
A Protégé Plug-In for Annotating OWL
Ontologies with OPLa

Cogan Shimizu, Quinn Hirt, and Pascal Hitzler

Data Semantics Laboratory, Wright State University, Dayton, OH, USA

Abstract. The Ontology Engineering community has recognized needs
for both a simple, exstensible representation language for patterns and
tools that support such workflows. In this demonstration, we describe
a Protégé plugin that guides a user in documenting the loaded OWL
ontology and its entities with annotations from the Ontology Design
Pattern Representation Language (OPLa).

1 Motivation

The use of ontology design patterns (ODP) has established itself as an ontology
engineering paradigm [2]. There are, however, a number of open challenges to be
considered by researchers concerning the future of ODPs and modular ontology
engineering. In this demonstration, we are particularly interested in both rec-
ognizing the substantial need for a robust pattern representation language and
increasing the availability of easy-to-use, supporting tools. For a more thorough
examination of these challenges and others, please see [1].

Utilizing a pattern representation language (PRL) is an important piece for
improving the development process, as it begins to address a perennial challenge
in the Semantic Web community: ontology sharing and reuse; and as it applies to
the ontology engineer: ontology design pattern sharing and reuse. A commonly
used PRL is immediately impactful by allowing the ontology engineer to more
explicitly express

– how to use a pattern (e.g. what are natural “hooks” into the ODP)
– which other ODPs have been adapted or reused to create the pattern
– from where an ontology module was derived

Together, these examples can enable a so-called “smart” repository. Such a
repository will allow an ontology engineer to more easily navigate and explore
patterns and modules, thus realizing a centralized mechanism for the sharing,
reuse, or adaptation of ODPs. As such, it is in the best interest of the community
to utilize the pattern language.

As a first step in addressing this challenge, [3] presented the Ontology Design
Pattern Representation Language (OPLa). OPLa annotations are fully compat-
ible with OWL and its semantics are formally described. For each of our moti-
vating examples we provide some concrete examples that illustrate exactly how
OPLa can be used to formally describing those relationships.

WSUadm
Sticky Note
do you need the PRL acronym?



The MicroblogEntry1 pattern may contain the following triples:

mbe:Location opla:ofExternalType opla:externalClass .

mbe:Media opla:reusesPatternAsTemplate nre:Media .

The first triple indicates that the Location is a “hook” for other engineers to
use. The second triple indicates that the MicroblogEntry pattern has adapted
the Media class from another ODP, in this case the NewsReportingEvent2 ODP.
Additionally, the ModifiedHazardousSituation3 Design may contain the triple

mhs: opla:derivedFromPattern hs: .

which states that ModifiedHazardousSituation is derived from the HazardousSit-
uation4 ODP. Figure 2 provides a graphical overview for the other OPLa anno-
tations.

However, like many forms of documentation, it is a tedious task to exhaus-
tively perform. The key to adding complexity to any engineering process is mak-
ing the change trivial to the end-user. As such, sufficient, easy-to-use tooling is
necessary for facilitating process adoption. To address this, we have developed
a Protégé plug-in that has been optimized for walking an ontology engineer
through annotating their ontology, module, or pattern with the correct OPLa
annotations.

2 Implementation

Our plugin, the OPLaTab, is implemented for Protégé 5. At the time of this
writing, plugin registration through the Protégéwiki5 is ongoing. We provide a
portal online6 for a more detailed examination of the plugin’s source code and
.JAR file, and closer view of the interface and its use and installation.

The purpose of the OPLaTab plugin is to guide the user through the con-
struction of a valid OPLa annotation. As such, it is optimized for annotating the
ontology itself and its entities with only those annotations explicitly outlined in
Figure 2 and [3]. Thus, the interface is purposefully minimalist and restricted: it
condenses all annotation functionality to a single screen and reduces the number
of choices a user needs to make in order to insert an annotation into the ontology.

