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Abstract. We introduceELP as a decidable fragment of the Semantic Web Rule
Language (SWRL) that admits reasoning in polynomial time.ELP is based on
the tractable description logicEL++, and encompasses an extended notion of the
recently proposedDL rulesfor that logic. ThusELP extendsEL++ with a number
of features introduced by the forthcoming OWL 2, such as disjoint roles, local
reflexivity, certain range restrictions, and the universalrole. We present a reason-
ing algorithm based on a translation ofELP to Datalog, and this translation also
enables the seamless integration of DL-safe rules intoELP. While reasoning with
DL-safe rules as such is already highly intractable, we showthat DL-safe rules
based on the Description Logic Programming (DLP) fragment of OWL 2 can be
admitted inELP without losing tractability.

1 Introduction

The description logic (DL) family of knowledge representation formalisms has been
continuously developed for many years, leading to highly expressive (and complex),
yet decidable languages. The most prominent such language is currentlySROIQ [1],
which is also the basis for the ongoing standardisation of the newWeb Ontology Lan-
guage OWL 2.1 On the other hand, there has also been considerable interestin more
light-weight languages that allow for polynomial time reasoning algorithms. DL-based
formalisms that fall into that category areEL++ [2], DL Lite [3], and DLP [4]. While
DL Lite strives for sub-polynomial reasoning,EL++ and DLP both are P-complete frag-
ments ofSROIQ. In spite of this similarity,EL++ and DLP pursue different approaches
towards tractability, and the combination of both is already highly intractable [5].

In this paper, we reconcileEL++ and DLP in a novel rule-based knowledge repre-
sentation languageELP. While ELP can be viewed as an extension of both formalisms,
however, it limits the interactions between the expressivefeatures of either language
and thus preserves polynomial time reasoning complexity.ELP also significantly ex-
tendsEL++ by local reflexivity, concept products, conjunctions of simple roles, and
limited range restrictions as in [6]. These features in partare already anticipated for the
EL++ based language profile of OWL 2, but, to the best of our knowledge, this work is
the first to establish their joint tractability.

The reasoning algorithms presented herein are based on a polynomial reduction of
ELP knowledge bases to a specific kind of Datalog programs that can be evaluated
in polynomial time. Since the Datalog reduction as such is comparatively simple, this

1 OWL 2 is the forthcoming W3C recommendation for updating OWL, and is based on the
OWL 1.1 member submission. Seehttp://www.w3.org/2007/OWL.



outlines an interesting new implementation strategy for the EL++ profile of OWL 2:
Besides the possibility of reusing optimisation methods from deductive databases, the
compilation ofEL++ to Datalog also provides a practical approach for extendingEL++

with DL-safe rules [7]. In these respects, the presented approach bears similarities with
the KAON2 transformation ofSHIQ knowledge bases into disjunctive Datalog pro-
grams [8], though the actual algorithms are very different due to the different DLs that
are addressed. DL-safe rules add new expressivity but theirentailments are specifically
restricted for preserving decidability – an extended example will illustrate the effects.

For this paper, we chose a presentation ofELP based onDL rules, a decidable sub-
set of the Semantic Web Rule Language SWRL that has been recently proposed in two
independent works [9, 10]. As shown in [9], it is possible to indirectly express such
rules by means of the expressive features ofSROIQ, and large parts ofELP can still be
regarded as a subset ofSROIQ. The following examples illustrate the correspondence
between DLs and DL rules, and give some intuition for the expressivity ofELP:

Concept inclusions DL TboxaxiomsC ⊑ D for subconcept relationships correspond
to rules of the formC(x)→ D(x).

Role inclusions DL RboxaxiomsR◦ S ⊑ T express inclusions with role chains that
correspond to rules of the formR(x, y) ∧ S(y, z)→ T(x, z).

Local reflexivity The DL concept∃R.Self of all things that have anR relation to them-
selves is described by the expressionR(x, x). For example, the axiom∃ loves.Self ⊑
Narcist corresponds toloves(x, x)→ Narcist(x).

Role disjointness Roles inSROIQ can be declared disjoint to state that individu-
als related by one role must not be related by the other. An according example rule is
HasSon(x, y) ∧ HasHusband(x, y)→ ⊥(x) (⊥ denoting the empty concept).

Concept products and the universal role Concept products have, e.g., been studied
in [11]. The statement that all elephants are bigger than allmice corresponds to the
axiom Elephant × Mouse ⊑ biggerThan and to the ruleElephant(x) ∧ Mouse(y) →
biggerThan(x, y). The universal roleU that relates all pairs of individuals can be ex-
pressed by the rule→ U(x, y) or as the product of the⊤ concept with itself.

Qualified role inclusions Rules can be used to restrict role inclusions to certain con-
cepts, which is not directly possible inSROIQ. An example is given by the rule
Woman(x) ∧ hasChild(x, y)→ motherOf(x, y).

While this work is conceptually based on [9], it significantly differs from the lat-
ter by following a completely new reasoning approach instead of extending the known
algorithm forEL++. While our use of Datalog may still appear similar in spirit,the
model constructions in the proofs expose additional technical complications that arise
due to the novel combination of concept products, role conjunctions, and local reflex-
ivity. Moreover, the proposed integration of DL-safe rulesis not trivial since, in the
absence of inverse roles, it cannot be achieved by the usual approach for “rolling-up”
nested expressions, and termination of the modified transformation is less obvious.

The paper proceeds by first recalling some minimal preliminaries regarding DLs,
SWRL rules, and DL-safety. Thereafter, we introduceELP based on DL Rules for the
DL EL++, and continue by giving an extended example of anELP rule base. The next



section then presents the Datalog reduction as the basis of our reasoning algorithms,
before we proceed to establish the overall reasoning complexity for ELP. We conclude
the paper with a discussion of our results and some further pointers to related work.
Many proofs were omitted or replaced by intuitive sketches due to space restrictions.
The complete technical details can be found in the technicalreport [12].

