Characterizing Classes of Logic Programs via Unique Fixed-Points of Monotonic Operators

Pascal Hitzler and Anthony Karel Seda

National University of Ireland, Cork

Contents

- Logic Programs and Models
- Generalized Ultrametric Spaces
- Domains as GUM Spaces
- Locally Hierarchical Programs
- 3-valued Interpretations and Operators
- Unique Supported Model Classes
- Characterizations of Program Classes
- SLDNF-Resolution
- Results on Program Classes
- Work in Progress

Logic Programs and Models

A (normal) logic program P is

a finite set of clauses of the form
$$(m \ge 0)$$

$$\forall (\underbrace{A} \leftarrow \underbrace{L_1 \wedge \cdots \wedge L_m})$$
 head \leftarrow body

- *A atom
- * L_i literals

Written:
$$A \leftarrow L_1, \ldots, L_m$$

- * B_P set of all ground atoms in P
- * $I_P = 2^{B_P}$ set of all interpretations for P
- * ground(P) set of ground instances of clauses in P

models give declarative semantics a program may have many models: *intended* model? many approaches to choosing a semantics exist we focus on *supported models*

single-step operator on I_P (in general not monotonic):

$$T_P(I) = \{A \in B_P \mid \text{ there exists} \}$$

 $A \leftarrow \text{body} \in \text{ground}(P) \text{ with } I \models \text{body} \}$

- * $I \mod \operatorname{iff} T_P(I) \subseteq I$ (pre-fixed point)
- * I supported model iff $T_P(I) = I$ (fixed point)

Generalized Ultrametric Spaces; The Prieß-Crampe & Ribenboim Theorem

X set, Γ poset, min $\Gamma = 0$.

 $d: X \times X \to \Gamma$ is gum space iff $\forall x, y, z \in X, \gamma \in \Gamma$

- $\bullet \ d(x,y) = 0 \text{ iff } x = y$
- $\bullet \ d(x,y) = d(y,x)$
- \bullet $d(x,y) \le \gamma$ and $d(y,z) \le \gamma \Longrightarrow d(x,z) \le \gamma$

(X, d) spherically complete iff $\bigcap \mathcal{C} \neq \emptyset$ for each chain \mathcal{C} of balls $(B_{\gamma}(y) = \{x \mid d(x, y) \leq \gamma\})$ in X.

Theorem (P-C & R)

(X,d) spherically complete gum space $f: X \to X$ contraction $(d(f(x), f(y)) < d(x,y) \qquad \forall x,y \in X).$ Then f has a unique fixed point.

Domains as Gums

D algebraically complete cpo (e.g. I_P) γ countable ordinal, $\Gamma_{\gamma} = \{2^{-\alpha} \mid \alpha < \gamma\}$ $2^{-\alpha} < 2^{-\beta}$ iff $\beta < \alpha$ $r: D_C \to \gamma + 1$ rank function $d_r: D \times D \to \Gamma_{\gamma+1}$ defined by $d_r(x,y) = \inf\{2^{-\alpha} \mid (c \sqsubseteq x \text{ iff } c \sqsubseteq y) \text{ for all } c \in D_C \text{ with } r(c) < \alpha\}$

Theorem Hitzler & Seda 1999

 $|(D, d_r)|$ is a spherically complete gum space.

Proof uses the following Lemma.

Let
$$B_{2^{-\beta}}(y)$$
 (=: $B_{\beta}(y)$) be a ball in (D, d_r) .

$$\circ x \in B_{\beta}(y) \Longrightarrow \{c \in \operatorname{approx}(x) \mid r(c) < \beta\}$$

$$= \{ c \in \operatorname{approx}(y) \mid r(c) < \beta \}$$

$$\circ B_{\beta} = \sup\{c \in \operatorname{approx}(y) \mid r(c) < \beta\} \text{ exists}$$

$$\circ B_{\beta} \in B_{\beta}(y)$$

$$\circ B_{\alpha}(x) \subseteq B_{\beta}(y) \Longrightarrow B_{\beta} \sqsubseteq B_{\alpha}$$