The tab’s only silent behavior is to add the OPLa namespace to the ontology.7

All other changes to the ontology are done via the “Save” and “Remove” buttons.
The interface is separated into three parts: navigation, construction, and

view/remove. The plugin currently supports the annotation of the Ontology,

1 http://ontologydesignpatterns.org/wiki/Submissions:MicroblogEntry
2 http://ontologydesignpatterns.org/wiki/Submissions:NewsReportingEvent
3 http://ontologydesignpatterns.org/wiki/Submissions:

ModifiedHazardousSituation
4 http://ontologydesignpatterns.org/wiki/Submissions:HazardousSituation
5 https://protegewiki.stanford.edu/wiki/Main_Page
6 http://dase.cs.wright.edu/content/oplatab
7 http://ontologydesignpatterns.org/opla/

WSUadm
Sticky Note
Pattern

WSUadm
Sticky Note
Instead of (or in addition to) the URLs, cite the paper splease.



Fig. 1: The schema diagram representing the Ontology Design Pattter Represen-
tation Language (OPLa) [3].

Classes, Individuals, Object Properties, Data Properties, Datatypes and Anno-
tations. By selecting one of these options, the construction area will be pop-
ulated with the appropriate entities. Further, the list of annotation properties
will update to display only those properties that are valid for the selected entity.
Finally, the view/remove area will display only opla annotations so that it is
easy to identify which entities have yet to be annotated.

Currently, the annotation value for the annotation is user-dependent, in the
absence of a standardized controlled vocabulary or repository. We briefly describe
a sample workflow:

1. Select the ontology itself or an ontological entity.
2. Select the appropriate annotation property.
3. Enter the annotation value.
4. Save the annotation.

At this time, the bottom portion of the screen will update with the new anno-
tation. The annotation may be removed by selecting the appropriate button.

3 Conclusions, Future Work, & Demonstration

OPLaTab is a useful tool for constructing OPLa annotations. There is currently
an ongiong intention to develop a comprehensive tool suite for modular ontology

WSUadm
Sticky Note
font is very small in this picture

WSUadm
Sticky Note
OPLa



Fig. 2: A view of OPLaTab’s interface. This view shows an example annotation
be added to the loaded ontology.

engineering. We see OPLa becoming a central component of this tool suite. From
visualization and interactive browsing to a smart repository, each will need some
way of communicating to a user exactly how ontologies and ODPs relate to each
other. As we provide more sophisticated tools in this realm, there are several
foreseeable next steps.

While some of these next steps will require extensions to OPLa, OPLa was
purposefully developed to be easily extendable. For example, it may be possible
to embed visualization information into annotations, allowing software to de-
termine which properties are visible at different levels of granularity. The same
principle can be extended for interactive browsing. Perhaps most importantly,
however, is the ability to connect to a machine-readable repository of ontology
design patterns and modules. This “smart” repository can act as a dynamically
updated controlled vocabulary of namespaces, thus allowing an ontology engineer
to select the appropriate namespace when constructing their OPLa annotations.

Additionally, we will work to improve the user experience and look to more
appropriately match the Protégé workspace.



Demonstration

The demonstration will consist of a live walkthrough of annotating a loaded
ontology. In the interest of space, we have outlined in more detail a step-by-step
walkthrough in our online portal.8

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area
Graduate Studies Institute (DAGSI).

References

1. K. Hammar, E. Blomqvist, D. Carral, M. van Erp, A. Fokkens, A. Gangemi, W. R.
van Hage, P. Hitzler, K. Janowicz, N. Karima, A. Krisnadhi, T. Narock, R. Segers,
M. Solanki, and V. Svátek. Collected research questions concerning ontology design
patterns. In P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti,
editors, Ontology Engineering with Ontology Design Patterns - Foundations and
Applications, volume 25 of Studies on the Semantic Web, pages 189–198. IOS Press,
2016.

2. P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors. On-
tology Engineering with Ontology Design Patterns – Foundations and Applications,
volume 25 of Studies on the Semantic Web. IOS Press, 2016.

3. P. Hitzler, A. Gangemi, K. Janowicz, A. A. Krisnadhi, and V. Presutti. Towards
a simple but useful ontology design pattern representation language. Proceedings
WOP 2017, October 2017. To appear.

8 http://dase.cs.wright.edu/content/oplatab

WSUadm
Sticky Note
update reference