2 DLs, Rules, and DL-Safety

This section gives some basic notions of description logics(DL) [13], and introduces
rules that are logically similar to the Semantic Web Rule Language SWRL [14]. Such
rules may include DL concept expressions, and thus generalise the common DL axiom
types of Abox, Tbox, and Rbox. We thus restrict our presentation to rules, the general
form of which we will later restrict to obtain favourable computational properties.

The logics considered in this paper are based on three disjoint sets ofindividual
namesNI , concept namesNC, androle namesNR. Throughout this paper, we assume
that these basic alphabets are finite, and consider them to bepart of the given knowl-
edge base when speaking about the “size of a knowledge base.”We assumeNR to be the
union of two disjoint sets ofsimple rolesNs

R andnon-simple rolesNn
R. Later on, the use

of simple roles in conclusions of logical axioms will be restricted to ensure, intuitively
speaking, that relationships of these roles are not impliedby chainsof other role rela-
tionships. In exchange, simple roles might be used in the premises of logical axioms
as part of role conjunctions and reflexivity statements where non-simple roles might
lead to undecidability. Fixing sets of simple and non-simple role names simplifies our
presentation – in practice one could of course also check, for a given knowledge base,
whether each role name satisfies the requirements for belonging to eitherNn

R or Ns
R.

Definition 1. The setC of concept expressionsof the DLSHOQ is defined as follows:

– NC ⊆ C, ⊤ ∈ C, ⊥ ∈ C,
– if C,D ∈ C, R∈ NR, S ∈ Ns

R, a ∈ NI , and n a non-negative integer, then¬C, C⊓ D,
C ⊔ D, {a}, ∀R.C,∃R.C,≤n S.C, and≥n S.C are also concept expressions.

The semantics of these concepts is recalled below (see also Table 1). We present
SHOQ as a well-known DL that contains all expressive means neededwithin this paper,
but we will not considerSHOQ as such. Additional features of the yet more expressive
DLsSHOIQ andSROIQ can be expressed by usingSHOQ concepts in rules.

Definition 2. Consider some DLL with concept expressionsC, individual namesNI ,
and role namesNR, and letV be a countable set of first-order variables. Aterm is an
element ofV ∪NI . Given terms t, u, aconcept atom (role atom)is a formula of the form
C(t) (R(t, u)) with C ∈ C (R∈ NR).

A rule for L is a formula B→ H, where B and H are conjunctions of (role and
concept) atoms ofL. To simplify notation, we will often use finite sets S of atomsfor
representing the conjunction

∧
S .

Semantically, rules are interpreted as first-order formulae, assuming that all vari-
ables are universally quantified, and using the standard first-order logic interpretation



Table 1.Semantics of concept constructors inSHOQ for an interpretationI with domain∆I.

Name SyntaxSemanticsName SyntaxSemantics
top ⊤ ∆I nominal con.{a} {aI}
bottom ⊥ ∅ univ. rest. ∀U.C {x ∈ ∆I | 〈x, y〉 ∈ UI impliesy ∈ CI}
negation ¬C ∆I \CI exist. rest. ∃U.C {x ∈ ∆I | y ∈ ∆I: 〈x, y〉 ∈ UI, y ∈ CI}
conjunctionC ⊓ D CI ∩ DI qualified ≤n R.C {x ∈ ∆I | #{y∈∆I |〈x, y〉 ∈RI, y∈CI} ≤ n}
disjunction C ⊔ D CI ∪ DI number rest.≥n R.C {x ∈ ∆I | #{y∈∆I |〈x, y〉 ∈RI, y∈CI} ≥ n}

of DL concepts (see Definition 3 below). In general, a DL knowledge base may entail
the existence ofanonymousdomain elements that are not directly represented by some
individual name, and it may even require models to be infinite. The fact that rules gen-
erally apply to all domain elements can therefore be problematic w.r.t. computability
and complexity. It has thus been suggested to consider ruleswithin which variables
may only represent a finite amount ofnamedindividuals, i.e. individuals of the inter-
pretation domain that are represented by some individual name in the knowledge base.
Hence, effectively, these so-calledDL-saferules [7] apply to named individuals, but not
to further anonymous individuals which have been inferred to exist.

Technically, this restriction can be achieved in various ways. The most common
approach is to introduce a new concept expressionHU that is asserted to contain the
named individuals, and that is then used to restrict safe variables to that range. On the
other hand, one can also dispense with this additional syntax by building the safety
restriction directly into the semantics of variables – thisis the intuition behind the use
of safe variablesin the following definition.

Definition 3. An interpretationI consists of a set∆I called domain(the elements of
it being calledindividuals) together with a function·I mapping individual names to
elements of∆I, concept names to subsets of∆I, and role names to subsets of∆I × ∆I.
The function·I is inductively extended to role and concept expressions as shown in
Table 1. An elementδ ∈ ∆I is anamed individualif δ = aI for some a∈ NI .

LetVs ⊆ V be a fixed set ofsafe variables. A variable assignmentZ for an interpre-
tationI is a mapping from the set of variablesV to∆I such that Z(x) is named whenever
x ∈ Vs. Given a term t∈ NI ∪ V, we set tI,Z ≔ Z(t) if t ∈ V, and tI,Z ≔ tI otherwise.
Given a concept atom C(t) (role atom R(t, u)), we writeI,Z |= C(t) (I,Z |= R(t, u)) if
tI,Z ∈ CI (〈tI,Z, uI,Z〉 ∈ RI), and we say thatI and Zsatisfythe atom in this case.

