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Abstract. We introduceELP as a decidable fragment of the Semantic Web Rule
Language (SWRL) that admits reasoning in polynomial tiieR is based on
the tractable description log&L"*, and encompasses an extended notion of the
recently propose®L rulesfor that logic. Thu€LP extendsSL™* with a number

of features introduced by the forthcoming OWL 2, such asodisjroles, local
reflexivity, certain range restrictions, and the universé. We present a reason-
ing algorithm based on a translation®fP to Datalog, and this translation also
enables the seamless integration of DL-safe rulesihfa While reasoning with
DL-safe rules as such is already highly intractable, we sti@w DL-safe rules
based on the Description Logic Programming (DLP) fragmé®@WL 2 can be
admitted inELP without losing tractability.

1 Introduction

The description logic (DL) family of knowledge represeigatformalisms has been
continuously developed for many years, leading to highlgregsive (and complex),
yet decidable languages. The most prominent such langsagerentlySRO7Q [1],
which is also the basis for the ongoing standardisation @hiaw\Web Ontology Lan-
guage OWL 2 On the other hand, there has also been considerable intenestre
light-weight languages that allow for polynomial time reamg algorithms. DL-based
formalisms that fall into that category afe** [2], DL Lite [3], and DLP [4]. While
DL Lite strives for sub-polynomial reasoningL** and DLP both are P-complete frag-
ments ofSROI Q. In spite of this similaritySL** and DLP pursue dlierent approaches
towards tractability, and the combination of both is alxehiyhly intractable [5].

In this paper, we reconcil8L** and DLP in a novel rule-based knowledge repre-
sentation languageLP. While ELP can be viewed as an extension of both formalisms,
however, it limits the interactions between the expresiagures of either language
and thus preserves polynomial time reasoning complegitp. also significantly ex-
tendsEL" by local reflexivity, concept products, conjunctions of plmroles, and
limited range restrictions as in [6]. These features in pegtalready anticipated for the
EL'" based language profile of OWL 2, but, to the best of our knogéethis work is
the first to establish their joint tractability.

The reasoning algorithms presented herein are based owyr@opaibl reduction of
ELP knowledge bases to a specific kind of Datalog programs thatbeaevaluated
in polynomial time. Since the Datalog reduction as such mmgaratively simple, this

L OWL 2 is the forthcoming W3C recommendation for updating QVdhd is based on the
OWL 1.1 member submission. Sketp: //www.w3.0rg/2007/0WL.



outlines an interesting new implementation strategy fer&** profile of OWL 2:
Besides the possibility of reusing optimisation methodsrfrdeductive databases, the
compilation of6L** to Datalog also provides a practical approach for extendifg"
with DL-safe rules [7]. In these respects, the presentedomoh bears similarities with
the KAON2 transformation o8HZQ knowledge bases into disjunctive Datalog pro-
grams [8], though the actual algorithms are verjatent due to the dierent DLs that
are addressed. DL-safe rules add new expressivity buteh&ilments are specifically
restricted for preserving decidability — an extended eXamjil illustrate the éfects.

For this paper, we chose a presentatioilof based orDL rules a decidable sub-
set of the Semantic Web Rule Language SWRL that has beertlyepsyposed in two
independent works [9, 10]. As shown in [9], it is possible ndirectly express such
rules by means of the expressive featureSBO7Q, and large parts &LP can still be
regarded as a subset8ROI Q. The following examples illustrate the correspondence
between DLs and DL rules, and give some intuition for the eggivity ofELP:

Concept inclusions DL ThoxaxiomsC £ D for subconcept relationships correspond
to rules of the formC(x) — D(X).

Role inclusions DL RboxaxiomsRo S C T express inclusions with role chains that
correspond to rules of the forR(x, y) A S(y,2) — T(X, 2).

Local reflexivity The DL concepHR.Self of all things that have aR relation to them-
selves is described by the expressi(x, x). For example, the axiorf loves.Self C
Narcist corresponds téves(X, X) — Narcist(X).

Role disjointness Roles inSROZQ can be declared disjoint to state that individu-
als related by one role must not be related by the other. Aardiatg example rule is
HasSon(X, ¥) A HasHusband(x,y) — L(X) (L denoting the empty concept).

Concept products and the universal role Concept products have, e.g., been studied
in [11]. The statement that all elephants are bigger thamalk corresponds to the
axiom Elephant X Mouse C biggerThan and to the ruleElephant(x) A Mouse(y) —
biggerThan(x,y). The universal roldJ that relates all pairs of individuals can be ex-
pressed by the rule> U(x,y) or as the product of th& concept with itself.

Quialified role inclusions Rules can be used to restrict role inclusions to certain con-
cepts, which is not directly possible IS8ROZQ. An example is given by the rule
Woman(x) A hasChild(x,y) — motherOf(X, y).

While this work is conceptually based on [9], it significgndiffers from the lat-
ter by following a completely new reasoning approach irst#aextending the known
algorithm for&L*". While our use of Datalog may still appear similar in spitite
model constructions in the proofs expose additional texiiomplications that arise
due to the novel combination of concept products, role aaetjons, and local reflex-
ivity. Moreover, the proposed integration of DL-safe ruiesot trivial since, in the
absence of inverse roles, it cannot be achieved by the uppabach for “rolling-up”
nested expressions, and termination of the modified tramsftion is less obvious.

