
What Is Ontology Merging?
– A Category-Theoretical Perspective Using Pushouts
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Abstract

Ontology merging describes the process of integrating two
(or more) ontologies into a single one. How this is done best
is a subject of ongoing research in the Semantic Web com-
munity. We propose a generic solution to the question, what
the result of a merging should be in the ideal case. We will
do this independent of a specific choice of ontology represen-
tation language, and thus provide a sort of blueprint for the
development of algorithms applicable in practice. Our meth-
ods are taken from category theory. More precisely, we will
argue that ontology merging is best captured by the notion
of categorical pushout. Our paper is a first step towards the
development of practically applicable algorithms. We will
not assume any background in the abstract field of category
theory and will explain in detail and from scratch what our
perspective on ontology merging means and entails.

Introduction
In this paper we explain how merging of ontologies is cap-
tured by the pushout construction from category theory, and
argue that this is a very natural approach to the problem. For
this purpose, we view category theory as a universal “meta
specification language” that enables us to specify properties
of ontological relationships and constructions in a way that
does not depend on any particular implementation. This can
be achieved since the basic objects of study in category the-
ory are the relationships between multiple ontological spec-
ifications, not the internal structure of a single knowledge
representation.

The problems that one can study with this categorical ap-
proach include those that relate to the communication be-
tween different communities with different specification for-
malisms, where one wants to obtain information from other
ontologies to include it in own specifications. Indeed, users
of such distributed ontologies would not be interested in
implementation details of every available ontology, but in
the interfaces that exist to own knowledge bases and in
the translation methods that are available to accomplish ex-
change of data.

Intuitively, the relationships or translation methods avail-
able between ontologies would also entail constraints for
combining the information of multiple specifications. For
example, in order to merge the content of two ontologies
into a bigger one, it must be possible to transfer all the data

of the input ontologies to the resulting description. It is
certainly not obvious how relationships between ontologies
alone can suffice to define the result of such a merging oper-
ation. However, we shall see that this is indeed the case and
explain the corresponding pushout construction.

Categorical pushouts are already considered in some ap-
proaches to ontology research (Jannink et al. 1998; Kent
2000; Schorlemmer, Potter, & Robertson 2002; Goguen
2005; Kent 2005) and we do not claim our treatment to be
entirely original. Still we have the impression that the poten-
tial of category theoretic approaches is by far not exhausted
in todays ontology research. Consequently, our goal is not
only to demonstrate how a concrete problem can be cap-
tured with categorical formalisms, but also to give introduc-
tion and motivation for those who did not study the math-
ematical framework of category theory yet. In this respect
our attempts to make categories more accessible follow the
spirit of (Goguen 1991) and the current discussions on the
Information Flow Framework (Kent 2000).

In contrast to the some of the works mentioned above,
we do not try to give a comprehensive overview of even the
most important categorical methods. Instead, our treatment
will focus on the particular aspect of ontology merging, for
which we will give both intuitive explanations and precise
definitions. This reflects our belief that, at the current stage
of research, it is not desirable to fade out the mathematical
details of the categorical approach completely, since the in-
terfaces to current techniques in ontology research are not
yet available to their full extent. We will also keep this treat-
ment rather general, not narrowing the discussion to specific
formalisms – this added generality is one of the strengths of
category theory.

We proceed as follows: In the next section, we provide an
introduction to categories, together with some basic exam-
ples that we will consider throughout this text. Then we in-
vestigate how category theory deals with cartesian products
and relations, which we will utilize to model “ontology map-
ping” and “ontology alignment” in categorical terms thus
establishing the framework for the first part of any merging
operation. Section then forms the core of this note, explain-
ing pushouts and their relevance to ontology merging. In
Section we will explain how our theoretical considerations
can be used to obtain practical methods for ontology merg-
ing. The last section includes references to the literature,



pointing to sources of further information on categorical and
ontological issues touched on herein.

