Non-monotonic Reasoning

Pascal Hitzler[†]

Colloquium of the Boole Centre for Research in Informatics University College Cork, July 2003

Contents

- What is non-monotonic reasoning?
- Non-monotonic reasoning with logic programs.
- A domain-theoretic perspective.

[†]Artificial Intelligence Institute, Dresden University of Technology, Dresden, Germany

What is non-monotonic reasoning?

Inspired by commonsense reasoning.

... acting under incomplete knowledge ...

...jumping to conclusions ...

Tweety is a bird, hence flies.

But you may find out later that it is a penguin . . .

Seek abstract (high-level) knowledge representation and reasoning formalisms suitable for this kind of reasoning.

Different formalisms for NMR ...

Axiomatic aproaches (Makinson; Kraus, Lehmann, Magidor) e.g.

supraclassicality:
$$\frac{X \vdash \alpha}{X \mid \sim \alpha}$$

cautious monotonicity:
$$\frac{X \triangleright \alpha}{X, \alpha \triangleright \alpha}$$
 $\left(\text{monotonicity: } \frac{X \vdash \alpha}{X, \beta \vdash \alpha}\right)$

(developed relatively late)

modality for belief (Moore's Autoepistemic Logic)

second-order approaches (McCarthy's Circumscription)

Default Logic (Reiter, 1980)

(propositional case, F, G, H formulae)

default: $\frac{F:G}{H}$ "if F, and if G is possible, then H"

 Δ set of defaults. E is called a *default extension* of Δ if E is a minimal logically closed theory (set of formulae) satisfying: whenever $E \models F$ and H is consistent with E, then $H \in E$.

$$\frac{\text{bird}: \neg \text{penguin}}{\text{flies}}$$

NMR with logic programs

Horn program: set of CNF formulae (clauses) $p \vee \neg q_1 \vee \cdots \vee \neg q_n$ written: $p \leftarrow q_1, \dots, q_n$

Set of atoms inferred depends monotonically on program.

procedurally (Prolog): $p \leftarrow r$ infers $\neg p$ after addition of $r \leftarrow$ we infer pnonmonotonic behaviour of negation

closed world assumption

negation as "(finite) failure to prove it"

Stable models

next step: allow negation in clauses: $p \leftarrow q_1, \ldots, q_n, \neg r_1, \ldots, \neg r_m$. (normal logic program)

Intended semantics approach: what *should* it be? (deviating from Prolog)

Interpret each clause as default

$$\frac{q_1 \wedge \cdots \wedge q_n : \neg (r_1 \vee \cdots \vee r_m)}{p}.$$

Default extensions of a program are exactly the (logical closures of the) stable models of a program (Gelfond & Lifschitz 1991).

flies
$$\leftarrow$$
 bird, \neg penguin

Stable models: fixed point characterization

Horn program P, I set of atoms (interpretation):

$$T_P(I) = \{ p \mid \exists (p \leftarrow p_1, \dots, p_n) \in P. \forall i. p_i \in I \}.$$

 T_P Scott-continuous, monotonic, least fixed point $fix(T_P) = \bigcup T_P^n(\emptyset)$.

 $fix(T_P)$ is least model of P.

normal program P: Set P/I to be the Horn program consisting of all

$$p \leftarrow p_1, \dots, p_n$$
 generated from all

$$p \leftarrow p_1, \dots, p_n, \neg q_1, \dots, \neg q_m \text{ with } \forall i.q_i \notin I.$$

Stable models characterized by: $I = fix(T_{P/I})$ (= $GL_P(I)$).

 GL_P antitonic (not monotonic in general).

flies \vee penguin \leftarrow bird

Answer sets

Syntactic extension: $p_1 \lor \cdots \lor p_k \leftarrow q_1 \land \cdots \land q_m \land \neg r_1 \land \cdots \land \neg r_n$ written: $p_1, \ldots, p_k \leftarrow q_1, \ldots, q_m, \neg r_1, \ldots, \neg r_n$.

I interpretation (set of atoms), P program. P/I defined as before, resulting in program with rules of the form $p_1, \ldots, p_k \leftarrow q_1, \ldots, q_m$. These have minimal models $\min(P/I)$.

I answer set if $I \in \min(P/I)$.

Coherent algebraic cpos

(We will take a detour and will come back to NMR later.)

cpo: directed complete partial order with bottom (D, \sqsubseteq)

 $c \in \mathsf{K}(D) \text{ (compact) iff } (\forall A \text{ directed}) (d \sqsubseteq \bigsqcup A \implies (\exists a \in A) d \sqsubseteq a)$

cpo algebraic: $(\forall x) (x = \coprod (x \downarrow \cap \mathsf{K}(D)))$

Scott topology: base $\{\uparrow c \mid c \in \mathsf{K}(D)\}$

coherent: finite intersections of compact-opens are compact-open

Examples: Finite posets with bottom. Powersets. \mathbb{T}^{ω} .

Plotkin's \mathbb{T}^ω

blackboard

Smyth powerdomain as ideal completion

$$X, Y \subseteq \mathsf{K}(D). \ X \sqsubseteq^{\sharp} Y \ \text{iff} \ (\forall y \in Y) (\exists x \in X) (x \sqsubseteq y)$$

Smyth powerdomain of a coherent algebraic cpo: proper ideal completion of the set of all finite subsets of D, ordered by \sqsubseteq^{\sharp} .

Used for modelling nondeterminism in domain theory.