The paper proceeds by first recalling some minimal prelindésaregarding DLs,
SWRL rules, and DL-safety. Thereafter, we introd&® based on DL Rules for the
DL &£, and continue by giving an extended example ofaR rule base. The next



section then presents the Datalog reduction as the basigraeasoning algorithms,
before we proceed to establish the overall reasoning cotityfer ELP. We conclude

the paper with a discussion of our results and some furthiertgrs to related work.

Many proofs were omitted or replaced by intuitive sketches tb space restrictions.
The complete technical details can be found in the technéqadrt [12].

2 DLs, Rules, and DL-Safety

This section gives some basic notions of description lo@ids [13], and introduces
rules that are logically similar to the Semantic Web Ruledwzage SWRL [14]. Such
rules may include DL concept expressions, and thus geserthie common DL axiom
types of Abox, Thox, and Rbox. We thus restrict our presénidb rules, the general
form of which we will later restrict to obtain favourable cpotational properties.

The logics considered in this paper are based on three mliets ofindividual
namesN;, concept hameslc, androle namesNg. Throughout this paper, we assume
that these basic alphabets are finite, and consider them parbef the given knowl-
edge base when speaking about the “size of a knowledge hMis@Ssumelr to be the
union of two disjoint sets adimple rolesNg andnon-simple rolesN}. Later on, the use
of simple roles in conclusions of logical axioms will be résged to ensure, intuitively
speaking, that relationships of these roles are not imgdiechainsof other role rela-
tionships. In exchange, simple roles might be used in thejses of logical axioms
as part of role conjunctions and reflexivity statements when-simple roles might
lead to undecidability. Fixing sets of simple and non-sienalle names simplifies our
presentation — in practice one could of course also checlg fiven knowledge base,
whether each role name satisfies the requirements for bielptmeitherNg or N3,

Definition 1. The seCC of concept expressiomd the DLSHOQ is defined as follows:

—NccCC,TeC,LeC,
— ifC,D € C, Re Ng, S € N}, a€ N, and n a non-negative integer, the@, Cr1 D,
CuD,{a}, YRC,3IRC,<nSC, and>n S.C are also concept expressions.

The semantics of these concepts is recalled below (see alde T). We present
SHOQ as a well-known DL that contains all expressive means newithih this paper,
but we will not consideSHOQ as such. Additional features of the yet more expressive
DLs SHOIQ andSROIQ can be expressed by usiHOQ concepts in rules.

Definition 2. Consider some DLL with concept expressior, individual names\,,
and role namesig, and letV be a countable set of first-order variablestékmis an
element oV U N,. Given terms,tu, aconcept atom (role atong a formula of the form
C(t) (R(t, u)) with C € C (R € NR).

Arulefor £ is a formula B— H, where B and H are conjunctions of (role and
concept) atoms af . To simplify notation, we will often use finite sets S of atéons
representing the conjunctiofy S.

Semantically, rules are interpreted as first-order formuéssuming that all vari-
ables are universally quantified, and using the standatedfider logic interpretation



Table 1. Semantics of concept constructorsI#OQ for an interpretatiord” with domaina?.

Name SyntaxSemanticsName SyntaySemantics
top T A7 nominal conl{a} al)
bottom 1 0 univ. rest.  |YU.C |{xe 4% |(xy) € UT impliesy € C}

nj
n}

conjunctionC n D |C? n D’ ||qualified |<nRC|{xe 4’ |#yed’|(x,y)eR!,yeC’}
disjunction|C LU D [Cf UD? || number rest=nRC|{x € 47 | #{ye 47 |(x,y) e Rf,yeC’}

{
{
negation |-C |47\ C? ||lexist.rest. |[AU.C |{xe 4! |yed’:(xy)e U’ ye Cl}
{
{

<
>

of DL concepts (see Definition 3 below). In general, a DL krexige base may entail
the existence ainonymouslomain elements that are not directly represented by some
individual name, and it may even require models to be infifitee fact that rules gen-
erally apply to all domain elements can therefore be probtenw.r.t. computability
and complexity. It has thus been suggested to consider witeé which variables
may only represent a finite amountmdmedindividuals, i.e. individuals of the inter-
pretation domain that are represented by some individuakna the knowledge base.
Hence, fectively, these so-callddL-saferules [7] apply to named individuals, but not

to further anonymous individuals which have been inferceeiist.

Technically, this restriction can be achieved in variouysvalrhe most common
approach is to introduce a new concept expreskidrthat is asserted to contain the
named individuals, and that is then used to restrict safiabias to that range. On the
other hand, one can also dispense with this additional gyimyabuilding the safety
restriction directly into the semantics of variables — ikighe intuition behind the use
of safe variablesn the following definition.

Definition 3. An interpretationZ consists of a set’ called domain(the elements of
it being calledindividualg together with a function” mapping individual names to
elements oftY, concept names to subsets4df and role names to subsetsAf x 47.
The function? is inductively extended to role and concept expressionhas/s in
Table 1. An elememste A7 is anamed individuaif § = al for some a N;.

LetVs C V be a fixed set o$afe variablesA variable assignmeizt for an interpre-
tation 7 is a mapping from the set of variablggo 4% such that Zx) is named whenever
x € Vs. Given aterm & N; UV, we sett? = Z(t) if t e V, and £% := t/ otherwise.
Given a concept atom (@ (role atom Rt, u)), we write7,Z E C(t) (Z,Z E R(t,u)) if
t/% e Cf ((tF4,uF4)y € RY), and we say thaf and Zsatisfythe atom in this case.

