flies $(x) \leftarrow \operatorname{bird}(x) \land \neg \operatorname{penguin}(x)$

 $\mathtt{bird}(\mathrm{Bob}) \leftarrow$

de 1

Does Bob fly?

Fixed-point semantics in logic programming and nonmonotonic reasoning: A uniform approach

Pascal Hitzler

Workshop on Proof Theory and Computation, Dresden, May 2002

Contents

de 2

For semantics based on monotonic operators: characterizations using level mappings.

For semantics based on non-monotonic operators: study of dynamic behaviour using level mappings.

Artificial Intelligence Institute, Dresden University of Technology, Dresden, Germany

Workshop on Proof Theory and Computation \bullet Dresden \bullet 05.2002

Restrictions

We work on ground instantiations of normal logic programs.

Negation symbols may appear in clause bodies.

Essentially, program P is countably infinite set of propositional rules. Herbrand base $B_P \approx$ set of propositional variables (atoms).

Slide 3

$$A \leftarrow B_1, \dots, B_n, \neg C_1, \dots, \neg C_m$$

 $A \leftarrow \text{body}$

(We talk about Prolog only in a very abstract sense.)

Level mappings

Level mapping $B_P \to \alpha$ for ordinal α . ω -level mapping $B_P \to \omega$.

Slide 4

- order on atoms
- precedence
- dependence
- distance

Workshop on Proof Theory and Computation \bullet **D**resden \bullet 05.2002

Least models

Positive (definite) program P.

There is a unique model M of P for which there exists a level mapping $l: B_P \to \alpha$ such that for each $A \in B_P$ with $M \models A$ there exists $A \leftarrow \text{body in } P$ with $M \models \text{body and } l(A) > l(B)$ for each $B \in \text{body}$.

de 5

 $M = T_P \uparrow \omega = \text{lfp}(T_P)$ is the least model of P.

$$l(A) = \min\{n \mid A \in T_P \uparrow (n+1)\}.$$

Stable models

(Fages 1994)

P normal (with negation).

A model M of P is stable if and only if there exists a level mapping $\mathbf{de} \ \mathbf{6} \ l: B_P \to \alpha$ such that for each $A \in B_P$ with $M \models A$ there exists $A \leftarrow body$ in P with $M \models body$ and l(A) > l(B) for all $B \in body^+$.

body⁺: all atoms occuring positively in body

$$M = \operatorname{GL}_P(M) = T_{P/M} \uparrow \omega = \operatorname{lfp}(T_{P/M}).$$

$$l(A) = \min\{n \mid A \in T_{P/M} \uparrow (n+1)\}.$$

Workshop on Proof Theory and Computation \bullet **D**resden \bullet 05.2002

Kleene's strong three-valued logic

Thruth values f < u < t, $\land = \min$, $\lor = \max$, \neg as expected.

Interpretations: consistent signed sets of atoms

$$I = I^+ \dot{\cup} \neg I^- \subseteq B_P \cup \neg B_P.$$

 I^+ : true atoms I^- : false atoms

Slide 7

Signed: contains atoms and negated atoms. Consistent: does not contain both A and $\neg A$.

With order $I \subseteq K$: Plotkin's domain \mathbb{T}^{ω}

I-partial level mapping:

partial mapping $l: B_P \to \alpha$ with $dom(l) = I^+ \cup I^-$.

Set $l(\neg A) = l(A)$.

Fitting models

There is a greatest model M of P such that there is an M-partial level mapping l for P such that each $A \in \text{dom}(l)$ satisfies one of the following conditions.

(Fi) $A \in M$ and there exists $A \leftarrow L_1, \dots, L_n$ in P such that for all i we have $L_i \in M$ and $l(A) > l(L_i)$.

Slide 8

(Fii) $\neg A \in M$ and for each $A \leftarrow L_1, \dots, L_n$ in P there exists i with $\neg L_i \in M$ and $l(A) > l(L_i)$.

