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We study mathematical models

for neural networks

and how they relate to logic.

In particular:

How to represent logic by neural networks.
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1 Neural Networks
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(Purkinje cell from the cerebellum.)

Photography: Spektrum der Wissenschaft 10, 2001
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Biological Neural Networks

Potential is propagated from dendrite to soma.

If accumulated potential exceeds a threshold, the

neuron fires.

Then potential is propagated along the axon to

the next neurons.

Picture: Birbaumer & Schmidt, Biologische Psychologie,
Springer, 21991

Indonesia e 11.2001



Artificial Neural Networks

Mathematical model, abstracts from certain
properties.

Neurons hold real numbers.

Propagation needs no time.

All neurons are synchronized in discrete time

steps.

Potentials accumulate as weighted sums.

Threshold is differentiable.

Other models exist. The study of these abstract

models is sometimes called connectionism.
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Artificial Neural Networks

A 3-layer feedforward network (3ffn) consists of

e finitely many computational units
e organized in three layers:

x input layer, hidden layer, output layer
e weighted connections between units

x from input to hidden layer and

x from hidden to output layer.

output layer

hidden layer

input layer

T inputs
wj;, ¢; connection weights

(7 output
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Artificial Neural Networks

The input-output function f : R"” — R is

y=f(@,...,2) =) cj¢ (ng‘m —93‘)

J

with thresholds 0; € R and squashing function ¢.

¢ : R — R is the same for each unit and usually
e non-constant, bounded, monotonic increasing,

e sometimes continuous.

Other architectures exist.

Neural networks can be trained from examples!
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Some Previous Work

Propositional Logic

(AN(A— B))— B

McCulloch and Pitts 1943
Pinkas 1991
Towell and Shavlik 1994 (KBANN)

Reflexive reasoning.

Shastri and Ajjanagadde 199x (SHRUTTI)

Inference for Horn logic.
Holldobler 1993 (CHCL)

Hybrid neuro-fuzzy systems.
etc.

Propositional case is fairly well understood.
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Representing Variabe Bindings

Datalog

grandfather(x, y) < father(z, z) A parent(z, y)

How to represent Datalog such that variable
bindings can be preserved /evaluated?

Ashish Darbari 2000 (Dresden, Master thesis):

e Allow firing times (spiking neurons).

e Simultaneous firing represents variable

binding.

e Combine with Hebbian learning.

We are currently just starting to investigate this
in depth.
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Representing First Order Logic

even(0) A
(even(s(x)) < —even(x))

How to represent “infinitely” many objects with

a finite network?

Idea (Holldober, Storr and Kalinke 1999):
e Restrict to (normal) logic programs.

e Represent program by a function.

e Encode function as function on [0, 1].

e Approximate this function by neural

networks.

Approach was extended by Hitzler and Seda
2000 & 2001.
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[ Logic Programs

(E.g. Prolog.)

A logic program P is a finite set of clauses
V(A+ Ly N---NLy)
from first order logic, usually written as

A%Ll,...,Ln,

where A an atom, L; a literal, n > 0.
Bp: Herbrand base (all ground atoms).
Ip = 2B7: get of all Herbrand interpretations.
ground(P): set of all ground instances
of clauses of P.

Define (non-monotonic) operator Tp : Ip — Ip
by
Tp(I) is set of all A € Bp
for which there is a clause A <~ L{ A--- AL,
in ground(P) st. I =Ly A--- A Ly,.

I is a supported model ifft Tp(I) = 1.

T'p basically encodes P.
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( Logic Program Example

Program P:
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LPs versus ANNSs

Neural Networks:

e approximates (“interpolates”) functions

e hardly any knowledge about the fct" needed
e trained using incomplete data

e declarative semantics not available

e recursive networks hardly understood

e symbolic data difficult to represent

Logic Programming:

e direct implementation of relations

e explicit expert knowledge required

e highly recursive structure

e well understood declarative semantics

e symbolic data easy to represent

Seek the best of both paradigms! I
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Functions via Neural Networks

Theorem (Funahashi 1989, simplified version):

¢ non-constant, bounded, monotone increasing,
continuous.

K C R compact,

f : K — R continuous,

e > 0.

Then exists a 3ffn with squashing fct™ ¢ and
input-output function f : K — R with

max {d (f(z), f(z)) } < &;

reK

d metric which induces natural top. on R.

e “Each continuous function f : K — R can be
uniformly approximated by
input-output functions of 3fins.”

For example: f :[0,1] — [0,1].
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( Structure-preserving mappings

Tp :Ip — Ip.

f:10,1] — [0, 1].

We want to understand 7T» as a continuous

function on [0, 1].

Seek ¢ : Ip — [0, 1]

which is “structure preserving”.

Mathematically: A (iso)morphism.
Homeomorphisms preserve “continuity

structure”.

Exists ¢ : Ip — C.

C Cantor set, fractal (known from chaos theory).
C C|0,1].

From Tietze’s Lemma: If Tp is continuous on Ip,
then +(Tp) can be extended to a continuous

function on [0, 1].

Then we can approximate with neural network.
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Continuity of Tp

“Continuity structure” on Ip:

called a topology.

Here: atomic topology Q).

Seda 1995,
building on Batharek and Subrahmanian 1989.

Further studied by Hitzler and Seda 199x.

Hitzler 2001 (PhD thesis).

Amongst other things: Logical characterization

for continuity of Tp.

Studied: generalizations, denotational

(fixed-point) semantics.
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Recurrent Architecture I

e Approximation results give no way of
constructing the network.

e Is the obtained approximation sufficient?

[HKS 1999] use the following recurrent

architecture:

e Network iterates 1T'p.
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Recurrent Architecture 11

I' = T'p consequence operator.

f 1/0 function of approximating network.

For any I € Ip and any n € N we have

1= A\"

() = (T < e~

A Lipschitz const. of extension of +(T) onto [0, 1].

¢ error of the network.
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Conclusions

Much work remains to be done.

Continue the study of variable bindings.

What is the right connectionist paradigm?

We will continue the work in Dresden.

We seek students for our

International Master Programme in

Computational Logic.

(English language, two years duration, Bachelor

required.)

Acknowledgements: New results joint work with A.K.

Seda. Thanks for discussions on the subject to H. Blair,
S. Holldobler, H.-P. Storr
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