- * generalizes earlier result Seda & Hitzler 1997
- * P-C & R Theorem is more general than applied
- * bottom element of D not needed
- * can replace $\Gamma_{\gamma+1}$ with totally ordered set with infs

Application: lh-programs

Logic program P locally hierarchical (Cavedon) (S & H: strictly level-decreasing) iff

exists level mapping $l: B_P \to \gamma$ $(l(A) = l(\neg A))$ s.t.

for all $A \leftarrow \mathsf{body} \in \mathsf{ground}(P)$

l(A) > l(L) for all L in body.

Set $r(I) = \max\{l(A) \mid A \in I\}$ for finite $I \in I_P$.

Theorem

If P lh then T_P contraction (wrt. (D, d_r)).

Hence, P has unique supported model.

3-valued Interpretations and Operators

Truth Values: t, f, u

$$I = (I^+, I^-), I^+, I^- \in I_P \text{ with } I^+ \cap I^- = \emptyset$$

3-valued Interpretaion

 $A \in I^+$ are true, $B \in I^-$ are false, others are undefined.

I called total if $I^+ \cup I^- = B_P$.

 $I_{P,3}$ set of all 3-valued interpretations

 $I_{P,3}$ is cpo (in fact, complete semilattice, Fitting 1985):

$$I \leq J$$
 iff $I^+ \subseteq J^+$ and $I^- \subseteq J^-$

Program Transformation:

A occurring as head in ground(P), form $pseudo\ clause\ A \leftarrow \bigvee_i C_i$ body is disj. of bodies C_i of all clauses with head A. resulting set of pseudo clauses is denoted P^* .

Monotonic Operator F on $I_{P,3}$

* has least fixed point $F \uparrow \alpha$, α ordinal.

$$F \uparrow 0 = (\emptyset, \emptyset)$$

$$F \uparrow (\alpha + 1) = F(F \uparrow \alpha)$$

$$F \uparrow (\alpha) = \bigcup_{\beta < \alpha} F \uparrow \beta$$
 for α limit ordinal

Least fixed point (lfp) is maximal in $I_{P,3}$ iff it is a total 3-valued interpretation.

Choice of evaluating logical connectives:

Negation: $\neg t = f$, $\neg f = t$, $\neg u = u$

Conjunction and Disjunction (extend to pseudo-clauses):

		C_1	C_2	C_3	D_1	D_2
\overline{p}	q	$p \wedge q$	$p \wedge q$	$p \wedge q$	$p \lor q$	$p \lor q$
t	t	t	t	t	t	t
t	u	u	u	u	t	u
t	f	f	f	f	t	t
u	t	u	u	u	t	u
u	u	u	u	u	u	u
u	f	f	u	u	u	u
f	t	f	f	f	t	t
f	u	f	f	u	u	u
f	f	f	f	f	f	f

 C_1, D_1 : Fitting's Kripke-Kleene Semantics 1985, Mycroft 1984, Kunen 1987, Apt & Pedreschi 1993, Naish 1998. C_2, D_1 : Barbuti et al. 1991, Andrews 1997.

Operators on $I_{P,3}$ using P^* $\Phi_{i,j}, i = 1, 2, 3$ conjunction, j = 1, 2 disjunction $\Phi_{i,j}(I) = (T, F)$ with $T = \{A \in B_P \mid \exists (\text{head} \leftarrow \text{body}), \text{body is true in } I\}$ $F = \{A \in B_P \mid \forall (\text{head} \leftarrow \text{body}), \text{body is false in } I\}$

Unique Supported Model Classes

 $\Phi_{i,j}$ monotonic for all choices of i, j.