An interpretationI satisfiesa rule B→ H if, for all variable assignments Z forI,
eitherI and Z satisfy all atoms in H, orI and Z fail to satisfy some atom in B. In this
case, we writeI |= B → H and say thatI is a modelfor B → H. An interpretation
satisfies a set of rules (i.e. it is amodelfor this set) whenever it satisfies all elements
of this set. A set of rules issatisfiableif it has a model, andunsatisfiableotherwise.
Two sets of rules areequivalentif they have exactly the same models, and they are
equisatisfiableif either both are unsatisfiable or both are satisfiable.

Note that we have assumed earlier thatNI is always finite – typically it may com-
prise exactly the symbols that are actually used in the knowledge base –, and hence
there are only a finite number of assignments for safe variables. Also note that empty



rule bodies are considered to be vacuously satisfied, and expressions of the form→ H
encode (sets of) facts. It is well-known that the satisfiability of sets of rules for DLs that
support∃ is undecidable, and we will introduce various restrictionsto recover decid-
ability below. One simple option is to restrict to so-calledDatalogprograms which we
will later use to simulate inferences of more expressive rule languages:

Definition 4. A rule is aDatalog ruleif all concept atoms contained in it are of the
form C(t) with C ∈ NC, ⊤(t), and⊥(t). A Datalog programis a set of Datalog rules.

3 DL Rules and ELP

In this section, we define the rule-based knowledge representation languageELP, and
note that it subsumes several other existing languages in terms of expressivity. It is easy
to see that unrestricted (SWRL) rules encompass even the very expressive DLSROIQ
[1], since Tbox and Rbox axioms can readily be rewritten as rules. On the other hand,
rules in their general form do not impose any of the restrictions on, e.g.,simple roles
or regularity of Rboxesthat are crucial to retain decidability inSROIQ. Recent works
therefore have proposedDL rulesas a decidable subset of SWRL that can be combined
with various DLs without increasing the worst-case complexity of typical reasoning
problems [9, 10].

We first recall DL rules (with conjunctions of simple roles) and apply them to the
tractable DLEL++. The resulting formalism is the core ofELP, and significantly ex-
tends the expressivity ofEL++ rules as considered in [9].

Definition 5. Consider a rule B→ H and terms t, u ∈ NI ∪V. Adirect connectionfrom
t to u is a non-empty set of atoms of the form R(t, u). If B contains a direct connection
between t and u, then t isdirectly connectedto u. The term t isconnectedto u (in B) if
the following inductive conditions apply:

– t is directly connected to u in B, or
– u is connected to t in B, or
– there is a variable x∈ V such that t is connected to x and x is connected to u.

An extended DL ruleis a rule B→ H such that if variables x, y in B are connected,
then there is some direct connection S⊆ B such that x and y are not connected in B\S .

A pathfrom t to some variable x in B is a non-empty sequence of the form R1(x1, x2),
. . . ,Rn(xn, xn+1) ∈ B where x1 = t, x2, . . . , xn ∈ V, xn+1 = x, and xi , xi+1 for 1 ≤ i ≤ n.
A term t in B isinitial if there is no path to t. An extended DL rule is aDL rule if the
following hold, where we assume x, y to range over variablesV, and t, t′ to range over
termsNI ∪ V:

(1) for every variable x in B, there is a path from at most one initial term t to x,
(2) if R(x, t) ∈ H or C(x) ∈ H, then x is initial in B,
(3) whenever R(x, x) ∈ B, we find that R∈ Ns

R is simple,
(4) whenever R(t, x),R′(t, x) ∈ B, we find that R,R′ ∈ Ns

R are simple,
(5) if R(t, y) ∈ H with R ∈ Ns

R simple, then all role atoms of the form R′(t′, y) ∈ B are
such that t′ = t and R′ ∈ Ns

R.



The above ensures that bodies of extended DL rules essentially correspond to sets
of undirected trees, though reflexive “loops”R(t, t) are also possible. Note that connec-
tions are essentially transitive but may not span over individual names. The notion of a
connection turns out to be most convenient to establish the later decomposition of rules
to accomplish the main tractability result in Theorem 14.

Bodies of DL rules are sets of directed trees due to item (1) inDefinition 5. Two
exceptions to that structure are admitted. Firstly, the definition of connections admits
two elements of a path to be connected by multiple roles, corresponding to conjunctions
of such roles. Secondly, atomsR(x, x) are not taken into account for defining paths, such
that local reflexivity conditions are admitted. Note that items (3) and (4) restricts both
cases to simple roles.

Item (2) above ensures that the first variable in the rule headoccurs in the rule body
only as the root of some tree. Without this restriction, DL rules would be able to express
inverse roles, even for DLs that deliberately exclude this feature to retain tractability.
Extended DL rules waive requirements (1) and (2) to supply the expressivity of inverse
roles, and indeed any extended DL rule that satisfies the additional requirements (3) to
(5) on simplicity can be rewritten as a DL rule if inverse roles are available.

Item (5), finally, imposes the necessary restrictions on theuse of simple roles, and,
as an alternative presentation, one could also havedefinedthe set of simple roles as the
(unique) largest set of roles for which this requirement holds in a given rule base. In
classical definitions of DLs, simple rolesR are usually only admitted in role inclusion
axioms of the formS ⊑ R. Our definition relaxes this requirement to allow for further
DL rules as long as these do not include certain role chains. For example, rulesC(x) ∧
D(y)→ R(x, y) andR′(x, y) ∧ D(y)→ R(x, y) are possible even ifR is simple.