An interpretations satisfiesa rule B— H if, for all variable assignments Z faf,
either 7 and Z satisfy all atoms in H, of and Z fail to satisfy some atom in B. In this
case, we write/ £ B — H and say thatZ is amodelfor B — H. An interpretation
satisfies a set of rules (i.e. it israodelfor this set) whenever it satisfies all elements
of this set. A set of rules isatisfiableif it has a model, andinsatisfiableotherwise.
Two sets of rules arequivalentif they have exactly the same models, and they are
equisatisfiabléf either both are unsatisfiable or both are satisfiable.

Note that we have assumed earlier tRais always finite — typically it may com-
prise exactly the symbols that are actually used in the kedgé base —, and hence
there are only a finite number of assignments for safe vasalfliso note that empty



rule bodies are considered to be vacuously satisfied, ameégsipns of the form» H
encode (sets of) facts. It is well-known that the satisfighif sets of rules for DLs that
supportd is undecidable, and we will introduce various restrictitmsecover decid-
ability below. One simple option is to restrict to so-call@dtalogprograms which we
will later use to simulate inferences of more expressive lahguages:

Definition 4. A rule is aDatalog ruleif all concept atoms contained in it are of the
form C(t) with C € N¢, T(t), and_L(t). A Datalog progranis a set of Datalog rules.

3 DL Rules and ELP

In this section, we define the rule-based knowledge reptaten languag&LP, and
note that it subsumes several other existing languagesnstef expressivity. It is easy
to see that unrestricted (SWRL) rules encompass even thgexpressive DLSROIQ
[1], since Thox and Rbox axioms can readily be rewritten dssriOn the other hand,
rules in their general form do not impose any of the restiicdion, e.g.simple roles
or regularity of Rboxeshat are crucial to retain decidability $IRO7 Q. Recent works
therefore have propos@&l rulesas a decidable subset of SWRL that can be combined
with various DLs without increasing the worst-case comityegf typical reasoning
problems [9, 10].

We first recall DL rules (with conjunctions of simple rolesjdaapply them to the
tractable DLEL*™. The resulting formalism is the core 8LP, and significantly ex-
tends the expressivity é.£* rules as considered in [9].

Definition 5. Consider arule B~ H and terms tu € N, UV. Adirect connectiofrom

t to u is a non-empty set of atoms of the forfh 8. If B contains a direct connection
between t and u, then t directly connectedo u. The term t igonnectedo u (in B) if
the following inductive conditions apply:

— tis directly connectedto uin B, or
— uis connectedtotin B, or
— there is a variable x V such that t is connected to x and x is connected to u.

Anextended DL rulés a rule B— H such that if variables % y in B are connected,
then there is some direct connectiortSB such that x and y are not connected i 8.

A pathfrom t to some variable x in B is a non-empty sequence of tine R¢x,, x2),
ooy Ra(Xn, Xne1) € Bwhere x =t, Xo,..., X0 €V, Xpe1 = X, and x # Xy for1 <i < n.
A term t in B isinitial if there is no path to t. An extended DL rule i$4 rule if the
following hold, where we assume x, y to range over variallesnd t, t to range over
termsN; U V:

(1) for every variable x in B, there is a path from at most origdahterm t to x,

(2) ifR(x,t) € H or C(x) € H, then x is initial in B,

(3) whenever B, x) € B, we find that Re N is simple,

(4) whenever R, x), R(t, x) € B, we find that RR' € N}, are simple,

(5) if R(t,y) € H with Re N simple, then all role atoms of the formi(R,y) € B are
such thatt=tand R € Nj.



The above ensures that bodies of extended DL rules es$grtatespond to sets
of undirected trees, though reflexive “loofR(t, t) are also possible. Note that connec-
tions are essentially transitive but may not span over idd&a names. The notion of a
connection turns out to be most convenient to establistetiee ecomposition of rules
to accomplish the main tractability result in Theorem 14.

Bodies of DL rules are sets of directed trees due to item (Definition 5. Two
exceptions to that structure are admitted. Firstly, thenitefih of connections admits
two elements of a path to be connected by multiple rolesesponding to conjunctions
of such roles. Secondly, atorRéx, X) are not taken into account for defining paths, such
that local reflexivity conditions are admitted. Note thaniis (3) and (4) restricts both
cases to simple roles.

Item (2) above ensures that the first variable in the rule loeadrs in the rule body
only as the root of some tree. Without this restriction, Dlesuwould be able to express
inverse roles, even for DLs that deliberately exclude thadre to retain tractability.
Extended DL rules waive requirements (1) and (2) to suppyetkpressivity of inverse
roles, and indeed any extended DL rule that satisfies theiadai requirements (3) to
(5) on simplicity can be rewritten as a DL rule if inverse w#e available.

Item (5), finally, imposes the necessary restrictions orutesof simple roles, and,
as an alternative presentation, one could also Hafi@edhe set of simple roles as the
(unique) largest set of roles for which this requirementlsdh a given rule base. In
classical definitions of DLs, simple rol&sare usually only admitted in role inclusion
axioms of the fornS C R. Our definition relaxes this requirement to allow for furthe
DL rules as long as these do not include certain role chamrseample, rule€(x) A
D(y) — R(x,y) andR'(x,y) A D(y) — R(x,y) are possible even Ris simple.