Categorical preliminaries
In order to approach the concept of a category, we view it
as a system of ontological specifications that includes both
ontologies and their interrelations. Informally, an ontology
can be viewed as something which conveys a certain spec-
ification (e.g. of some data) based on a given classification
system. Mathematically, this description allows for a num-
ber of realizations: tree structures, formal contexts, partially
ordered sets, or deductive systems of some logic are only
examples. These approaches vary widely in their expressive
power and may appear rather diverse indeed.

On the other hand, any suitable notion of an ontology
should feature certain properties. This derives from the fact
that ontologies are conceived as a means of sharing and
reusing knowledge. Hence a typical task is to compare sev-
eral (specifications of) ontologies or to combine them into
a more extensive one. The latter process, termed ontology
merging, will be discussed below. But for the sake of moti-
vation, we shall first look at the former problem:

Given two ontologies, it is for example possible that one
is a sub-ontology of the other or that both of them represent
the same information, i.e. that they are equivalent. Depend-
ing on the chosen representation of ontologies this can be
recognized by looking at the internal structures of the given
ontologies. But looking at the internal structures requires
an individual treatment for each new approach to the math-
ematical modelling of ontologies, while a generic treatment
which abstracts from the particular choice of ontology lan-
guage would certainly be preferable for understanding what
the result of a merging shall be.

Fortunately, there is another possibility to compare ob-
jects mathematically, which lends itself to such a generic
treatment. For example, two partially ordered sets can be
considered to be equivalent, if there exists a bijective func-
tion (i.e. one which is one-to-one and onto) between these
sets which does also preserve the order (i.e. which is mono-
tonic). In this case, being monotonic means that a func-
tion respects the internal structure of partially ordered sets,
while bijectivity indicates the equivalence of two ordered
sets. Structure-preserving functions are a typical implemen-
tation of what is called a morphism in category theory, and
what we will recognize as a suitable substitute for the con-
sideration of internal structures.

While monotonic functions are reasonable morphisms for
comparing partial orders, other mathematical spaces may
suggest different kinds of morphisms: Vector spaces are con-
sidered with linear functions, groups with group homomor-
phisms, geometries with movements (e.g. on the plane),
topological spaces with continuous functions, etc. Con-
sidering plain sets (with no further internal structure), a
morphism between two sets could be any function between
them. This approach ignores most individual features of the
elements of a set: functions do not distinguish whether the
elements of some set are labeled a, b, c, or dog, cat, house.

Labels are only needed to specify the function, but the es-
sential feature of a set turns out to be its cardinality. Sets of
the same size would therefore appear equivalent.

The idea that emerges from these observations is that
the relationships between objects are basically captured by
the morphisms that exist between them. By deciding for a
particular type of morphisms, we determine which internal
properties of the mathematical objects are considered “es-
sential” (e.g. order structure or cardinality). This is the ap-
proach taken in category theory: a class of objects (e.g. or-
der structures) is equipped with morphisms (e.g. monotonic
functions), thus forming a large directed graph with objects
as nodes and morphisms as arrows. Depending on the given
situation, arrows can be identified with certain functions or
relations between the entities that were chosen for objects,
but no such concrete meaning is required. In order to consti-
tute a category, a directed graph only has to include a com-
position operation for pairs of compatible arrows, satisfying
some straightforward axioms that are typical for the compo-
sition of functions and the relational product. Let us now
make this informal description precise.

Definition 1 A category C consists of the following:
• A class1 of objects |C |,
• for any two objects A, B ∈ |C |, a set C (A, B) of morphisms

from A to B,
• for any three objects A, B, C ∈ |C |, a composition function

◦ : C (B,C) × C (A, B)→ C (A,C),
that combines a morphism from A to B with one from B
to C to obtain a morphism from A to C,
• for any object A ∈ |C |, an identity morphism idA ∈

C (A, A).
This data is required to satisfy the following additional ax-
ioms:
• For all f ∈ C (A, B), f ◦ idA = f = idB ◦ f , and
• for all f ∈ C (A, B), g ∈ C (B,C), and h ∈ C (C,D), ((h ◦

g) ◦ f ) = (h ◦ (g ◦ f )).
We will also write f : A→ B for f ∈ C (A, B).

