Towards a Semantical Hierarchy of Logic Programming Classes #### Pascal Hitzler (partially joint work with Anthony Karel Seda) Dresden, April 2001 Knowledge Representation and Reasoning Group Artificial Intelligence Institute Department of Computer Science Dresden University of Technology, Germany phitzler@inf.tu-dresden.de http://www.wv.inf.tu-dresden.de/~pascal/ ### Logic programs A (normal logic) program P is a finite set of clauses $$\forall (A \leftarrow L_1, \dots, L_n),$$ over a first-order language \mathcal{L} , written as $$A \leftarrow L_1, \dots, L_n,$$ where A is an atom and the L_i are literals. (A head, L_1, \ldots, L_n body.) P is called *definite*, if P does not contain negation symbols. B_P : Herbrand base (set of all ground instances of atoms). $I_P=2^{B_P}\colon \text{set of all (2-valued) interpretations (complete lattice wrt. }\subseteq).$ ground(P): set of all ground instances of clauses from P. # Locally hierarchical/acyclic programs P locally hierarchical (lh) (Cavedon 1989) if exists level mapping $l: B_P \to \alpha$ for some ordinal α such that $$l(A) > l(L_i)$$ for all $A \leftarrow L_1, \dots, L_n \in \operatorname{ground}(P)$. Slide 3 P acyclic if P lh and $\alpha = \omega$ (= N) Immediate consequence operator $T_P: I_P \to I_P: T_P(I)$ is set of all $A \in B_P$ for which exists $A \leftarrow \text{body} \in \text{ground}(P)$ s.t. $I \models \text{body}$. Fixed points of T_P are exactly the supported models of P ## Acceptable programs I (P^-) P program, p, q predicate symbols in P. p refers to q iff exists ground clause with p in head and q in body. p depends on q is reflexive transitive closure of "refers to". Neg_P set of all predicate symbols which occur negatively in P. Neg_P* set of all predicate symbols on which the predicate symbols in Neg_P depend. P⁻ set of all clauses in ground(P) with head in Neg_P*. Slide 4 ## Acceptable programs II P acceptable (Apt and Pedreschi 1993) iff exists level mapping $l: B_P \to \omega$ and model I which is a supported model of P^- (when restricted to atoms in Neg_P*) s.t. for all $A \leftarrow L_1, \dots, L_n \in \operatorname{ground}(P)$ and all $i = 1, \dots, i$ we have $I \models L_1 \land \cdots \land L_{i-1}$ implies $l(A) > l(L_i)$. ### Fitting operators P program. For each $A \in B_P$ form $pseudo\ clause$ $$A \leftarrow \bigvee C_i \quad (= \mathsf{body}_A)$$ where C_i are exactly the bodies of the clauses in ground(P) with head A. Choose your favourite (suitable) many-valued logic Λ with space of interpretatations I_{Λ} and associate an operator $\Phi_{P,\Lambda}:I_{\Lambda}\to I_{\Lambda}$ by $$\Phi_{P,\Lambda}(I)(A) = I\left(\mathrm{body}_A\right).$$ ## 3-valued interpretations 3 truth values $\{f, u, t\}$ (false, undefined, true). Set of all interpretations $I_{P,3}$ is set of pairs (T, F) with $T, F \subseteq B_P$ and $T \cap F = \emptyset$. T true atoms, F false atoms, rest undefined $(T,F) \leq (T',F') \text{ iff } T \subseteq T' \text{ and } F \subseteq F'.$ Slide 7 $I_{P,3}$ is complete semilattice. Fitting operators in the following logics are monotonic, i.e. have least fixed points. With each operator we associate a class of programs determined by the fact that the considered Fitting operator has a least fixed point which leaves nothing undefined. ## Φ -accessible programs I | _ | - | - | F | - | _ | | |-----------|------------|--------------|--------------|--------------|----|----| | f | f | f | ţ | f | ÷ | ÷ | | n | u | u | f | ÷ | ㅁ | ÷ | | t | t | f | f | f | t | f | | u | u | u | u | f | f | u | | u | u | u | u | u | ㅁ | п | | u | t | u | u | u | t | u | | t | t | f | f | f | f | t | | u | t | u | u | u | u | t | | t | ct | t | t | t | ct | c+ | | $p \lor $ | $p \lor q$ | $p \wedge q$ | $p \wedge q$ | $p \wedge q$ | q | p | | D_2 | D_1 | C_3 | C_2 | C_1 | | | | | | | | | | | Slide 8 and the original Fitting semantics (Fitting 1985). This is Kleene's strong 3-valued logic C_1 , D_1 associated class: Φ -accessible programs. Slide 9 C_2 , D_2 ssociated class: acceptable programs if least fixed point if reached at $\Phi \uparrow \omega$. acyclic if least fixed point is reached at $\Phi \uparrow \omega$. C_3 , D_2 associated class: locally hierarchical programs Other classes C_1, D_2 associated class: Φ^* -accessible programs. (This class is computationally universal) P is $\Phi^*\text{-accessible}$ iff exists i s.t. $I \not\models L_i$, $I \not\models A$ and $l(A) > l(L_i)$. for each $A \leftarrow L_1, \dots, L_n$ in ground(P) either $I \models L_1 \land \cdots \land L_n \text{ and } L(A) > l(L_i) \text{ for all } i \text{ or }$ Φ-accessible programs II Alternative characterization Slide 10 each $A \in B_P$ satisfies either (i) or (ii). P is Φ -accessible iff - $I \models L_1 \land \cdots \land L_n \text{ and } l(A) > l(L_i) \text{ for all } i.$ (i) Exists $A \leftarrow L_1, \dots, L_n$ in ground(P) s.t. - exists i with $I \not\models L_i$, $I \not\models A$, $l(A) > l(L_i)$. (ii) For each $A \leftarrow L_1, \ldots, L_n$ in ground(P) ರ #### Slide 11 ## Stable and Supported Models $I \in I_P$ is well-supported if exists strict well-founded partial order \prec on I s.t. for any $A \in I$ exists $A \leftarrow B_1, \dots, B_n, \neg C_1, \dots, \neg C_m$ in ground(P) with $I \models B_1 \land B_n \land \neg C_1 \land \dots \land \neg C_m$ and $B_i \prec A$ for each i. (Fages 1991, 1994) #### Slide 12 Let P be a logic program. M is well-supported model iff M is stable model. Let P' be obtained from P by omitting all negative literals in the clauses. Let P be program s.t. P' is Φ^* -accessible. Then M supported model iff M stable model. * Result does not generalize to $[\Phi]$.