 $M = \Phi_P \uparrow \alpha = \text{lfp}(\Phi_P)$ Fitting model.

 $l(A) = \min\{\beta \mid A \in \Phi_P \uparrow (\beta + 1)\}.$

Workshop on Proof Theory and Computation • Dresden • 05.2002

Well-founded models

(Hitzler & Wendt 2002)

Replace

(Fii) $\neg A \in M$ and for $A \leftarrow L_1, \dots, L_n$ in P there exists i with $\neg L_i \in M$ and $l(A) > l(L_i)$.

de 9 by

(WFii) $\neg A \in M$ and for each $A \leftarrow A_1, \dots, A_n, \neg B_1, \dots, \neg B_m$ in P one of the following holds:

(WFiia) There exists i with $\neg A_i \in M$ and $l(A) \ge l(A_i)$.

(WFiib) There exists j with $B_j \in M$ and $l(A) > l(B_j)$.

Prevent recursion through negation: Idea behind local stratification.

Weak stratification: Presentation by Matthias Wendt next Wednesday.

Well-founded models

There is a greatest model M of P such that there is an M-partial level mapping l for P such that each $A \in \text{dom}(l)$ satisfies one of the following conditions.

(Fi) $A \in M$ and there exists $A \leftarrow L_1, \dots, L_n$ in P such that for all i we have $L_i \in M$ and $l(A) > l(L_i)$.

(WFii) $\neg A \in M$ and for each $A \leftarrow A_1, \dots, A_n, \neg B_1, \dots, \neg B_m$ in P one of the following holds:

e 10

(WFiia) There exists i with $\neg A_i \in M$ and $l(A) \ge l(A_i)$

(WFiib) There exists j with $B_j \in M$ and $l(A) > l(B_j)$.

 $M = W_P \uparrow \alpha = lfp(W_P)$ well-founded model.

 $l(A) = \min\{\beta \mid A \in W_P \uparrow (\beta + 1)\}.$

Workshop on Proof Theory and Computation \bullet Dresden \bullet 05.2002

Well-founded models

stable models: $M = GL_P(M) = T_{P/M} \uparrow \omega$.

 GL_P antitonic, GL_P^2 monotonic

well-founded model:

 $\operatorname{lfp}\left(\operatorname{GL}_{P}^{2}\right) \cup \neg\operatorname{gfp}\left(\operatorname{GL}_{P}^{2}\right) \qquad = \qquad \operatorname{lfp}\left(\operatorname{GL}_{P}^{2}\right) \cup \neg\operatorname{GL}_{P}\left(\operatorname{lfp}\left(\operatorname{GL}_{P}^{2}\right)\right).$

 $L_{\alpha} = \operatorname{GL}_{P}^{2} \uparrow \alpha \qquad G_{\alpha} = \operatorname{GL}_{P}(L_{\alpha}).$

Slide 11

 $l(A) = (\alpha, n)$ with:

For $A \in \text{lfp}\left(\text{GL}_P^2\right)$: α least with $A \in L_{\alpha+1}$ n least with $A \in T_{P/G_{\alpha}} \uparrow (n+1)$.

For $A \notin \operatorname{gfp} (\operatorname{GL}_P^2)$: α least with $A \notin G_{\beta+1}$

 $n = \omega$.

Supported models

Back to classical (two-valued) logic.

Immediate consequence operator:

 $T_P(I)$ set of all $A \in B_P$ such that exists $A \leftarrow \text{body in } P$ with $I \models \text{body}$.

Slide 12

 T_P in general not monotonic.

supported model: $M = T_P(M)$.

propagation along \leftarrow

Workshop on Proof Theory and Computation • © resden • 05.2002

Related paradigms

logic programs with immediate consequence operator

cellular automata

artificial neural networks

e 13

topological dynamical systems

(see e.g. Blair et al. 1999)

Acyclic/locally hierarchical programs

P locally hierarchical if $l: B_P \to \alpha$ for some ordinal α and for each $A \leftarrow L_1, \ldots, L_n$ in P:

$$l(A) > l(L_i)$$
 for all i .

