

Faster OWL Using Split Programs

Denny Vrandecic

AIFB, University of Karlsruhe, Germany

Sekt

Problem Description

- Reasoning with OWL DL is **hard**. (Expressivity vs. scalability)
- For certain Semantic Web applications quick responses are more important than absolute accuracy of answering. e.g. scenario.

sekt

KnowledgeWeb

SmartWeb: Mobile querying of the Semantic Web

SAARLANDES

ekt.

Key Idea: Approximate Reasoning

- Reasoning with OWL DL is **hard**. (Expressivity vs. scalability)
- For certain Semantic Web applications quick responses are more important than absolute accuracy of answering. e.g. scenario.
- We trade soundess for time, using approximate reasoning.

ekt.

Concrete Approach

To appear in: Hitzler & Vrandecic, Resolution-based approximate reasoning for OWL DL. In: Proceedings of ISWC2005, Galway, Ireland, November 2005.

We facilitate recent results due to Hustadt, Motik, Sattler, Studer 2003/2004/2005

on casting OWL-DL into disjunctive Datalog.

(currently being implemented in KAON2 see http://kaon2.semanticweb.org)

sekt.

Obtaining speed-up

- 1. Get rid of nominals. [linear]
- 2. Translate TBox into clausal form. [linear]
- 3. Saturate TBox by taking all consequences.
 - •[exponential]
- 4. Eliminate function symbols. [linear]
- 5. Performing inferences.

Transforming disjunctive Datalog into non-disjunctive Datalog using split programs. **Presented here!**

Can be done offline.

sekt

Semantic description

Inference boils down to brave reasoning with well-supported models.

Variant of standard notion for non-disjunctive programs. Shown by Fages (1994) to be equivalent to stable models.

Reiter's Default Logic

Answer Set Programming

Screech Performance

11055 ms

Galen ontology 673 axioms, 175 classes randomly populated with 500 individuals

267 disjunctions in 133 rules eliminated

Time (DD)	Time (SPLIT)	Instances	Class Name
11036 ms	6489 ms	154/154	Biological_object
$11026~\mathrm{ms}$	5959 ms	9/9	Specified_set
$11006~\mathrm{ms}$	6219 ms	9/13	Multiple
11015 ms	5898 ms	16/16	$Probe_structural_part_of_heart$
$11036~\mathrm{ms}$	7711 ms	4/4	$Human_red_blood_cell_mature$

5949 ms

Table 2. Performance comparison for instance retrieval using disjunctive datalog (DD) vs. the corresponding split program (SPLIT), on the KAON2 datalog engine. *Instances* indicates the number of instances retrieved using DD versus SPLIT, e.g. class Multiple contained 9 individuals, while the split program allowed to retrieve 13 (i.e. the 9 correct individuals plus 4 incorrect ones). The full name of the class in the last row is Biological_object_that_has_left_right_symmetry.

24/58 Biological_object_that...

ekt taste knowled

Thanks!

http://logic.aifb.uni-karlsruhe.de/screech