The additional requirements for a directed graph to be-
come a category are few indeed, and in many cases the def-
inition of morphisms already entails an obvious and well-
behaved composition operation. Yet the results one can de-
rive from the components of a category are surprisingly rich,
and usually all the essential knowledge about a class of ob-
jects is captured by some suitable category. The defining ax-
ioms of a category provide an abstract interface to all kinds
of structures, and category theory allows for a unified treat-
ment of all of them, since internal features of objects are
disregarded completely.

As a simple example, consider the category Set of all sets
and functions between them, i.e. |Set| consists of all sets,

1Class should be understood as a kind of collection. Classes of
objects are not always sets of objects for reasons which have to do
with Russell’s paradox from set theory, but we shall not inconve-
nience us with such matters here. The term class is certainly not
supposed to mean classes as e.g. in Description Logics!



and given two sets A, B ∈ |Set| the collection Set(A, B) of all
morphisms from A to B is just the collection of all functions
from A to B. The identity morphisms are given as the iden-
tity functions, i.e. those functions which map all elements
onto themselves. Composition in Set is given by composi-
tion of functions. Another category which we will discuss in
more detail later is the category Poset of all partially ordered
sets together with monotone functions. We remark that cat-
egorical morphisms are often given by functions, but that
this is by no means necessary. For example, we can view a
single partially ordered set as a category, where we have a
single morphism between two elements p and q if and only
if p ≤ q. Composition is provided by transitivity and iden-
tity morphisms exist by reflexivity. This last example might
appear somewhat peculiar at first, but it shows how general
the basic notions in category theory really are.

Above, we gave two examples of specific relationships
between objects: being a subobject and being equivalent. In
the given examples, these do still refer to the internal struc-
ture of the objects, so we have to consider defining both
in purely categorical terms. Let us first explore the notion
of equivalence (or, speaking categorically, isomorphism) for
the categories Set and Poset. Restating our earlier insights,
we find that two partially ordered sets P and Q are equiv-
alent (isomorphic) whenever there is a monotone function
f : P → Q that has a monotone inverse, i.e. for which
there is a monotone function g : Q → P with g ◦ f = idP
and f ◦ g = idQ. Generalizing this to arbitrary categories,
we call a morphism an isomorphism if it has a (necessarily
unique) inverse morphism.

Application of this definition to Set reveals bijective func-
tions as the isomorphisms of sets. Likewise, the categorical
definition immediately provides us with a suitable notion
of equivalence in any category we may wish to study. As
mentioned in the introduction, the possible translations of
information between ontologies are suggestive morphisms
for ontology research. Indeed, no matter how ontologies and
translations between them are implemented, composition of
translations methods and the existence of identity transla-
tions should always be available. In consequence, isomor-
phic ontologies are intuitively described by the possibility
of translating knowledge back and forth between them with-
out loosing information. In a similar fashion, we will gain
a general description of ontology merging later on, though it
will be a bit more involved.

To obtain the notion of a subobject, let us consider the
category Set and note that every subset A ⊆ B of a given
set B can be obtained as the image (range) of some injec-
tive (i.e. one-to-one) function into B. By injectivity, the
domain of any such function is in bijective correspondence
with the subset A. Thus any subset can be given by some in-
jective function and any such function defines a subset2. We
remark that the subobjects are really given by the injective
function, not by its domain: for instance, a function from the

2Note, however, that there are usually many injective functions
with the same image. So for obtaining an exact definition of sub-
objects, one would still have to identify the equivalent injective
functions.

one-element set {a} to the natural numbers can map a to 0, to
1, or to any other number. In spite of the constant function
domain, this always denotes different subsets ({0}, {1}, . . . )
of the natural numbers. Yet, due to injectivity, the set {a} is
surely isomorphic (thus essentially equivalent) to the indi-
cated subsets; still the position of the isomorphic copy of {a}
as a subobjects of the codomain does make a difference.