We now apply DL rules to the description logicEL++ [2], for which many typical
inference problems can be solved in polynomial time. We omitconcrete domains in our
presentation as they can basically be treated as shown in [2].

Definition 6. An EL++ concept expression is aSHOQ concept expression that con-
tains only the following concept constructors:⊓, ∃, ⊤, ⊥, as well as nominal concepts
{a}. AnEL++ rule is a DL rule forEL++, and anEL++ rule baseis a set of such rules.

An EL++ knowledge base is a set ofEL++ concept inclusionsC ⊑ D and role
inclusion axiomsR1 ◦ . . . ◦ Rn ⊑ R. See [2] for details. It is easy to see that anyEL++

knowledge base can be written as an equivalentEL++ rule base. The above notion of
EL++ rule bases extends [9] in two ways. Firstly, we now also allowconjunctions of
simple roles, and secondly we allow atoms of the formR(x, x) in rule bodies. Both
extensions are non-trivial and require additional mechanisms during reasoning.

As we will see later, reasoning withEL++ rules is indeed possible in polynomial
time. However, extendingEL++ rules with further forms of rules, even if restricting to
Datalog, readily leads to undecidability. This can be prevented if onlyDL-safeDatalog
rules are permitted: a Datalog rule is DL-safe, if all of its variables are safe. Yet, this
formalism can still capture all Datalog programs, and therefore satisfiability checking
remains ET hard [15].

Our strategy for extendingEL++ rules intoELP therefore is to blend them with
tractable fragments of DL-safe Datalog. As we will see below, one particular such Dat-
alog fragment can again be characterised by the above notionof (extended) DL rule.



Another option is to allow only DL-safe Datalog rules of a particular form, namely
those for which the number of variables per rule is bounded bysome fixed finite num-
bern. Indeed, it is easy to see that any DL-safe (Datalog) rule is equivalent to the set of
rules obtained by replacing all safe variables by individual names in all possible ways.
Since the replacements for each variable are independent, this leads to up to|NI |

n dif-
ferent rules – which is a polynomial bound ifn is a constant. Note, however, that large
n might render practical computation infeasible.

In addition to various forms of DL-safe rules,ELP also allows for special rules of
the formR(x, y) → C(y) expressingrange restrictionson the roleR. Such restrictions
are neither DL-safe Datalog nor DL rules, and in general theydo indeed lead to un-
decidability ofEL++. However, it has recently been observed that range restrictions
can still be admitted under certain conditions [6]. Therefore, even though this special
form of rules is somewhat orthogonal to the other types of rules considered herein, we
will include range restrictions into our considerations togive credit to their practical
relevance.

Definition 7. A rule B→ H is abasicELP rule if:

– B→ H is an extendedEL++ rule, and
– the rule B′ → H′ obtained from B→ H by replacing all safe variables by some

individual name is a DL rule.

An ELP rule base RBis a set of basicELP rules together withrange restriction rulesof
the form R(x, y)→ C(y), that satisfies the following condition:

– If RB contains rules of the form R(x, y) → C(y) and B→ H with R(t, z) ∈ H, then
C(z) ∈ B.

Whenever a set of range restriction rules satisfies the abovecondition for some set of
ELP rules, we say that the range restrictions areadmissiblefor this rule set.

A rule B→ H is anELPn rule for some natural number n> 2 if it is either anELP
rule, or a DL-safe Datalog rule with at most n variables.

We remark that the above condition on admissibility of rangerestrictions is not
quite the same as in [6]. Both versions ensure that, wheneveran axiom entails some
role atomR(x, y), domain restrictions ofR have no effect on the classification ofy. The
interaction of rules implying role atoms and range restrictions thus is strongly limited.
In the presence of DL rules, we can accomplish this by restricting the applicability of
rules by additional concept atomsC(z) as in Definition 7. In [6], in contrast, additional
range restrictions are required, and these, if added to an existing knowledge base, may
also lead to new consequences. Any set of axioms that meets the requirements of [6]
can clearly be extended to a semantically equivalent set of admissibleELP axioms, so
that the approach of Definition 7 does indeed subsume the cases described in [6].

Before providing an extended example in the next section, weshow howELP sub-
sumes some other tractable languages. One interesting caseis DLP, a formalism intro-
duced as the intersection of the DLSHOIQ and Datalog [4]. DLP can also be gener-
alised using DL rules [9]: ADLP head conceptis anySHOQ concept expression that
includes only concept names, nominals,⊓, ⊤, ⊥, and expressions of the form≤1R.C



whereC is anEL++ concept expression. ADLP rule B→ H is an extended DL rule
such that all concept expressions inB areEL++ concept expressions, and all concept
expressions inH are DLP head concepts.

Even the combination of DLP andEL contains the DL Horn-FLE and is thus E-
T complete [5]. Yet, DLP andEL++ inferences can be recovered inELP without
losing tractability. In this sense, the following simple theorem substantiates our initial
claim thatELP can be regarded as an extension both of DLP andEL++.

Theorem 8. Consider any ground atomα of the form C(a) or R(a, b). Given a DLP
rule baseRB and anEL++ description logic knowledge baseKB, one can compute an
ELP rule baseRB′ in linear time, such that: IfRB |= α or KB |= α then alsoRB′ |= α,
and, ifRB′ |= α thenRB∪ KB |= α.

