questions and limits to integration hitherto are unsolved and some-
times even unaddressed. Currently, the focus still predominantly lies on either learning
or reasoning, with efforts aiming to improve one using state-of-the-art models from the
other, rather than truly integrating both in a principled way with contribution to both
areas. In addition to, for instance, [176] we now turn to some of the (many) remaining
challenges: we have seen that neural-symbolic systems are composed of (i) translations
from logic to network, (ii) machine learning and reasoning, (iii) translation from network
to logic. Among the main challenges are in (i) finding the limits of representation, in
(ii) finding representations that are amenable to integrated learning and reasoning, and in
(iii) producing effective knowledge extraction from very large networks.

What follows is a list of research issues related to challenges (i) to (iii) each of which
could serve as basis for a research program in its own right:

• Reconciling first-order logic learning and first-order logic reasoning.
• Embracing semi-supervised and incremental learning.
• Evaluating and analysing large-scale gains of massive parallelism.
• Implementing learning-reasoning-acting cycles in cognitive agents.
• Developing representations for learning which learn the ensemble structure.
• Rule extraction and interpretability for networks with thousands of neurons.
• Applying fibring in practice and actually learning the fibring function.
• Theoretically understanding the differences in application behaviour between con-

nectionist and symbolic methods.
• Developing a proof theory and type theory for ANNs.
• Developing analogical and abductive neuro-symbolism with the aim of automating

the scientific method.
• Investigating neural-symbolic models of attention focus and modelling and con-

trasting emotions and utility functions.

While some of the former recently have started to attract active attention from
researchers—examples are the work on neural-symbolic multi-agent systems, the pro-
posal for a research program addressing the learning-reasoning-acting cycle, or the effort
to better theoretically understand the theoretical basis of application differences between
neural and logical approaches outlined in Section 1.9—our knowledge about these issues
is only limited and many questions still have to be asked and answered.

Also in terms of approach, several remarks seem in place: while seeing it as highly
relevant concerning motivations and as source of inspiration, we agree that the direct
bottom-up approach (i.e., brain modelling) is not productive given the current state of the
art. Also, we agree that an engineering approach is valid but specific and will not answer
the big questions asked, for instance, in more cognitively- or HLAI-oriented lines of
research (including some of the bullet points above). Therefore, a foundational approach



is needed combining all the different directions touched upon in this survey article, i.e.,
encompassing (at least) different elements of computer science (in particular, knowledge
representation and machine learning), cognitive science, and cognitive neuroscience.

Finally, in terms of applications, the following can be counted among the potential
“killer applications” for neural-symbolic systems: ANNs have been very effective at im-
age processing and feature extraction as evidenced, for instance, by [177] and the work
reported in the previous section. Yet, large-scale symbolic systems have been the norm
for text processing (as most approaches currently in use rely on large ontologies, are
inefficient to train from scratch, and heavily dependent on data pre-processing). Even if
networks could be trained without providing starting knowledge to perform as well as,
for example, WordNet, the networks would be very difficult to maintain and validate.
Neural-symbolic systems capable of combining network models for image processing
and legacy symbolic systems for text processing seem therefore ideally suited for multi-
modal processing. Here concepts such as fibring (our running example from Section 1.2)
seem important so that symbolic systems and network models can be integrated loosely
at the functional level. In this process, inconsistencies may arise, making the resolution
of clashes a key issue. One approach is to see inconsistency as a trigger for learning, with
new information in either part of the combined system serving to adjudicate the conflict
(similar to the mechanisms envisioned within the learning-reasoning-acting framework
described in the previous section). The immediate impact of this application would be
considerable in many areas including the web, intelligent applications and tools, and
security.

1.11. Concluding Remarks

This survey summarises initial links between the fields of computer science (and more
specifically AI), cognitive science, cognitive neuroscience, and neural-symbolic compu-
tation. The links established are aimed at answering a long-standing dichotomy in the
study of human and artificial intelligence, namely the perceived dichotomy of brain and
mind, characterised within computer science by the symbolic approach to automated
reasoning and the statistical approach of machine learning.

We have discussed the main characteristics and some challenges for neural-symbolic
integration. In a nutshell:

neural-symbolic systems = connectionist machine+ logical abstractions

The need for rich, symbol-based knowledge representation formalisms to be incor-
porated into learning systems has explicitly been argued at least since [178]’s seminal
paper, and support for combining logic and connectionism, or logic and learning was
already one of Turing’s own research endeavours [11].

Both the symbolic and connectionist paradigms embrace the approximate nature of
human reasoning, but when taken individually have different virtues and deficiencies.
Research into the integration of the two has important implications that can benefit com-
puting, cognitive science, and even cognitive neuroscience. The limits of effective inte-
gration can be pursued through neural-symbolic methods, following the needs of differ-
ent applications where the results of principled integration must be shown advantageous
in practice in comparison with purely symbolic or purely connectionist systems.



The challenges for neural-symbolic integration today emerge from the goal of ef-
fective integration, expressive reasoning, and robust learning. Computationally, there
are challenges associated with the more practical aspects of the application of neural-
symbolic systems in areas such as engineering, robotics, semantic web, etc. These
challenges include the effective computation of logical models, the efficient extraction
of comprehensible knowledge and, ultimately, striking of the right balance between
tractability and expressiveness.

In summary, by paying attention to the developments on either side of the division
between the symbolic and the sub-symbolic paradigms, we are getting closer to a uni-
fying theory, or at least promoting a faster and principled development of cognitive and
computing sciences and AI. To us this is the ultimate goal of neural-symbolic integra-
tion together with the associated provision of neural-symbolic systems with expressive
reasoning and robust learning capabilities.
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