Now in order to obtain a categorical definition of injectiv-
ity, we observe that an injective function f : A → B in Set
has the following peculiar property: for every pair of func-
tions g : C → A and h : C → A, the equality f ◦ g = f ◦ h
implies g = h. Morphisms (of arbitrary categories) with this
feature are called monomorphisms and it turns out to be ap-
propriate to consider a monomorphism as the specification
of a subobject of its codomain. Intuitively, the condition de-
scribes a monomorphism f : A → B as an embedding of
A into B that does not obliterate any essential features of A.
Two morphisms C → A that are distinct on some part of A
must also be distinct when extended via f to B. Thus the
monomorphism can be thought of as a pointer to the speci-
fied subobject, which in turn is isomorphic to the domain of
the monomorphism.

These examples give but a brief glimpse at the expres-
siveness of category theory. We continue next with dis-
cussing some constructions which will help in understand-
ing pushouts.

Products and Relations
In set theory, the cartesian product of two sets is defined as
the set of all pairs of elements from two given sets. This
is not a suitable description from the viewpoint of cate-
gory theory, since we want to avoid to mention the internal
(element-based) structure of our objects. In order to rephrase
this in categorical language, we need to find alternative cri-
teria that rely exclusively on properties of the morphisms.
To this end, an important observation is that a product does
in general also provide two projection functions to the first
respectively second component of the product. Furthermore,
the product is distinguished by a universal property given in
the next definition.

Definition 2 Consider a category C and objects A, B ∈ |C |.
Given an object C ∈ |C | and morphisms p1 : C → A and
p2 : C → B, we say that (C, p1, p2) is the product of A and
B if the following universal property holds:

For any object D ∈ |C | and morphisms q1 : C → A and
q2 : C → B, there is a unique morphism 〈q1, q2〉 : D → C,
such that q1 = p1 ◦ 〈q1, q2〉 and q2 = p2 ◦ 〈q1, q2〉. The latter
situation is depicted in the following diagram:

D

〈q1,q2〉

?
?

��?
?

q2

##

q1

��

C p2
//

p1

��

B

A



For example, when considering the category Set and its
usual cartesian product, we can define the function 〈q1, q2〉

by setting 〈q1, q2〉(d) = (q1(d), q2(d)). In spite of this, the
above defines the cartesian product of sets only up to iso-
morphism (i.e. bijective correspondence) – any set with the
cardinality of the cartesian product can be equipped with ap-
propriate morphisms. This is a typical feature of category
theory: isomorphic objects are not distinguished, since they
behave similar in all practical situations. It is the choice of
morphisms that determines what distinctions are considered
relevant in the first place. Yet we will henceforth assume
that we have fixed one representative for the product of any
two elements A and B which we label A×B. We also remark
that products do not exist in every category, so the previous
convention needs to be restricted to existing products.

We remark, nevertheless, that the notion of product of two
objects depends solely on the chosen category, i.e. on the
objects and their morphisms. Fixing, for example, a specific
ontology language, and finding an agreement on which fea-
tures of an ontology should be preserved by a corresponding
morphism, we obtain a notion of product in a canonical way.

The categorical product definition also turns out to be suit-
able to model many well-known product constructions. As
a product of two partially ordered sets one usually considers
the product-order, i.e. the cartesian product of the two sets,
ordered such that a pair (a, b) is below a pair (c, d) when-
ever a is below c and b is below d. The partially ordered set
obtained in this way corresponds to the categorical product
in Poset, which arguably is the reason for the significance
of this particular construction. To give another example: If
we consider a single partially ordered set as a category, as
discussed earlier, then the product of two of its elements is
just the greatest lower bound. This is also an example where
a product may fail to exist.

Combining the product construction with our earlier con-
siderations on subobjects into practice, we can also intro-
duce binary relations on objects. Indeed an ordinary set-
theoretic binary relation is just a subset of the cartesian prod-
uct of two objects. Hence it makes sense to consider a
monomorphism r : D → (A × B) from some object D to
the product of A and B as a binary relation between A and B.
Note that this does also give us two functions p1 ◦r : D→ A
and p2 ◦ r : D → B to the two components of the product,
for which the morphism r is already the unique factorization
that exists due to the definition of a product. Much gener-
alized theory can be developed around this, but we shall be
content at this point.