We now apply DL rules to the description logic ™ [2], for which many typical
inference problems can be solved in polynomial time. We aaiicrete domains in our
presentation as they can basically be treated as shown.in [2]

Definition 6. An EL concept expression is 8HOQ concept expression that con-
tains only the following concept constructors: 3, T, L, as well as nominal concepts
{a). AnEL* ruleis a DL rule for6L**, and anEL*™ rule basas a set of such rules.

An EL*" knowledge base is a set 8£™" concept inclusion€ C D and role
inclusion axiomsR; o ... o R, C R. See [2] for detalls. It is easy to see that &y**
knowledge base can be written as an equivaffit* rule base. The above notion of
&L rule bases extends [9] in two ways. Firstly, we now also akmmjunctions of
simple roles, and secondly we allow atoms of the fdk(w, X) in rule bodies. Both
extensions are non-trivial and require additional mecrariduring reasoning.

As we will see later, reasoning withL** rules is indeed possible in polynomial
time. However, extendingL** rules with further forms of rules, even if restricting to
Datalog, readily leads to undecidability. This can be pnésd if onlyDL-safeDatalog
rules are permitted: a Datalog rule is DL-safe, if all of ieriables are safe. Yet, this
formalism can still capture all Datalog programs, and tfaeesatisfiability checking
remains keTive hard [15].

Our strategy for extending.L** rules intoELP therefore is to blend them with
tractable fragments of DL-safe Datalog. As we will see belmwe particular such Dat-
alog fragment can again be characterised by the above noftiGextended) DL rule.



Another option is to allow only DL-safe Datalog rules of atgarar form, namely
those for which the number of variables per rule is boundesduye fixed finite num-
bern. Indeed, it is easy to see that any DL-safe (Datalog) rulgisvalent to the set of
rules obtained by replacing all safe variables by indivicdheanes in all possible ways.
Since the replacements for each variable are indepentié&nteads to up t¢N,|" dif-
ferent rules — which is a polynomial boundifs a constant. Note, however, that large
n might render practical computation infeasible.

In addition to various forms of DL-safe ruleB|.P also allows for special rules of
the formR(x,y) — C(y) expressingange restrictionson the roleR. Such restrictions
are neither DL-safe Datalog nor DL rules, and in general th@yndeed lead to un-
decidability of L. However, it has recently been observed that range restrict
can still be admitted under certain conditions [6]. Theref@ven though this special
form of rules is somewhat orthogonal to the other types afg@gbnsidered herein, we
will include range restrictions into our considerationggtee credit to their practical
relevance.

Definition 7. A rule B— H is abasicELP ruleif:

— B — His an extende&L** rule, and
— the rule B —» H’ obtained from B— H by replacing all safe variables by some
individual name is a DL rule.

ANELP rule base RBs a set of basi&€LP rules together withrange restriction rulesf
the form Rx,y) — C(y), that satisfies the following condition:

— If RB contains rules of the form(R, y) — C(y) and B— H with R(t, 2) € H, then
C(2) € B.

Whenever a set of range restriction rules satisfies the abowmdition for some set of
ELP rules, we say that the range restrictions @@missiblefor this rule set.

A rule B— His anELP, rulefor some natural number r 2 if it is either anELP
rule, or a DL-safe Datalog rule with at most n variables.

We remark that the above condition on admissibility of rang&rictions is not
quite the same as in [6]. Both versions ensure that, whersvexiom entails some
role atomR(x, y), domain restrictions dR have no &ect on the classification gf The
interaction of rules implying role atoms and range restitd thus is strongly limited.
In the presence of DL rules, we can accomplish this by restgche applicability of
rules by additional concept atori§z) as in Definition 7. In [6], in contrast, additional
range restrictions are required, and these, if added to iatirekknowledge base, may
also lead to new consequences. Any set of axioms that meeteduirements of [6]
can clearly be extended to a semantically equivalent setlmissibleELP axioms, so
that the approach of Definition 7 does indeed subsume the daseribed in [6].

Before providing an extended example in the next sectiorsivasv howELP sub-
sumes some other tractable languages. One interestingsdak®, a formalism intro-
duced as the intersection of the [3HO7Q and Datalog [4]. DLP can also be gener-
alised using DL rules [9]: ADLP head conceps anySHOQ concept expression that
includes only concept names, nominats, T, L, and expressions of the foral R.C



whereC is anEL™ concept expression. ALP rule B — H is an extended DL rule
such that all concept expressionsBrareEL** concept expressions, and all concept
expressions it are DLP head concepts.

Even the combination of DLP ar&lf contains the DL HorreLE and is thus kp-
Tmve complete [5]. Yet, DLP an& L inferences can be recoveredEnP without
losing tractability. In this sense, the following simplethiem substantiates our initial
claim thatELP can be regarded as an extension both of DLP&LGE".

Theorem 8. Consider any ground atora of the form Ga) or R(a, b). Given a DLP
rule baseRB and anEL*" description logic knowledge bas@, one can compute an
ELP rule baseRB’ in linear time, such that: IRB  « or KB E a then alsoRB’ E «,
and, ifRB’ E @« thenRBUKB E a.

