
We don’t have a clue how the mind is working.
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�Motivation

� Biological neural networks can easily do logical reasoning.

� Why is it so difficult with artificial ones?
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�Contents

• Brief history on logic and connectionism.

• The infinite language problem.

• Continuity of semantic operators in logic programming.

• Iterated function systems.

• Representing logic programs by neural networks.

New results were obtained in collaboration with Anthony K. Seda (Cork, Ireland)

or Sebastian Bader (Dresden, Germany).
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Biological neural nets

Neuron,
with dendrites, soma, and axon.

(Purkinje cell from cerebellum)

Picture:

Spektrum der Wissenschaft 10,

October 2001
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Biological neural nets

Potentials are being propagated
from the dendrites to the soma.

If the accumulated potetial is above
a certain threshold, the neuron fires.

The resulting potential is being
propagated to other neurons via the
axon.

Pictures: Birbaumer & Schmidt, Biologische Psychologie, 21991
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�Artificial neural nets

(Finite) set of units (nodes, neurons) with connections.
� graph

• Potentials are real numbers.

• Propagation doesn’t need time.

• Potentials accumulate as weighted sums.
(Weights stand for synaptic activity and can be learned.)

• Units become active in discrete time steps.

• Threshold function is the same everywhere in the network.

There exist many competing architectures.
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�Artificial neural nets

In particular:

• Every unit computes a simple input-output function.

• The units are blind concerning the sources of their input and the
targets of their output.

Information (knowledge)
is being represented by the

(weighted) connections

in the network!

� Connectionist systems.
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�McCulloch-Pitts networks
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McCulloch & Pitts 1943

Neurons with binary threshold functions
for ∨, ∧, ¬.

Updates are being computed for all
units at the same time.

McCulloch-Pitts networks are exactly the finite automata.

Picture: Hölldobler, Lecture notes Introduction to Computational Logic, 2001
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�McCulloch-Pitts networks: extensions

Hölldobler & Kalinke 1994: Representation of propositional logic
programs by 3-layer feedforward networks.

D’Avila Garcez, Broda, Gabbay, Zaverucha 1999/2001:
Extension to sigmoidal (differentiable) threshold functions.
Learning possible via backpropagation (gradient descent).

Idea:
� Knowledge representation via network.

� Learning via backpropagation.
� Extraction of learned knowledge.
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Symmetric nets and propositional logic
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Pinkas 199x: Hopfield networks with symmetric connections.

Update by probabilistic choice of unit.

There exsists relation between stable states in network
and models of propositional formulae (via energy minimization).

� Treatment of some non-monotonic propositional logic.

Pictures: Hölldobler, Introduction to Computational Logic, 2001
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Beyond propositional logic

Variable bindings?

Term representation?

Infinite ground instantiations?
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Shastri & Ajjanagadde 1993

Variable binding
via time synchronization.

Reflexive (i.e. fast)
reasoning possible.

Picture: Hölldobler,

Introduction to

Computational Logic, 2001

gives(X,Y,Z) → owns(Y,Z) gives(john,josephine,book)
buys(X,Y) → owns(X,Y) (∃X) buys(john,X)
owns(X,Y) → can-sell(X,Y) owns(josephine,ball)
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�SHRUTI

rules: ∀(p1(. . . ) ∧ · · · ∧ pn(. . . )→ (∃Y1, . . . , Yk)p(. . . ))

facts and queries: ∃(q(. . . ))

Some restrictions:

• No function symbols other than constants.

• In facts or queries each variable occurs only once.

• Every variable which occurs at least twice in the hypothesis of
some rule, must also occur in the consequence of the rule.
Furthermore, it must be instantiated in the moment when the
consequence is being unified with a query.

• The number of applications of some rule within a derivation is
globally bounded.
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Logic programs

A (normal logic) program P is a finite set of clauses of the form

∀(A← L1 ∧ · · · ∧ Ln),

in short
A← L1, . . . , Ln,

over some first-order language, where A is an atom, all Li are literals.
(A head, L1, . . . , Ln body of the clause.)

P is called definite, if P does not contain negation.

BP : set of all ground instances of atoms (Herbrand base).
IP = 2BP : set of all interpretations (complete lattice wrt. ⊆).
ground(P ): set of all ground instances of clauses in P .
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Fixed point semantics

P program. Define TP : IP → IP by:

TP (I) is set of all A ∈ BP for which there is a clause A← L1, . . . , Ln

in ground(P ) with I |= L1 ∧ · · · ∧ Ln.

Properties of the single-step operator TP :

• Models of P are pre-fixed points of TP .
(Fixed points are called supported models.)

• TP is monotonic and Scott continuous if P is definite.

• TP is in general not monotonic if P is not definite.
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Scott continuity

P definite program. Then:
• TP (I) ⊆ TP (J) for all I ⊆ J (monotonicity).
• supTP (In) = TP (sup In) for all directed (In).