Merging ontologies via pushouts
We will now return to our initial motivation. Our intuition
is that the objects of our category represent ontologies and
that the morphisms between them serve as meaningful tran-
sitions between these specifications. The categorical prod-
uct construction is not suitable for the purpose of modelling
ontology merging, since it does obviously not consider any
relationship between two ontologies. Such a relationship –
commonly referred to as an ontology mapping – however is
the base of an ontology merging process, so we have to find
a means of modelling it in our categorical setting. We are in

fact more interested in a certain kind of sum than in a prod-
uct. Indeed, if two ontologies were entirely unrelated, they
could be combined by just taking their disjoint union (pro-
vided that this operation makes sense for the chosen ontol-
ogy representation language). However, we are more inter-
ested in merging ontologies that do overlap (via some map-
ping), where some elements are related while others are not.
Merging two such ontologies should lead to a new ontol-
ogy that identifies equivalent elements but that tries to keep
unrelated elements apart, as far as this is possible without
violating the requirements that are imposed on the structure
of an ontology.

As an example, let us consider the following two partial
orders:

P
?>=<89:;a

oooooooo

OOOOOOOO

?>=<89:;b
��

�� ??
??

?>=<89:;c

?>=<89:;d
??

??
?>=<89:;e

��
��

?>=<89:;g

/.-,()*+f
Q

?>=<89:;1

oooooooo

OOOOOOOO

?>=<89:;2 ?>=<89:;3

?>=<89:;4

?>=<89:;5 ?>=<89:;6

We assume that some elements of these structures are known
to be equivalent. This is expressed by a relation R ⊆ P ×
Q (usually called an ontology mapping) that we define as
R = {(a, 1), (b, 2), (c, 4), ( f , 5), (g, 3)}. A reasonable result
of merging the posets P and Q would then be the following
structure:

76 5401 23{a, 1}
ooooo

OOO
OO

76 5401 23{b, 2}
��

� ??
?

76 5401 23{c, g, 3, 4}

76 5401 23{d}
??

?
76 5401 23{e}

��
�

76 5401 23{ f , 5} 76 5401 23{6}

Observe that all elements related by R are indeed identified,
but that some additional identifications are necessary to ob-
tain a partially ordered set. Categorically, we can already
specify the data that we have considered for such an oper-
ation. The given situation is depicted in the following dia-
gram:
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The shape of the arrow from R to P × Q indicates that it de-
fines a subobject (a monomorphism). The dotted arrows r1
and r2 are those that are obtained by composing the projec-
tions of the product with this monomorphism. They project
every pair of elements of R to its first and second compo-
nent, respectively. Now the result of merging P and Q is not
just some poset mergeR(P,Q), but also the two obvious em-
beddings of P and Q into mergeR(P,Q). As a diagram, we
obtain:

Q

e2

��

P e1
// mergeR(P,Q)

The property that R-related elements are identified can now
be expressed in terms of functions: we find that, for any pair
(p, q) ∈ R, e1(p) = e2(q). Still a better way to express this
for arbitrary morphisms is to say that e1 ◦ r1 = e2 ◦ r2.

This condition alone, however, does not suffice. Usually,
there are many objects for which e1 ◦ r1 = e2 ◦ r2 holds.
Which of these is the one which we want to consider as the
merging of P and Q? Clearly, the merging shall not iden-
tify anything unnecessarily. This can be stated by means of
another universal property, as follows.

Definition 3 For a category C , consider objects R, P, Q,
and morphisms p1 : R → P and p2 : R → Q. An object S
together with two morphisms e1 : P→ S and e2 : Q→ S is
a pushout if it satisfies the following properties:

(i) e1 ◦ p1 = e2 ◦ p2, i.e. the following diagram commutes

R

p1

��

p2
// Q

e2

��

P e1
// S

(ii) For every other object T and morphisms f1 : P → T
and f2 : Q → T , with f1 ◦ p1 = f2 ◦ p2, there is a
unique morphism m : S → T such that f1 = e1 ◦m and
f2 = e2 ◦ m. This situation is depicted in the following
diagram.