Proof. The proof in [12] is based on observing that replacing allaldles in a DLP
rule base with safe variables does nfiieat satisfiability, since DLP does not infer the
existence of new individuals. Now rules of the foBn— YR.C(t) can be rewritten to

B A R(t,y) — C(y), and the result is easily seen to befbP given that all variables
are safe. Rules of the forB — <1 R.C(t) are expressed by rul&a R(t, y1) A C(y1) A
R(t,y2) A C(y2) — =~s(Y1,Y2), Wherexg is a new role for which the standard equality
axioms (using safe variables) are added. &£+ knowledge base can be added using
the basic transformations given in the introduction (widwvrunsafe variables). 0O

Note that the resultingLP rule base entails all individual consequences of RB and
KB, and some but not all consequences of their (unsafe) ugiom thus provides a
means of combiningL** and DLP in a way that prevents intractability, while still
allowing for a controlled interaction between both langemdiWe argue that this is a
meaningful way of combining both formalisms in practicecgiionly some DLP axioms
must be restricted to safe variables. Simple atomic conasgtrole inclusions, for
example, can always be consideredéag** axioms, and all concept subsumptions
entailed from th& L** part of a combined knowledge base do alffec classification
of instances in the DLP part. DLP thus gains the terminolalgggpressivity of£L**
while still having available specific constructs that mayyattect the instance level.

4 Example

We now provide an extended example to illustrate the exigssf ELP. The rules
in Table 2 express a simplified conceptualisation of soméepgaces regarding food
ordered in a restaurant: rule (1) states that all peopleateagllergic to nuts dislike
all nut products, which is a kind of concept product. Rule d®presses the same for
vegetarians and fish products. Rule (3) is a role conjungcstaiing that anyone who
ordered a dish he does not like will be unhappy. Rule (4) shstpgeople generally
dislike dishes that contain something that they dislikdeRb) is a range restriction for
the roleorderedDish. Rules (6) and (7) claim that any Thai curry contains peaiiut o
and some fish product, and the facts (8)—(12) assert varaneept memberships.

We first verify that this is indeed a valieLP rule base where all roles are simple.
Indeed, the relaxed simplicity constraints on DL rules agigiin Definition 5 are not



Table 2. A simple example rule base about food preferences. Theblanais assumed to be
safe.

1) NutAllergic(X) A NutProduct(y) — dislikes(X, y)
2) Vegetarian(X) A FishProduct(y) — dislikes(X, y)
3) orderedDish(X, Y) A dislikes(X, y) — Unhappy(X)
(4) dislikes(x, V) A Dish(y) A contains(y, v) — dislikes(X, )
(5) orderedDish(X, y) — Dish(y)

(6) ThaiCurry(X) — contains(X, peanutOil)

@) ThaiCurry(X) — Jcontains.FishProduct(X)

8) — NutProduct(peanutQil)

(©)] — NutAllergic(sebastian)

(10) — JorderedDish.ThaiCurry(sebastian)
(11) — Vegetarian(markus)

(12) — JorderedDish.ThaiCurry(markus)

violated in any of the rules. All rules other than (4) and (B eeadily recognised as
&L rules. By first considering the connections in the respectile bodies of (1)—(3),

(6), and (7), we find that only rule (3) actually has conneteeahs at all, connected only
by a single direct connectidierderedDish(X, ), dislikes(X, y)}. Both roles occurring in

that connection are indeed simple. Similarly, the variaditeinitial for these rules, and
expressions of the forfR(z, 2) do not occur.

It remains to check that also rules (4) and (5) are l&ga& statements. For rule
(5), this requires us to check whether this range restriatite is admissible, which is
easy since no rule head contains atoms of the famaredDish(t, y). For rule (4), we
first need to check that it qualifies as an extended DL rul&f6t*. This is easy to see
since the direct connections in (4) do indeed form an untiitbiree. Next, we assume
thatv was replaced by some individual name, and consider the jratihe rule. By
Definition 5, paths must not end with individual names, andceethe modified rule
contains no paths, such that it satisfies all conditions @ 81" rule.

We can now investigate the semantics of the example. Andstiaig inference that
can be made ifinhappy(sebastian). Indeed, combining (1), (8), and (9), we find that
Sebastian dislikes peanut oil. Rule (10) implies that argrpretation must contain
some domain element that is a Thai curry ordered by Sebastizere we note that
there is no individual name that explicitly refers to thatrguBy (5) this unnamed
curry is a dish, and by (6) it contains peanut oil. At this paire can apply rule (4),
wherev is mapped to the individual denoted pyanutOil, x is mapped to the individual
denoted bysebastian, andy is mapped to the unnamed Thai curry. Hence we find that
Sebastian dislikes his curry, and thus by rule (3) he is uphap

It is instructive to point out the use of safe and unsafe &g in that case. In
contrast to plain Datalog, the above example involves cdatjmns relating to some
unnamed individual — the Thai curry — to which rules are aggpliOn the other hand,
rule (4) could only be invoked since the individual reprasdrbyv is named.

The impact of safety restrictions becomes clear by chedkiaappiness of Markus.
Using similar inferences as above, we find that Markus odisozne (unnamed) Thai
curry (12) — note that this need not be the same that was ardgr&ebastian — and



that this Thai curry contains some fish product (7) that Martlislikes (2). However,
this fish product is again unnamed, and hence we cannot ajply3), and we cannot
conclude that Markus dislikes the dish he ordered. Thugqoially speaking, Markus
is not unhappy since there is no information about some ed@a¢named) fish product
in his curry.