Proof. The proof in [12] is based on observing that replacing all variables in a DLP
rule base with safe variables does not affect satisfiability, since DLP does not infer the
existence of new individuals. Now rules of the formB → ∀R.C(t) can be rewritten to
B ∧ R(t, y) → C(y), and the result is easily seen to be inELP given that all variables
are safe. Rules of the formB→ ≤1R.C(t) are expressed by rulesB∧R(t, y1) ∧C(y1) ∧
R(t, y2) ∧ C(y2) → ≈S(y1, y2), where≈S is a new role for which the standard equality
axioms (using safe variables) are added. TheEL++ knowledge base can be added using
the basic transformations given in the introduction (with new unsafe variables). ⊓⊔

Note that the resultingELP rule base entails all individual consequences of RB and
KB, and some but not all consequences of their (unsafe) union. ELP thus provides a
means of combiningEL++ and DLP in a way that prevents intractability, while still
allowing for a controlled interaction between both languages. We argue that this is a
meaningful way of combining both formalisms in practice since only some DLP axioms
must be restricted to safe variables. Simple atomic conceptand role inclusions, for
example, can always be considered asEL++ axioms, and all concept subsumptions
entailed from theEL++ part of a combined knowledge base do also affect classification
of instances in the DLP part. DLP thus gains the terminological expressivity ofEL++

while still having available specific constructs that may only affect the instance level.

4 Example

We now provide an extended example to illustrate the expressivity of ELP. The rules
in Table 2 express a simplified conceptualisation of some preferences regarding food
ordered in a restaurant: rule (1) states that all people thatare allergic to nuts dislike
all nut products, which is a kind of concept product. Rule (2)expresses the same for
vegetarians and fish products. Rule (3) is a role conjunction, stating that anyone who
ordered a dish he does not like will be unhappy. Rule (4) says that people generally
dislike dishes that contain something that they dislike. Rule (5) is a range restriction for
the roleorderedDish. Rules (6) and (7) claim that any Thai curry contains peanut oil
and some fish product, and the facts (8)–(12) assert various concept memberships.

We first verify that this is indeed a validELP rule base where all roles are simple.
Indeed, the relaxed simplicity constraints on DL rules as given in Definition 5 are not



Table 2. A simple example rule base about food preferences. The variable v is assumed to be
safe.

(1) NutAllergic(x) ∧ NutProduct(y)→ dislikes(x, y)
(2) Vegetarian(x) ∧ FishProduct(y)→ dislikes(x, y)
(3) orderedDish(x, y) ∧ dislikes(x, y)→ Unhappy(x)
(4) dislikes(x, v) ∧ Dish(y) ∧ contains(y, v)→ dislikes(x, y)
(5) orderedDish(x, y)→ Dish(y)
(6) ThaiCurry(x)→ contains(x, peanutOil)
(7) ThaiCurry(x)→ ∃contains.FishProduct(x)
(8) → NutProduct(peanutOil)
(9) → NutAllergic(sebastian)
(10) → ∃orderedDish.ThaiCurry(sebastian)
(11) → Vegetarian(markus)
(12) → ∃orderedDish.ThaiCurry(markus)

violated in any of the rules. All rules other than (4) and (5) are readily recognised as
EL++ rules. By first considering the connections in the respective rule bodies of (1)–(3),
(6), and (7), we find that only rule (3) actually has connectedterms at all, connected only
by a single direct connection{orderedDish(x, y), dislikes(x, y)}. Both roles occurring in
that connection are indeed simple. Similarly, the variablex is initial for these rules, and
expressions of the formR(z, z) do not occur.

It remains to check that also rules (4) and (5) are legalELP statements. For rule
(5), this requires us to check whether this range restriction rule is admissible, which is
easy since no rule head contains atoms of the formorderedDish(t, y). For rule (4), we
first need to check that it qualifies as an extended DL rule forEL++. This is easy to see
since the direct connections in (4) do indeed form an undirected tree. Next, we assume
that v was replaced by some individual name, and consider the pathsin the rule. By
Definition 5, paths must not end with individual names, and hence the modified rule
contains no paths, such that it satisfies all conditions of anEL++ rule.

We can now investigate the semantics of the example. An interesting inference that
can be made isUnhappy(sebastian). Indeed, combining (1), (8), and (9), we find that
Sebastian dislikes peanut oil. Rule (10) implies that any interpretation must contain
some domain element that is a Thai curry ordered by Sebastian, where we note that
there is no individual name that explicitly refers to that curry. By (5) this unnamed
curry is a dish, and by (6) it contains peanut oil. At this point we can apply rule (4),
wherev is mapped to the individual denoted bypeanutOil, x is mapped to the individual
denoted bysebastian, andy is mapped to the unnamed Thai curry. Hence we find that
Sebastian dislikes his curry, and thus by rule (3) he is unhappy.

It is instructive to point out the use of safe and unsafe variables in that case. In
contrast to plain Datalog, the above example involves computations relating to some
unnamed individual – the Thai curry – to which rules are applied. On the other hand,
rule (4) could only be invoked since the individual represented byv is named.

The impact of safety restrictions becomes clear by checkingthe happiness of Markus.
Using similar inferences as above, we find that Markus ordered some (unnamed) Thai
curry (12) – note that this need not be the same that was ordered by Sebastian – and



that this Thai curry contains some fish product (7) that Markus dislikes (2). However,
this fish product is again unnamed, and hence we cannot apply rule (3), and we cannot
conclude that Markus dislikes the dish he ordered. Thus, colloquially speaking, Markus
is not unhappy since there is no information about some concrete (named) fish product
in his curry.

5 Polytime ELP Reasoning with Datalog

We now introduce a polytime algorithm for compilingELP rule bases into equisatisfi-
able Datalog programs. A useful feature of this transformation is that it does not only
preserve satisfiability but also instance classification. Firstly, we observe that range re-
strictions inEL++ rule bases can be eliminated:

Proposition 9. Consider anEL++ rule baseRB and a setRRof range restrictions that
are admissible forRB. Then there is a rule baseRB′ that is equisatisfiable toRB∪RR,
and which can be computed in polynomial time.