I.e. TP Scott continuous. Subbase of the Scott topology on IP :

{G(A) : A ∈ BP } mit G(A) = {I ∈ IP : I |= A}.
Theorem

X complete lattice (Scott-Ershov domain).
f : X → X Scott continuous.
Then f has a least fixed point.

The least fixed point of TP (Herbrand case) yields denotational
semantics of P .
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Negation: Cantor topology

P not definite, then TP in general not monotonic.

Theorem not applicable.

G = {G(A) : A ∈ BP } ∪ {G(¬A) : A ∈ BP } with
G(L) = {I ∈ IP : I |= L}
Subbase of the Cantor topology Q on IP .

BP countable, then (IP , Q) homeomorphic to the Cantor set C on R.

Batarekh & Subrahmanian 1989 (query topology)
Seda 1995 (atomic topology)
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�Results

limT n
P (I) is model of P , if existent.

(Hitzler & Seda 1997)

limT n
P (I) is supported model of P , if existent and TP continuous.

Characterization of continuity.
(Seda 1995)

Generalized metric treatment of fixed-point semantics.
(Hitzler & Seda, TCS 2003)
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Consequence operators

Truth values T = {t1, . . . , tn}.

Interpretations are functions I : BP → T .

IP,n = IP set of all interpretations.

BA set of all atoms in bodies of clauses in ground(P ) with head
A ∈ BP .

T : IP → IP consequence operator for P , if for all I ∈ IP and all
A← body in P we have that T (I)(A)← I(body) holds via truth table.

T local if T (I)(A) = T (K)(A) for all A ∈ BP and all I, K ∈ IP which
agree on BA.

TP is a local consequence operator.

Other examples: Operators as defined by Fitting (1985,199x) in three-
or four-valued logic.
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Cantor topology Q

Q is the product topology on IP = T BP ,
where T = {t1, . . . , tn} carries the discrete topology.

Q is totally disconnected, compact, Hausdorff, second countable, dense
in itself.

Q is metrizable and homeomorphic to the Cantor set. (BP is
countable.)
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Continuity in Q

Consequence operator T on IP is locally finite, if for all A ∈ BP and
all I ∈ IP there exists a finite set S ⊆ BA with T (J)(A) = T (I)(A) for
all J ∈ IP which agree with I on S.

Theorem

A local consequence op. is locally finite iff it is continuous in Q.

Sufficient:
• P is covered, i.e. does not contain any local variables

(occuring in some body, but not in corresponding head).
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3-layer feedforward nets (3lfn)

input layer

hidden layer

output layer
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xi

wji

cj

y

hj . . .

x

y

�� 		

		��

xi inputs; y output; wji, c connection weights

I/O-function:

y = f(x1, . . . , xr) =
∑

j

cjσ

(∑
i

wjixi − θj

)

θj thresholds
σ threshold function (e.g. sigmoidal or gaussian bell)
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Idea
(Hölldobler, Kalinke, Störr 1994/1999)

Representation of a logic program P

by representing its single-step operator TP .

Yields:
Representation of a program with infinite ground instantiation.
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Hölldober, Kalinke & Störr 1999

Sought: suitable imbedding of IP into R.

Hölldobler, Kaline & Störr 1999: special case of acyclic programs with
injective level-mapping.

Via: metric by Fitting (1994) and representation as 4-adic numbers.

Approximation of TP only.
Pure existence proof. No idea how to construct networks.
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Continuity

Theorem (Funahashi 1989, simplified version):

σ sigmoidal
K ⊆ R compact,
f : K → R continuous,
ε > 0.

Then there exists 3lfn with sigmoidal σ and I/O-function f̄ : K → R

with
max
x∈K

{
d
(
f(x), f̄(x)

)}
< ε;

d metric which induces natural topology on R.

I.e. every continuous function f : K → R can be uniformly
approximated by I/O-functions of 3lfns.
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Approximation of continuous consequence operators

Theorem (Hitzler & Seda 2001)

Let P be a logic program, T be a locally finite consequence operator,
and ι be a homeomorphism from (IP,n,Q) to C.
Then ι(T ) can be uniformly approximated by I/O-functions of 3lfns.

This holds mutatis mutandis e.g. for radial basis function networks
(threshold function is gaussian).
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Measurability

Satz (Hornik, Stinchcombe, White 1989, simplified version)

σ : R→ (0, 1) monotonic increasing, onto.
f : R→ R Borel measurable,
μ Borel probability measure on R,
ε > 0.

Then there is a 3lfn with threshold function σ and I/O-function
f̄ : R→ R with

�µ(f, f̄) = inf
{
δ > 0 : μ

{
x :
∣∣f(x)− f̄(x)

∣∣ > δ
}

< δ
}

< ε.

I.e. the set of I/O-functions which can be computed using 3lfns is
dense with respect to �µ in the set of all Borel measurable functions
f : R→ R.

Dept. of EECS • Syracuse University • 12.2003 26



�

�

�

	
Measurable consequence operators

Satz (Hitzler & Seda 2000)

Local consequence operators are always
measurable with respect to σ(Q).