5 Polytime ELP Reasoning with Datalog

We now introduce a polytime algorithm for compilig P rule bases into equisatisfi-
able Datalog programs. A useful feature of this transfoiomas that it does not only

preserve satisfiability but also instance classificatiarstlly, we observe that range re-
strictions inEL*™* rule bases can be eliminated:

Proposition 9. Consider ar€L*" rule baseRB and a seRR of range restrictions that
are admissible foRB. Then there is a rule bad®B’ that is equisatisfiable t8BU RR,
and which can be computed in polynomial time.

The proof given in [12] extends the elimination strategyegivn [6] toEL™* rules
in a straightforward way. The main observation is that thenfdisation of admissi-
bility given above sfficiently generalises the conditions from [6] to encompass al
concept-product-like rules that entail role relationshwitt explicitly using roles in the
antecedent. Next, we expand nested concept expressianiesn r

Definition 10. An EL** rule baseRB is in normal formif all concept atoms in rule

bodies are either concept names, or nominals, all variables in a rule’s head also

occur in its body, and all rule heads contain only atoms of ofiie following forms:
A(t) IR B(t) R(t, u)

where Ace NcU{{a} |ae N;JU{L}, BENc, ReNg, andtue N, UV.

Proposition 11. EveryEL** rule baseRB can be transformed in polynomial time into
an equisatisfiabl€L** rule baseRB’ in normal form.

The following transformation af£** rules to Datalog is the core of our approach
for reasoning irELP:

Definition 12. Given an8L™ rule baseRB in normal form, the Datalog program
P(RB) is defined as follows. The following new symbols are intreduc

a role name R (theequality predicatg

concept names or each ac Ny,

concept nameSelfg for each simple role R N3,
individual names gd¢ for each Re Ngr and Ce Nc.

In the following, we will always usk;, N¢, Ngr, N}, N§ to refer to the original sets of
symbols irRB, not including the additional symbols added above. The janogP(RB)
is obtained fronRB as follows:



(a) For each individual name a occurring iRB, the programP(RB) contains rules
— Ca(a) and Gy(X) — R.(x, ). _ B

(b) For each concept name C and role name R occurrir@(RB), the progranP(RB)
contains the rules

= R(X,X) Rz X AR(xYy) = R(zY)
R.(xy) = Ry, X) R(x,2) AR(xY) = R(y,2
CH)AR(xY) = Cy) Ruxy) ARAY.2 = R(x.2)

(c) For all rules B— H € RB, a rule B — H’ € P(RB) is created by replacing
all occurrences of &, X) by Selfr(x), all occurrences ofa}(t) by Cy(t), and all
occurrences ofR.C(t) with C e Nc by the conjunction R, drc) A C(drc).

(d) Forallrules B— H € RBwith R(x,y) € H and Re N simple,P(RB) contains a
rule B — Selfr(X) € P(RB), where B is obtained from B by replacing all occur-
rences of y with x, all occurrences &#}(t) by Cy(t), and (finally) all expressions
S(x, X) with Selfs(X). _

(e) Foreach Re N} and ac Ny, the rule G(x) A R(x, X) — Selfr(x) is in P(RB).

Theorem 13. Given anEL™" rule baseRB in normal form,RB is unsatisfiableff
P(RB) is unsatisfiable.

Proof sketchThe proof in [12] proceeds by constructing model®(RB) from models
of RB, and vice versa. We omit the technical details heregacs reasons, and merely
sketch some of the relevant methods and insights.

It is well-known that, in the case &L*", models can be generated by introducing
only a single individual for each atomic concept [2]. Bof*™* rules, however, the added
features of role conjunction and local reflexivity change situation: considering only
one characteristic individual per atomic concept leadsgtegired entailments in both
cases. Our model constructions therefore deviate fromléssicalS.L** construction
that worked for the simpl&.L rules in [9] with only minor modifications.

For instance, the rule basa}(x) — AR.C(X), {a}(X) — IS.C(x) does not entail any
conjunction of the fornR(a, X) A S(a, X). Yet, every interpretation in which the exten-
sion ofC is a singleton set would necessarily entail this conjumcfidiis motivates the
above use ofizc in P(RB), which, intuitively, represent individuals 6fthat have been
“generated” by a rule head of the foriR.C(x). Thus we admiiNg| distinct character-
istic individuals for each class, and thigices for the proper model construction in the
presence of role conjunctions.

The second problematic feature are expressions of the Rfxyx), which again
preclude the consideration of only one characteristicviddial per class. The use of
concept atomselfr(X) enables the translation of models for RB to model®@RB)
(the soundness of the satisfiability checking algorithnije Tatter may indeed entail
additional statements of tyg& x, X) without impairing the validity of the Datalog rules
that useSelfr(X). _

In the other direction, models of RB are built from model®@RB) by creating in-
finitely many “parallel copies” of a basic model structurbege copies form an infinite
sequence of levels in the model, and simple roles relate tonggiccessors in higher
levels. Exceptions to this construction principle, suctthesconcept product rules dis-
cussed earlier, make the exact formalisation technicallglved. The proof in [12] for



this case hinges upon the simplicity of roles in conc&atifs, and it is not clear if a
relaxation of this requirement would be possible. O

We are now ready to show the tractability&ifp.