In the following: (D, \sqsubseteq) coherent algebraic domain.

Logic RZ

(Rounds & Zhang, 2001)

clause X: finite subset of K(D)

$$w \in D$$
: $w \models X$ iff $(\exists x \in X)(x \sqsubseteq w)$.

theory T: set of clauses.

$$w \models T \text{ iff } (\forall X \in T)(w \models X).$$

$$T \models X \text{ iff } (\forall w \in D)(w \models T \implies w \models X).$$

Logic RZ

Proof theory: (WLP'02)

$$\overline{\{\bot\}}$$

$$\underline{X; \quad a \in X; \quad y \sqsubseteq a}$$

$$\underline{\{y\} \cup (X \setminus \{a\})}$$

$$\underline{X; \quad y \in \mathsf{K}(D)}$$

$$\underline{\{y\} \cup X}$$

$$\underline{X_1 \quad X_2; \quad a_1 \in X_1 \quad a_2 \in X_2}$$

$$\underline{\mathsf{mub}\{a_1, a_2\} \cup (X_1 \setminus \{a_1\}) \cup (X_2 \setminus \{a_2\})}$$

Logic RZ is compact.

Smyth powerdomain via the logic RZ

(Rounds & Zhang 2001)

The logically closed theories are the ideals under \sqsubseteq^{\sharp} .

Smyth powerdomain: consistent closed theories under set-inclusion.

(FCA: tool used in data mining and analysis; Ganter & Wille 1999)

G set of objects; M set of attributes. $C \subseteq G \times M$ formal context.

$$A \subseteq G \text{ then } A' = \{ m \in M \mid (\forall g \in A)(g, m) \in C \}.$$

$$B \subseteq M$$
 then $B' = \{g \in G \mid (\forall m \in B)(g, m) \in C\}.$

Formal concept: Pair (A, B) with A' = B, A = B'.

Equivalently: All (B', B'') for $B \subseteq M$.

Formal concept lattice:

complete lattice of all concepts ordered by \supseteq in second argument.

Formal Concept Analysis

Figure 1.4 Concept lattice for the educational film "Living beings and water".

(source: Ganter & Wille, Formal Concept Analysis, Springer, 1999.)

(with Matthias Wendt, ICCS 2003)

Consider subposet D of all $(\{b\}', \{b\}''), b \in M$, and all $(\{a\}'', \{a\}'), a \in G$, ordered reversely (add \bot).

If D is a coherent algebraic cpo (eg. all finite cases), then

for
$$\mathsf{K}(D) \supseteq \{b_i \mid i \in I\} = B \subseteq M$$
 we have

$$B'' = \{b \in M \mid \{\{b_i\} \mid i \in I\} \models \{b\}\}.$$

salad starter fish meat red wine white wine water dessert coffee expensive

1			×			×		×		
2				×	×			×		
3	×		×			×		×	×	×
4		×		×	×			×	×	×
5	×	×	×				×			
6	×	×		×			×		×	
7	×	×		×	×		×	×	×	×
8				×			×		×	
9	×	×						×		

Logic programming in coherent algebraic domains

(Rounds & Zhang 2001)

Add material implication: $X \leftarrow Y$ for X, Y clauses.

$$w \models P$$
: if $w \models Y$ for $X \leftarrow Y \in P$, then $w \models X$.

Propagation rule CP(P):

$$\frac{X_1 \quad \dots \quad X_n; \quad a_i \in X_i; \quad Y \leftarrow Z \in P; \quad \text{mub}\{a_1, \dots, a_n\} \models Z}{Y \cup \bigcup_{i=1}^n (X_i \setminus \{a_i\})}$$

Semantic operator on theories:

$$\mathcal{T}_P(T) = \cos(\{Y \mid Y \text{ is a } \mathrm{CP}(P)\text{-consequence of } T\}).$$

- $ightharpoonup \mathcal{T}_P$ is Scott continuous [RZ01].
- ightharpoonup fix $(\mathcal{T}_P) = \cos(P)$.

Additon of default negation

Extended rules: $X \leftarrow Y, \sim Z$.

P program, T theory. Define P/T:

Replace $Y, \sim Z$ by Y if $T \not\models Z$.

Remove rule if $T \models Z$.

T answer theory for P if $T = cons(P/T) = fix(T_{P/T})$.

A version of default logic

Consider \mathbb{T}^{ω} .

Clauses are the propositional formulae in disjunctive normal form.

Extended rules correspond to defaults.

Answer theories correspond to default extensions.

But logical consequence is not classical.

 \blacktriangleright On \mathbb{T}^{ω} we obtain something akin to propositional default logic.

Answer set programming

We do the same with models.

P program, $w \in D$. Define P/w:

Replace $Y, \sim Z$ by Y if $w \not\models Z$.

Remove rule if $w \models Z$.

w min-answer model for P if w is minimal with $w \models \text{fix}(\mathcal{T}_{P/w})$.

Answer set programming

Consider \mathbb{T}^{ω} .

Consider programs P with rules $X \leftarrow Y, \sim Z$ such that:

Y singleton clause

X, Y, Z contain only atoms in \mathbb{T}^{ω} or \perp

These programs are exactly extended disjunctive programs.

Min-answer models w correspond to answer sets $\{L \text{ atom } | w \models \{L\}\}.$

Further Work

What is this version of default logic?

Syntactic extensions/integrating paradigms

(FCA) applications

Decidability issues