The proof given in [12] extends the elimination strategy given in [6] toEL++ rules
in a straightforward way. The main observation is that the formalisation of admissi-
bility given above sufficiently generalises the conditions from [6] to encompass also
concept-product-like rules that entail role relations without explicitly using roles in the
antecedent. Next, we expand nested concept expressions in rules:

Definition 10. An EL++ rule baseRB is in normal formif all concept atoms in rule
bodies are either concept names,⊤, or nominals, all variables in a rule’s head also
occur in its body, and all rule heads contain only atoms of oneof the following forms:

A(t) ∃R.B(t) R(t, u)

where A∈ NC ∪ {{a} | a ∈ NI } ∪ {⊥}, B ∈ NC, R∈ NR, and t, u ∈ NI ∪ V.

Proposition 11. EveryEL++ rule baseRB can be transformed in polynomial time into
an equisatisfiableEL++ rule baseRB′ in normal form.

The following transformation ofEL++ rules to Datalog is the core of our approach
for reasoning inELP:

Definition 12. Given anEL++ rule baseRB in normal form, the Datalog program
P̄(RB) is defined as follows. The following new symbols are introduced:

– a role name R≈ (theequality predicate),
– concept names Ca for each a∈ NI ,
– concept namesSelfR for each simple role R∈ Ns

R,
– individual names dR,C for each R∈ NR and C∈ NC.

In the following, we will always useNI , NC, NR, Nn
R, Ns

R to refer to the original sets of
symbols inRB, not including the additional symbols added above. The program P̄(RB)
is obtained fromRB as follows:



(a) For each individual name a occurring inRB, the programP̄(RB) contains rules
→ Ca(a) and Ca(x)→ R≈(x, a).

(b) For each concept name C and role name R occurring inP̄(RB), the programP̄(RB)
contains the rules

→ R≈(x, x) R(z, x) ∧ R≈(x, y)→ R(z, y)
R≈(x, y)→ R≈(y, x) R(x, z) ∧ R≈(x, y)→ R(y, z)
C(x) ∧ R≈(x, y)→ C(y) R≈(x, y) ∧ R≈(y, z)→ R≈(x, z)

(c) For all rules B→ H ∈ RB, a rule B′ → H′ ∈ P̄(RB) is created by replacing
all occurrences of R(x, x) by SelfR(x), all occurrences of{a}(t) by Ca(t), and all
occurrences of∃R.C(t) with C ∈ NC by the conjunction R(t, dR,C) ∧C(dR,C).

(d) For all rules B→ H ∈ RB with R(x, y) ∈ H and R∈ Ns
R simple,P̄(RB) contains a

rule B′ → SelfR(x) ∈ P̄(RB), where B′ is obtained from B by replacing all occur-
rences of y with x, all occurrences of{a}(t) by Ca(t), and (finally) all expressions
S(x, x) with SelfS(x).

(e) For each R∈ Ns
R and a∈ NI , the rule Ca(x) ∧ R(x, x)→ SelfR(x) is in P̄(RB).

Theorem 13. Given anEL++ rule baseRB in normal form,RB is unsatisfiable iff
P̄(RB) is unsatisfiable.

Proof sketch.The proof in [12] proceeds by constructing models ofP̄(RB) from models
of RB, and vice versa. We omit the technical details here for space reasons, and merely
sketch some of the relevant methods and insights.

It is well-known that, in the case ofEL++, models can be generated by introducing
only a single individual for each atomic concept [2]. ForEL++ rules, however, the added
features of role conjunction and local reflexivity change the situation: considering only
one characteristic individual per atomic concept leads to undesired entailments in both
cases. Our model constructions therefore deviate from the classicalEL++ construction
that worked for the simpleEL rules in [9] with only minor modifications.

For instance, the rule base{a}(x)→ ∃R.C(x), {a}(x)→ ∃S.C(x) does not entail any
conjunction of the formR(a, x) ∧ S(a, x). Yet, every interpretation in which the exten-
sion ofC is a singleton set would necessarily entail this conjunction. This motivates the
above use ofdR,C in P̄(RB), which, intuitively, represent individuals ofC that have been
“generated” by a rule head of the form∃R.C(x). Thus we admit|NR| distinct character-
istic individuals for each class, and this suffices for the proper model construction in the
presence of role conjunctions.

The second problematic feature are expressions of the formR(x, x), which again
preclude the consideration of only one characteristic individual per class. The use of
concept atomsSelfR(x) enables the translation of models for RB to models ofP̄(RB)
(the soundness of the satisfiability checking algorithm). The latter may indeed entail
additional statements of typeR(x, x) without impairing the validity of the Datalog rules
that useSelfR(x).

In the other direction, models of RB are built from models ofP̄(RB) by creating in-
finitely many “parallel copies” of a basic model structure. These copies form an infinite
sequence of levels in the model, and simple roles relate onlyto successors in higher
levels. Exceptions to this construction principle, such asthe concept product rules dis-
cussed earlier, make the exact formalisation technically involved. The proof in [12] for



this case hinges upon the simplicity of roles in conceptsSelfS, and it is not clear if a
relaxation of this requirement would be possible. ⊓⊔

We are now ready to show the tractability ofELP.