Theorem 14. Satisfiability of anyELP,, rule baseRB can be decided in time polyno-
mial in the size oRB and exponential in n. More preciselgB can be transformed
into an equisatisfiable Datalog prograR(RB) which contains at moshax(3 n) vari-
ables per rule, and this transformation is possible in polyral time in the size dRB.
Moreover, for any G N¢, Re Ng, and a b € N, we find that

— RBE C(a) iff P(RB) E C(a)
— RB [ {a}(b) iff P(RB) F Ca(b)
- RBE R(a b)iff P(RB) E R(a, b)

Proof. We present some core parts of the proof in [12]. Groundinga# variables
of a rule base in all possible ways is a feasible reasonindgnodetout may lead to
exponential increases in the size of the rule base. This egirdvented, however, by
ensuring that any rule contains only a limited number ofalalgs. A similar method
can be used to ensure that the Datalog progeéinas obtained in Definition 12 can
be evaluated in polynomial time. We thus provide a satidftglpreserving polytime
reduction ofELP rule bases int&LP rule bases that contain only a bounded number
of variables per rule. We consider only bakgicP rules for the reduction, since range
restrictions do not require any transformation. One shdubdvever, observe that the
transformation does not violate the admissibility resimits for range restrictions.

Let RB' ¢ RB denote the set dfLP rules in RB (i.e. excluding only additional
DL-safe rules ofn variables that might be available ELP,). We first transform the
ELP rule base into a normal form by applying the algorithm froroprsition 11. It is
easy to see that this transformation can also be appli&d forules by treating safe
variables like individual names. Hence, this transfororapireserves satisfiability, and
yields a rule base RBthe size of which is polynomial in the size of RB'he new rule
base RB is then of a normal form similar to the one of Definition 10 buth/additional
safe components per rule.

Next, we reduce conjunctions in rule heads in the standaydavey rule of the form
B — H; A H; is replaced by two ruleB — H; andB — H; until all conjunctions in
rule heads are eliminated. Again, the resulting rule basgiRBlearly equisatisfiable
to RB; and can be obtained in polynomial time.

As the next step, we transform the extended DL rules of RBo extended DL
rules with at most 3 variables per rule. Besides the noti@fined in Definition 5, we
use a number of auxiliary notions in describing the tramation. In the following, we
assume that all direct connections (cf. Definition 5) betweemst andu in some set
B aremaximal i.e. contain all role atoms of the forR(t, u) € B. Consider some rule
B — H:

— A connected componeat B is a non-empty subs& c B such that, for all terms
t # uoccurring inS, we find thatt andu are connected i5. A maximal con-
nected componeiiCC) is a connected component that has no supersets that are
connected components.



— Avariablexis initial for H if H is of the formC(x) or R(x, t).
— A variablex is final for H if H is of the formR(t, x). If H is not of this form but

B — H contains some variable, then some arbitrary but fixed virialB — H is
selected to be final fax.

— Given a subse$ of B, we say thaS is reducibleif it contains variables that are

neither initial nor final inH.

— Let S be an MCC ofB, and consider a direct connectidrfrom a termt to a term

uin S. Let St be the set of all atoms i8 that contain some teri connected to
tin S\ T. Similarly, letSr, be the set of all atoms i8 that contain some termf
connectedtain S\ T.

Intuitively, the setsSt; andSt, consist of all atoms to the “left” or to the “right” of the
connectioril that can be reached fronandu, respectively, without using the atoms of

T.

We can now proceed to reduce the forest structure of rulegisodi
In each iteration step of the reduction, select someBule H in RB, that contains

more than three variables and some reducible MB3€ B, and do one of the following:

1)

)

®3)

(4)

(®)

If S contains no variable that is final fét, then select an initial elements fol-
lows: if S contains a variabl& that is initial forH thent = x; otherwise set = a
for an arbitrary individual nama € N;. The ruleB — H is replaced by two new
rules B\ S) U {C(t)} —» H andS — C(t), whereC is a new concept name.

For all other cases, assume that the varigiteS is final forH.

There is a direct connectidnfromy to some variable such thaSt, is reducible

but contains no variable initial fdd. Then ruleB — H is replaced by three new

rulesBU{C(Y)} \ (StuUT) - H, T U {D(u)} - C(y), andSt, — D(u), where

C, D are new concept names.

There is a direct connectidnfrom some variabléto y such thaSr; is reducible,

and contains a variabbethat is initial forH. Then ruleB — H is replaced by three

new rulesBU{R(x, Y}\(StUT) - H,{R(X,)}UT — R(x,y), andSt; — R(x1),
whereR, R are new non-simple role names.

There is a direct connectidhfrom some variablé to y such thatSt; is reducible

but contains no variable that is initial fét. Then ruleB — H is replaced by three

new rulesBU{R(a, Y)}\ (StUT) - H,{R(a, )}uT — R(a y),andSt; — R'(a,1),

wherea € N, is an arbitrary individual name, ari®l R are new non-simple role

names.

There is a direct connectidnfromy to some variable such thaSr, is reducible,

and contains a variabbethat is initial forH, and some further variablebesides«

andu. We distinguish various cases:

(a) There is a direct connection from some terea y to u. Then ruleB — H is
replaced by two new ruleBU {R(x, u)} \ Sty — H andSr, — R(x, u), where
Ris a new non-simple role name.

(b) The above is not the case, and there is some direct caondctfrom u to
some variabler’ such thatSy ., is reducible but does not containThen rule
B — H is replaced by two new ruleB U {C(u)} \ (Stw UT’) - H and
Stw UT” — C(u), whereC is a new concept name.



(c) None ofthe above is the case, arid involved in a direct connectiol besides
T, which connectal to some variabler such thatSy, , containsx. Let S,
denote the seB, := S\ (StyU St ). The ruleB — H is replaced by two new
rulesBU {R(y, U)} \ Sy — H andS, — R(y, ), with Ra new non-simple role
name.

