Towards a Semantical Hierarchy of Logic Programming Classes

Pascal Hitzler

(partially joint work with Anthony Karel Seda)

Dresden, April 2001

Knowledge Representation and Reasoning Group Artificial Intelligence Institute Department of Computer Science Dresden University of Technology, Germany phitzler@inf.tu-dresden.de http://www.wv.inf.tu-dresden.de/~pascal/

Logic programs

A (normal logic) program P is a finite set of clauses

$$\forall (A \leftarrow L_1, \dots, L_n),$$

over a first-order language \mathcal{L} , written as

$$A \leftarrow L_1, \dots, L_n,$$

where A is an atom and the L_i are literals. (A head, L_1, \ldots, L_n body.)

P is called *definite*, if P does not contain negation symbols.

 B_P : Herbrand base (set of all ground instances of atoms).

 $I_P=2^{B_P}\colon \text{set of all (2-valued) interpretations (complete lattice wrt. }\subseteq).$ ground(P): set of all ground instances of clauses from P.

Locally hierarchical/acyclic programs

P locally hierarchical (lh) (Cavedon 1989)

if exists level mapping $l: B_P \to \alpha$ for some ordinal α such that

$$l(A) > l(L_i)$$

for all $A \leftarrow L_1, \dots, L_n \in \operatorname{ground}(P)$.

Slide 3

P acyclic if P lh and $\alpha = \omega$ (= N)

Immediate consequence operator $T_P: I_P \to I_P: T_P(I)$ is set of all $A \in B_P$ for which exists $A \leftarrow \text{body} \in \text{ground}(P)$ s.t. $I \models \text{body}$.

Fixed points of T_P are exactly the supported models of P

Acceptable programs I (P^-)

P program, p, q predicate symbols in P.
p refers to q iff exists ground clause with p in head and q in body.
p depends on q is reflexive transitive closure of "refers to".
Neg_P set of all predicate symbols which occur negatively in P.
Neg_P* set of all predicate symbols on which the predicate symbols in Neg_P depend.
P⁻ set of all clauses in ground(P) with head in Neg_P*.

Slide 4

Acceptable programs II

P acceptable (Apt and Pedreschi 1993) iff exists level mapping $l: B_P \to \omega$ and model I which is a supported model of P^- (when restricted to atoms in Neg_P*) s.t. for all $A \leftarrow L_1, \dots, L_n \in \operatorname{ground}(P)$ and all $i = 1, \dots, i$ we have

 $I \models L_1 \land \cdots \land L_{i-1}$ implies $l(A) > l(L_i)$.

Fitting operators

P program.

For each $A \in B_P$ form $pseudo\ clause$

$$A \leftarrow \bigvee C_i \quad (= \mathsf{body}_A)$$

where C_i are exactly the bodies of the clauses in ground(P) with head A.

Choose your favourite (suitable) many-valued logic Λ with space of interpretatations I_{Λ} and associate an operator $\Phi_{P,\Lambda}:I_{\Lambda}\to I_{\Lambda}$ by

$$\Phi_{P,\Lambda}(I)(A) = I\left(\mathrm{body}_A\right).$$

3-valued interpretations

3 truth values $\{f, u, t\}$ (false, undefined, true). Set of all interpretations $I_{P,3}$ is set of pairs (T, F) with $T, F \subseteq B_P$ and $T \cap F = \emptyset$. T true atoms, F false atoms, rest undefined

 $(T,F) \leq (T',F') \text{ iff } T \subseteq T' \text{ and } F \subseteq F'.$

Slide 7

 $I_{P,3}$ is complete semilattice.

Fitting operators in the following logics are monotonic, i.e. have least fixed points. With each operator we associate a class of programs determined by the fact that the considered Fitting operator has a least fixed point which leaves nothing undefined.

Φ -accessible programs I

_	-	-	F	-	_	
f	f	f	ţ	f	÷	÷
n	u	u	f	÷	ㅁ	÷
t	t	f	f	f	t	f
u	u	u	u	f	f	u
u	u	u	u	u	ㅁ	п
u	t	u	u	u	t	u
t	t	f	f	f	f	t
u	t	u	u	u	u	t
t	ct	t	t	t	ct	c+
$p \lor $	$p \lor q$	$p \wedge q$	$p \wedge q$	$p \wedge q$	q	p
D_2	D_1	C_3	C_2	C_1		

Slide 8

and the original Fitting semantics (Fitting 1985). This is Kleene's strong 3-valued logic C_1 , D_1 associated class: Φ -accessible programs.

Slide 9

 C_2 , D_2 ssociated class: acceptable programs if least fixed point if reached at $\Phi \uparrow \omega$.

acyclic if least fixed point is reached at $\Phi \uparrow \omega$.

 C_3 , D_2 associated class: locally hierarchical programs

Other classes

 C_1, D_2 associated class: Φ^* -accessible programs. (This class is computationally universal)

P is $\Phi^*\text{-accessible}$ iff

exists i s.t. $I \not\models L_i$, $I \not\models A$ and $l(A) > l(L_i)$. for each $A \leftarrow L_1, \dots, L_n$ in ground(P) either $I \models L_1 \land \cdots \land L_n \text{ and } L(A) > l(L_i) \text{ for all } i \text{ or }$

Φ-accessible programs II

Alternative characterization

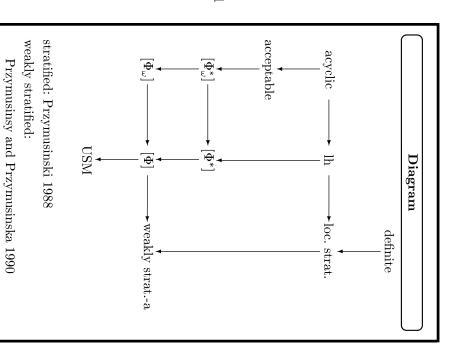
Slide 10

each $A \in B_P$ satisfies either (i) or (ii). P is Φ -accessible iff

- $I \models L_1 \land \cdots \land L_n \text{ and } l(A) > l(L_i) \text{ for all } i.$ (i) Exists $A \leftarrow L_1, \dots, L_n$ in ground(P) s.t.
- exists i with $I \not\models L_i$, $I \not\models A$, $l(A) > l(L_i)$. (ii) For each $A \leftarrow L_1, \ldots, L_n$ in ground(P)

ರ

Slide 11



Stable and Supported Models

 $I \in I_P$ is well-supported if exists strict well-founded partial order \prec on I s.t. for any $A \in I$ exists $A \leftarrow B_1, \dots, B_n, \neg C_1, \dots, \neg C_m$ in ground(P) with $I \models B_1 \land B_n \land \neg C_1 \land \dots \land \neg C_m$ and $B_i \prec A$ for each i. (Fages 1991, 1994)

Slide 12

Let P be a logic program. M is well-supported model iff M is stable model. Let P' be obtained from P by omitting all negative literals in the clauses.

Let P be program s.t. P' is Φ^* -accessible. Then M supported model iff M stable model.

* Result does not generalize to $[\Phi]$.