Theorem 14. Satisfiability of anyELPn rule baseRB can be decided in time polyno-
mial in the size ofRB and exponential in n. More precisely,RB can be transformed
into an equisatisfiable Datalog programP(RB) which contains at mostmax(3, n) vari-
ables per rule, and this transformation is possible in polynomial time in the size ofRB.
Moreover, for any C∈ NC, R∈ NR, and a, b ∈ NI , we find that

– RB |= C(a) iff P(RB) |= C(a)
– RB |= {a}(b) iff P(RB) |= Ca(b)
– RB |= R(a, b) iff P(RB) |= R(a, b)

Proof. We present some core parts of the proof in [12]. Grounding allsafe variables
of a rule base in all possible ways is a feasible reasoning method, but may lead to
exponential increases in the size of the rule base. This can be prevented, however, by
ensuring that any rule contains only a limited number of variables. A similar method
can be used to ensure that the Datalog programP̄(·) as obtained in Definition 12 can
be evaluated in polynomial time. We thus provide a satisfiability preserving polytime
reduction ofELP rule bases intoELP rule bases that contain only a bounded number
of variables per rule. We consider only basicELP rules for the reduction, since range
restrictions do not require any transformation. One should, however, observe that the
transformation does not violate the admissibility restrictions for range restrictions.

Let RB′ ⊆ RB denote the set ofELP rules in RB (i.e. excluding only additional
DL-safe rules ofn variables that might be available inELPn). We first transform the
ELP rule base into a normal form by applying the algorithm from Proposition 11. It is
easy to see that this transformation can also be applied toELP rules by treating safe
variables like individual names. Hence, this transformation preserves satisfiability, and
yields a rule base RB1 the size of which is polynomial in the size of RB′. The new rule
base RB1 is then of a normal form similar to the one of Definition 10 but with additional
safe components per rule.

Next, we reduce conjunctions in rule heads in the standard way: any rule of the form
B→ H1 ∧ H2 is replaced by two rulesB→ H1 andB→ H2 until all conjunctions in
rule heads are eliminated. Again, the resulting rule base RB2 is clearly equisatisfiable
to RB1 and can be obtained in polynomial time.

As the next step, we transform the extended DL rules of RB2 into extended DL
rules with at most 3 variables per rule. Besides the notions defined in Definition 5, we
use a number of auxiliary notions in describing the transformation. In the following, we
assume that all direct connections (cf. Definition 5) between termst andu in some set
B aremaximal, i.e. contain all role atoms of the formR(t, u) ∈ B. Consider some rule
B→ H:

– A connected componentof B is a non-empty subsetS ⊆ B such that, for all terms
t , u occurring inS, we find thatt andu are connected inS. A maximal con-
nected component(MCC) is a connected component that has no supersets that are
connected components.



– A variablex is initial for H if H is of the formC(x) or R(x, t).
– A variablex is final for H if H is of the formR(t, x). If H is not of this form but

B→ H contains some variable, then some arbitrary but fixed variable in B→ H is
selected to be final forH.

– Given a subsetS of B, we say thatS is reducibleif it contains variables that are
neither initial nor final inH.

– Let S be an MCC ofB, and consider a direct connectionT from a termt to a term
u in S. Let ST,t be the set of all atoms inS that contain some termt′ connected to
t in S \ T. Similarly, letST,u be the set of all atoms inS that contain some termu′

connected tou in S \ T.

Intuitively, the setsST,t andST,u consist of all atoms to the “left” or to the “right” of the
connectionT that can be reached fromt andu, respectively, without using the atoms of
T.

We can now proceed to reduce the forest structure of rule bodies.
In each iteration step of the reduction, select some ruleB→ H in RB2 that contains

more than three variables and some reducible MCCS of B, and do one of the following:

(1) If S contains no variable that is final forH, then select an initial elementt as fol-
lows: if S contains a variablex that is initial forH thent = x; otherwise sett = a
for an arbitrary individual namea ∈ NI . The ruleB → H is replaced by two new
rules (B \ S) ∪ {C(t)} → H andS→ C(t), whereC is a new concept name.

For all other cases, assume that the variabley in S is final for H.
(2) There is a direct connectionT from y to some variableu such thatST,u is reducible

but contains no variable initial forH. Then ruleB → H is replaced by three new
rulesB∪ {C(y)} \ (ST,u ∪ T) → H, T ∪ {D(u)} → C(y), andST,u → D(u), where
C,D are new concept names.

(3) There is a direct connectionT from some variablet to y such thatST,t is reducible,
and contains a variablex that is initial forH. Then ruleB→ H is replaced by three
new rulesB∪{R(x, y)}\(ST,t∪T)→ H, {R′(x, t)}∪T → R(x, y), andST,t → R′(x, t),
whereR,R′ are new non-simple role names.

(4) There is a direct connectionT from some variablet to y such thatST,t is reducible
but contains no variable that is initial forH. Then ruleB→ H is replaced by three
new rulesB∪{R(a, y)}\(ST,t∪T) → H, {R′(a, t)}∪T → R(a, y), andST,t → R′(a, t),
wherea ∈ NI is an arbitrary individual name, andR,R′ are new non-simple role
names.

(5) There is a direct connectionT from y to some variableu such thatST,u is reducible,
and contains a variablex that is initial forH, and some further variablez besidesx
andu. We distinguish various cases:
(a) There is a direct connection from some termt , y to u. Then ruleB → H is

replaced by two new rulesB∪ {R(x, u)} \ ST,u→ H andST,u→ R(x, u), where
R is a new non-simple role name.

(b) The above is not the case, and there is some direct connection T′ from u to
some variableu′ such thatST′ ,u′ is reducible but does not containx. Then rule
B → H is replaced by two new rulesB ∪ {C(u)} \ (ST′,u′ ∪ T′) → H and
ST′,u′ ∪ T′ → C(u), whereC is a new concept name.



(c) None of the above is the case, andu is involved in a direct connectionT′ besides
T, which connectsu to some variableu′ such thatST′ ,u′ containsx. Let Su

denote the setSu ≔ S \ (ST,y∪ST′ ,u′). The ruleB→ H is replaced by two new
rulesB∪ {R(y, u′)} \Su → H andSu→ R(y, u′), with Ra new non-simple role
name.