This iteration is repeated until no further transformaimapplicable. The proofin [12]
proceeds by establishing various properties of the abalugcten:

— All rules created in the above transformation are vali® rules.

— After the above translation, all rules in RBave at most three variables in the body.

— The transformation terminates after a finite number of stepsis polynomially
bounded in the size of RB

— The above translation preserves satisfiability o,RB

Thus, the transformed rule base RB polynomial in the size of RB and contains at
most three variables per rule. We can now compute the gragrafiall safe variables
in RBy, i.e. the set of rules obtained by replacing safe variableach rule of RBwith
individual names in all possible ways. The obtained ruleebssalled RB and its size
clearly is polynomially bounded bRB,|°. Moreover, RRB is clearly equivalent to RB
and, by Definition 7, contains on&.L"* rules and range restrictions. We can now apply
the elimination of range restrictions of Proposition 9, @hen use the normalisation
from Proposition 11 to again obtain a set RB normalisedSL** rules. Again, RB is
equivalent to RB, and the transformations are easily seen to preserve thedtmwuthe
number of variables per rule, especially since rule bodésdiready been normalised
when computing RB _

Now, finally, the Datalog program(RB,) is constructed. By inspecting the cases
of Definition 12, we find thalP(RBy) still contains at most 3 (unsafe) variables per rule.
SinceP(RB4) and the initial set of basiELP rules RB are equisatisfiable, we can show
thatP(RBy) | C(a) iff RB’ = C(a) for all C € Nc anda € N,. The claim clearly holds if
RB’ is unsatisfiable. Otherwise, consider’RB RB' U{C(a) — L(a)}, and again apply
the above construction to obtain an according Datalog jprog(RBy ). Clearly, RB' is
unsatisfiableff RB" |= C(a). But the former is equivalent ®(RB;) being unsatisfiable.
Since P(RBy) is satisfiable, and since clear3(RB;) = P(RBs) U {C(a) — L(a)}
(assuming tha€ anda occur in RB, and were thus already considered for the rules
(@), (b), and (e) oP(RBy)), this is in turn equivalent t8(RB}) E C(a) as claimed. In
a similar fashion, one can show the correspondence forlemtais of the forma}(b)
(Ca(b)) andR(a, b), similar to the statement claimed for the theorem.

The last result enables us to safely combh{BB,) with any additional DL-safe
rule with n variables that may be presentihP,. For that purpose, one merely needs
to introduce a conceptU and add facts»> HU(a) for all a € N,. For eachn-variable
Datalog ruleB — H, a ruleB’ — H’ then is created by replacing any atom of the
form {a}(t) by C4(t), and by adding a body atoriU(x) for any variablex occurring in
B — H. The resulting set of transformed Datalog rules is denafedand we define
P(RB) := P(RBy4) U LP. _

It is easy to see th&t(RB) is equisatisfiable to RB, since RBndP(RB,) contain
the corresponding ground facts, and since the ruldshofire applicable only to such



ground facts, where the above constructionL&f establishes the required syntactic
transformations and explicit safety conditions. Simitavie also find thaP(RB) en-
tails the same ground facts as RB, as required in the the@imweP(RB) is a Datalog
program with at most max(8) variables per rule, it can naively be evaluated by com-
puting its grounding, which is again bounded in sizelR{RB) M. Together with
the polynomial size restrictions established F§RB), this shows the claimed worst-
case complexity of reasoning. O

6 Discussion and Future Work

We have introduceé&LP as a rule-based tractable knowledge representation lgegua
that generalises the known tractable description lo§i€5" and DLP, where polyno-
mial time reasoning was established using a novel reduttiddatalog.ELP in par-
ticular extends the DIEL** with local reflexivity, concept products, conjunctions of
simple roles, and limited range restrictions [6].

The notion of simple roles has been slightly extended as eoeapto the defini-
tion commonly used in DL, such that, e.g., the universal cale also be defined to be
simple. A natural question is whether further extensiongldf might be admissible.
Regarding the simplicity restriction on role conjunctipib g well-known that conjunc-
tions of arbitrary roles il€L** lead to undecidability. Querying for such conjunctions
remains intractable [16] even when adopting regularityriegns similar to the ones
in SROZQ. The complexity of using this feature in rules remains omendoes the
question whether or not arbitrary roles could be used inxieftg conditions of the
form R(x, X). The presented proofs, however, strongly depend on tlessections.

The use of Datalog as an approach to solving DL reasoning tas& been sug-
gested in various works. KAON2 [8] provides an exponentdluction ofSH7Q into
disjunctive Datalog programs. The outcome of this reductesembles our case since
it admits for the easy extension with DL-safe rules and safgunctive queries. The
model-theoretic relationships between knowledge bas®atalog program, however,
are somewhat weaker than in our case. In particular, ouroagpradmits queries for
non-simple roles. Various other approaches used redsdtidbatalog in order to estab-
lish mechanisms for conjunctive query answering [17—-1BgSe works dfer from the
presented approach in that they focus on general conjengtiery answering fa®L
and&L*, which is known to be more complex than satisfiability chagiji16]. An-
other related approach is [20], where resolution-basezbréag methods fof L have
been investigated (where we note that resolution is alsetrelard approach for eval-
uating Datalog). The methodology used there, howevercisnieally rather dierent
from our presented approach.
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