Define **classes** of programs:

[i,j] all programs s.t. If of $\Phi_{i,j}$ is total

 $[i,j,\omega]$ all progs. s.t. If of $\Phi_{i,j}$ is $\Phi_{i,j} \uparrow \omega$ and is total

 $\Phi_{i,j}$ has total lfp $I \Longrightarrow I^+$ is unique fixed point of T_P $\Longrightarrow I^+$ is unique supported model.

I.e. $[i, j], [i, j, \omega]$ are unique supported model classes.

Dependencies between the classes

 \longrightarrow : set inclusion

Characterizations of Programs

$[3, 2, \omega]$	[3, 2]	$[2,2,\omega]$	[1,2]
acyclic	lh	acceptable	Φ^* -accessible

SLDNF-resolution and -trees

For simplicity: consider ground programs and goals.

 $P \text{ program}, Q = (\leftarrow L_1, \ldots, L_n) \text{ goal}$

Construct SLDNF-tree:

Choose selection function: selects one L_i for evaluation.

$$L_i = A - \mathbf{atom}$$

Daughters of Q are constructed as follows:

For each $A \leftarrow body$ which is clause in P,

 $L_1, \ldots, L_{i-1}, \text{body}, L_{i+1}, \ldots, L_n \text{ is daughter of } Q.$

Leaves are empty goals (successful branch)

or when selected literal does not produce daughters

(branch fails).

$L_i = \neg A$ — negative literal

Construct SLDNF-tree from goal $\leftarrow A$.

If all branches of tree successful then Q fails.

Otherwise daugher of Q is $L_1, \ldots, L_{i-1}, L_{i+1}, \ldots, L_n$.

Two decisions:

- 1. selection function
- 2. how to traverse tree

Prolog:

selects leftmost (new) literal + left-depth-first search

Problem: can not work on non-ground selected literals (floundering)

Results on Program Classes

Acyclic Programs

Cavedon 1989: ω -locally hierarchical programs

Definition as for lh programs, but

level mapping maps into ω .

subclass of lh programs

Bezem 1989: exactly the terminating programs

i.e. all SLDNF-trees of ground goals are finite.

Bezem 1989: compute all total computable functions.

Locally Hierarchical Programs

Cavedon 1989

may not terminate

Seda & Hitzler 1998:

* compute all partial recursive functions

if use of cut-operator is allowed (cut operator prunes SLDNF-tree)

- * connections to topological dynamics
- * topological constructions of unique supported model

Acceptable Programs

Definition Apt & Pedreschi 1993

Let p, q be predicate symbols in P.

p refers to q if there is a clause in P with p in its head and q in its body.

p depends on q if (p, q) is in the reflexive, transitive closure of the relation refers to.

Set of predicate symbols in P which occur in a negative literal in the body of a clause in P is denoted by Neg_P .

Set of predicate symbols in P on which the predicate symbols in Neg_P depend is denoted by Neg_P^* .

Define P^- to be the set of clauses in P which contain a predicate symbol from Neg_P^* in the head.

Program P is acceptable if there is a level mapping l which maps into ω and a supported model I of P^- s.t. for every clause $A \leftarrow L_1, \ldots, L_n$ in ground(P)whenever $I \models L_1 \land \cdots \land L_{i-1}$ we have $l(A) > l(L_i)$.

Apt & Pedreschi 1993:

* acceptable programs are left-terminating

(SLDNF-trees of ground goals are finite under leftmost selection rule)

- * left-term. non-floundering programs are acceptable
- * superclass of acyclic programs

they can not compute all computable functions

H & S 1999: topological characterization

Φ^* -Accessible Progams

Seda & Hitzler 1999:

- * possible to characterize similar to acceptable prog.
- * can compute all partial recursive functions
- * superclass of lh and acceptable programs

Work in Progress

topological aspects:

- * for usm classes transfinite iterates of T_P operator converge in Cantor topology
- * topological characterizations of the classes

termination:

* non-commutative disjunction etc. should correspond to other strategies of traversing the SLDNF-tree

program classes:

- * understanding the "space" of all programs
- * understanding all usm programs

denotational semantics:

* adjust approach for other semantics