This iteration is repeated until no further transformationis applicable. The proof in [12]
proceeds by establishing various properties of the above reduction:

– All rules created in the above transformation are validELP rules.
– After the above translation, all rules in RB2 have at most three variables in the body.
– The transformation terminates after a finite number of stepsthat is polynomially

bounded in the size of RB2.
– The above translation preserves satisfiability of RB2.

Thus, the transformed rule base RB2 is polynomial in the size of RB and contains at
most three variables per rule. We can now compute the grounding of all safe variables
in RB2, i.e. the set of rules obtained by replacing safe variables in each rule of RB2 with
individual names in all possible ways. The obtained rule base is called RB3 and its size
clearly is polynomially bounded by|RB2|

3. Moreover, RB3 is clearly equivalent to RB2
and, by Definition 7, contains onlyEL++ rules and range restrictions. We can now apply
the elimination of range restrictions of Proposition 9, andthen use the normalisation
from Proposition 11 to again obtain a set RB4 of normalisedEL++ rules. Again, RB4 is
equivalent to RB3, and the transformations are easily seen to preserve the bound on the
number of variables per rule, especially since rule bodies had already been normalised
when computing RB1.

Now, finally, the Datalog program̄P(RB4) is constructed. By inspecting the cases
of Definition 12, we find that̄P(RB4) still contains at most 3 (unsafe) variables per rule.
SinceP̄(RB4) and the initial set of basicELP rules RB′ are equisatisfiable, we can show
thatP̄(RB4) |= C(a) iffRB′ |= C(a) for all C ∈ NC anda ∈ NI . The claim clearly holds if
RB′ is unsatisfiable. Otherwise, consider RB′′ = RB′∪{C(a)→ ⊥(a)}, and again apply
the above construction to obtain an according Datalog programP̄(RB′′4 ). Clearly, RB′′ is
unsatisfiable iff RB′ |= C(a). But the former is equivalent tōP(RB4) being unsatisfiable.
Since P̄(RB4) is satisfiable, and since clearlȳP(RB′′4 ) = P̄(RB4) ∪ {C(a) → ⊥(a)}
(assuming thatC anda occur in RB′, and were thus already considered for the rules
(a), (b), and (e) of̄P(RB4)), this is in turn equivalent tōP(RB′′4 ) |= C(a) as claimed. In
a similar fashion, one can show the correspondence for entailments of the form{a}(b)
(Ca(b)) andR(a, b), similar to the statement claimed for the theorem.

The last result enables us to safely combineP̄(RB4) with any additional DL-safe
rule with n variables that may be present inELPn. For that purpose, one merely needs
to introduce a conceptHU and add facts→ HU(a) for all a ∈ NI . For eachn-variable
Datalog ruleB → H, a ruleB′ → H′ then is created by replacing any atom of the
form {a}(t) by Ca(t), and by adding a body atomHU(x) for any variablex occurring in
B → H. The resulting set of transformed Datalog rules is denotedLP, and we define
P(RB)≔ P̄(RB4) ∪ LP.

It is easy to see thatP(RB) is equisatisfiable to RB, since RB′ andP̄(RB4) contain
the corresponding ground facts, and since the rules ofLP are applicable only to such



ground facts, where the above construction ofLP establishes the required syntactic
transformations and explicit safety conditions. Similarly, we also find thatP(RB) en-
tails the same ground facts as RB, as required in the theorem.SinceP̄(RB) is a Datalog
program with at most max(3, n) variables per rule, it can naively be evaluated by com-
puting its grounding, which is again bounded in size by|P̄(RB)|max(3,n). Together with
the polynomial size restrictions established forP̄(RB), this shows the claimed worst-
case complexity of reasoning. ⊓⊔

6 Discussion and Future Work

We have introducedELP as a rule-based tractable knowledge representation language
that generalises the known tractable description logicsEL++ and DLP, where polyno-
mial time reasoning was established using a novel reductionto Datalog.ELP in par-
ticular extends the DLEL++ with local reflexivity, concept products, conjunctions of
simple roles, and limited range restrictions [6].

The notion of simple roles has been slightly extended as compared to the defini-
tion commonly used in DL, such that, e.g., the universal rolecan also be defined to be
simple. A natural question is whether further extensions ofELP might be admissible.
Regarding the simplicity restriction on role conjunctions, it is well-known that conjunc-
tions of arbitrary roles inEL++ lead to undecidability. Querying for such conjunctions
remains intractable [16] even when adopting regularity restrictions similar to the ones
in SROIQ. The complexity of using this feature in rules remains open,as does the
question whether or not arbitrary roles could be used in reflexivity conditions of the
form R(x, x). The presented proofs, however, strongly depend on these restrictions.

The use of Datalog as an approach to solving DL reasoning tasks has been sug-
gested in various works. KAON2 [8] provides an exponential reduction ofSHIQ into
disjunctive Datalog programs. The outcome of this reduction resembles our case since
it admits for the easy extension with DL-safe rules and safe conjunctive queries. The
model-theoretic relationships between knowledge base andDatalog program, however,
are somewhat weaker than in our case. In particular, our approach admits queries for
non-simple roles. Various other approaches used reductions to Datalog in order to estab-
lish mechanisms for conjunctive query answering [17–19]. These works differ from the
presented approach in that they focus on general conjunctive query answering forEL
andEL++, which is known to be more complex than satisfiability checking [16]. An-
other related approach is [20], where resolution-based reasoning methods forEL have
been investigated (where we note that resolution is also thestandard approach for eval-
uating Datalog). The methodology used there, however, is technically rather different
from our presented approach.
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