But:

Approximation by 3lfns is only almost everywhere.

Cantor set has measure 0.
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�Rekursive architecture

. . .

x

y

�� 		

		��

�

Results do not indicate
how approximating networks
could be constructed.

But results on the behaviour
of these networks can be obtained.

Hölldobler, Störr und Kalinke 1999
use recursive architecture (left).

Network iterates consequence operator.
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�Recursive architecture

T locally finite consequence operator.
f I/O-function of approximating network.

for all I ∈ IP and all n ∈ N we have

|fn(ι(I))− ι(T n(I))| ≤ ε
1− λn

1− λ
.

λ Lipschitz-constant of F , the continuation of ι(T ) to [0, 1].
ε bound on approximation error.
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�Recursive architecture

If F is a contraction on [0, 1], then
(
F k(ι(I))

)
converges for all I to

the unique fixed point x of F and there is m ∈ N such that for all
n ≥ m we have

|fn(ι(I))− x| ≤ ε
1

1− λ
.

Furthermore, T is a contraction on the complete space IP (with
suitable metric), and we have ι(M) = x for the unique fixed point M

of T .
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�Recursive architecture

Assume there is I ∈ IP such that T n(I) converges in Q to a fixed
point M of T .

Then for every δ > 0 there exists some n ∈ N and a network with
|fn(ι(I))− ι(M)| < δ.
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Acyclic programs

A logic program P is acyclic if there exists a level mapping l : BP → N

such that for all A ∈ BP and all B ∈ BA we have l(A) > l(B).

Let d : IP × IP → R be defined by d(I, J) = 2n, where n is least such
that I and J disagree on some atom of level n.

d ist a complete metric on IP .

Let P be acyclic and T be a local consequence operator for P . Then T

is a contraction with respect to d and Tn(I) converges in Q for all
I ∈ IP to the unique fixed point of T .
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More general programs

For much more general programs we know about metrics with respect
to which TP is a contraction. But these metrics are in general not
imbeddable into the reals.

(Hitzler & Seda, TCS 2003)
(Hitzler & Seda 2001)
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Self-Similarity

An obseration by Sebastian Bader.

Graph of TP visualized via embedding into [0, 1]× [0, 1]
using p-adic numbers.

R : IP → R : I 
→
∑

A∈I B−l(A), where l : BP → N injective, B > 2.

Graph shows self-similarity.

(The following pictures were provided by Sebastian Bader.)
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Examples of graphs of logic programs

n(0).

n(s(X))←n(X).

e(0).

e(s(X))←not

e(X).

o(X)←not e(X).

p(0).

p(s(X))←p(X).

p(X)←not p(X).
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(Hyperbolic) Iterated function systems (IFSs)

Space H: Compact subsets of R
2 with Hausdorff metric.

Set Ω = {ωi} of contraction mappings on R
2.⋃

Ω(A) =
⋃

i ωi(A) contraction on H with unique fixed point
(attractor).
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First representation theorem

P logic program. R : IP → R p-adic embedding.(
R

2, d, Ω =
{(

ω1
i , ω2

i

)})
hyperbolic IFS, attractor A.

Then

graph(R(TP )) = A

iff

π1(A) = range(R) and
R(TP )

(
ω1

i (a)
)

= ω2
i (a) for all a ∈ graph(R(TP )) and all i.
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Second representation theorem

(Bader & Hitzler 2003, to appear in JAL)

P logic program with Lipschitz-continuous R(TP ).
Then there exists IFS with attractor graph(R(TP )).

Idea: Set ω2
i (x) = R(TP )(ω1

i (x)).
Choose ω1

i (x) such that it generates range(R). This is possible with
arbitrarily small contraction, the necessary size of which can be
determined by the Lipschitz constant of R(TP ).

Dept. of EECS • Syracuse University • 12.2003 43



�

�

�

	
Concrete approximation by interpolation

a ∈ N accuracy. (JAL to appear)
l injective level mapping (enumeration of BP ).
Interpolation points: (R(I), R(TP (I)), where I ∈ D = {A | l(A) < a}.

IFS with Ωa = {(ω1
i , ω2

i )}, where

ω1
i (x) =

1
Ba

x + d1
i

ω2
i (x) =

1
Ba

+ R(TP )
(
d1

i

)
− R(TP )(0)

Ba

Attractors Aa are graphs of continuous functions.

(Aa)a converges in function space (with sup-metric) to R(TP )
if R(TP ) Lipschitz-continuous.
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Encoding as radial basis function network

∑
∑
∑

=

=

=

s′

x′

y′

s

x

y

1/Ba
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�Continualization

H.A. Blair et al.

Work relating
• logic (programming)
• topological dynamics (chaos theory)
• cellular automata
• finite automata
• etc.

Continualization of discrete systems.

Making the sophisticated tools of continuous maths available to CS.
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�Future
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