P acyclic if $l: B_P \to \omega$.

e 14

Distance function on space I_P of all interpretations:

$$d(J,K) = \begin{cases} \inf\left\{2^{-\beta} \mid J, K \text{ agree on atoms with level } < \beta\right\} & \text{if } J \neq K \\ 0 & \text{if } J = K. \end{cases}$$

Acyclic programs

P acyclic:

- ullet d complete ultrametric.
- T_P contraction.
- \bullet T_P has unique fixed point. (Via Banach contraction mapping theorem.)
- ullet P has unique supported model M.

Slide 15

• $T_P^n(K) \to M$ in the Cantor topology on I_P (for all K).

Acyclic programs terminate under SLDNF-resolution with respect to any selection rule. (Bezem 1989)

Locally hierarchical programs

P locally hierarchical:

- ullet d spherically complete generalized ultrametric. (d maps into poset.)
- **Slide 16** T_P strictly contracting.
- \bullet T_P has unique fixed point. (Via Priess-Crampe & Ribenboim theorem.)
- ullet P has unique supported model M.
- $T_P^{\alpha}(K) = M$ for some α via transfinite iteration.

Acceptable programs

Neg**_p: atoms occurring negatively in P together with all predicates on which they depend. P^- : all ground clauses with head in Neg**_p.

le 17 P is acceptable (with respect to model I and $l: B_P \to \omega$) if I restricted to Neg_P^* is a supported model of P^- and for all $A \leftarrow L_1, \ldots, L_n$ in P and all $i \in \{1, \ldots, n\}$: if $I \models \bigwedge_{j=1}^{i-1} L_i$ then $l(A) > l(L_i)$.

Acceptable programs are left-terminating (and conversely if non-floundering) (Apt & Pedreschi 1994).

Acceptable programs

For $K \in I_P$ let K' be K restricted to predicates not in Neg_P^{*}.

$$f: I_P \to \mathbb{N}: K \mapsto \begin{cases} 0 & \text{if } K \subseteq I \\ 2^{-n} & n \text{ least s.t. exists } A \in K \setminus I \text{ with } l(A) = n. \end{cases}$$

 $u(K) = \max\{f(K'), d(K \setminus K', I \setminus I')\}\$

$$\varrho(J,K) = \max\{d(J,K), u(J), u(K)\}.$$

 ϱ almost a metric, fails d(K, K) = 0 for all K. ϱ dislocated metric (Matthews 1986).

Banach theorem carries over (Matthews 1986) with same consequences as for acyclic programs.

Used a priori (partial) knowledge about fixed point.

Workshop on Proof Theory and Computation \bullet **D**resden \bullet 05.2002

Full knowledge about fixed point

(Hitzler & Seda 2001)

Let (X, τ) be a T_1 topological space and $f: X \to X$ be a function which has a unique fixed point a and such that for each $x \in X$ we have that $f^n(x)$ converges to a in τ .

Slide 19 Then there exists a function $d: X \times X \to \mathbb{R}$ such that (X, d) is a complete ultrametric space and such that for all $x, y \in X$ we have $d(f(x), f(y)) \leq \frac{1}{2}d(x, y)$.

In the proof: d is constructed using a.

"Converse" of the Banach contraction mapping theorem.

Quo Vadis? Fixed-point theorems

Tools have been developed.

Mostly new perspectives on known results.

Slide 20 Are there new applications out there?

Acknowledgements

Anthony K. Seda, Cork.

Most of the fixed-point results were joint work.

Matthias Wendt.

Main work in the "well-founded" characterization.

Quo Vadis? Characterizations via level-mappings

Generalize

extended disjunctive etc. programs.

logic programming on posets. (Rounds & Zhang 2001; Hitzler 2002)

e 21

Apply

computation of models (answer set programming).

Acknowledgements

Anthony K. Seda, Cork.

Most of the fixed-point results were joint work.

Matthias Wendt.

Main work on the "well-founded" characterization.