R

p1

��

p2
// Q

e2

��
f2

��

P e1
//

f1

++

S
m

��
?

?
?

?

T

Condition (ii) in this definition states the universal prop-
erty of the pushout, requiring that it is in a sense the most
general object that meets all requirements. Let us try to ex-
plain this a bit further. We have already understood that in
this setting we can encode the ontology mapping (e.g. bi-
nary relation) R conveniently, in that the resulting S iden-
tifies (at least) all those elements which are related by R.
But now we want to avoid the identification of other ele-
ments as much as possible. Intuitively, this means that a
suitable pushout object needs to keep elements from both
components as distinct as possible, while still implementing
all necessary identifications, and without including irrele-
vant information. Enforcing the desired identifications was
achieved by condition (i) in the above definition. Excessive
identifications are prevented by requiring the existence of a
factorization m: appending m to e1 and e2 cannot make prior
identifications undone, and hence a pair that was merged in
S can never be separated in an alternative solution (T, f1, f2)
if a suitable m is known to exist. Finally, the possibility of
including entirely unrelated information, like adding some
elements not present in either P or Q, is ruled out by assur-
ing uniqueness of the factorization m: if S would include
elements that are neither in the image of e1 nor in the image
of e2 then a valid factorization can assign these to arbitrary
values in T without loosing the factorization property – but
this would result in many possible choices in place of m. In
other words, having “unnecessary” elements in the S would
result in additional degrees of freedom in the choice of m,
thus violating the required uniqueness.

Note also that we ignored our earlier restriction of R being
a subobject of the product P ×Q. However, by the universal
property of the product, any object R with functions to P
and Q must have a unique factorization through the product,
and hence does still capture part of the idea of a relation.
Furthermore, such a generalized R can also be viewed as a
suitable background knowledge that both P and Q are based
on. In spite of this generalization, R is still an object of
the considered category, i.e. it is itself an ontology with all
necessary structure. We just dropped some side conditions
on this object, such that some redundancy can be introduced
into the ontology mapping if desired.

How to put our approach into practice
Let us now see how our approach can be used as a guid-
ance for ontology merging. We noted earlier that the notion
of product hinges only on (1) a decision regarding the on-
tology representation language used, and (2) the structural
properties which shall be preserved by a morphism. The sit-
uation for pushouts is similar, we just need a third decision,



namely (3) the fixing of an ontology mapping. Once these
decisions have been made, the notion of pushout, and thus
of the merging of two ontologies, is determined canonically,
but one still needs to find a convenient concrete representa-
tion for the specified object (4). From there, conceptually
sound algorithms for calculating both ontology mappings
(5) and pushouts (6) can be devised.

Decisions need to be made step by step, and we propose
the following workflow. Later steps, however, may indicate
that earlier decisions need to be revised, and thus to retrace
to earlier points.

1. Decide on ontology representation language used. This
first step is probably the most unproblematic, since there
are standard ontology languages around, and the specific
application case will usually dictate the language. Poten-
tial candidates are e.g. F-Logic (Kifera, Lausen, & Wu
1995; Angele & Lausen 2004) and different variants of
OWL (Antoniou & van Harmelen 2004).

2. Determine what suitable morphisms are. This step con-
sists of describing the conditions which morphisms must
satisfy. These conditions will primarily be dictated by the
semantic interpretation of the ontology representation lan-
guage chosen earlier, and by the specific requirements of
the application case. Typical conditions could include the
following.
• The preservation of class hierarchies, i.e. functions

shall be monotonic with respect to the general class
inclusion orders on classes and/or roles.
• The preservation of types (e.g. classes, roles, annotated

objects).
• The taking into account of model-theoretic logical

properties, if featured by the underlying ontology rep-
resentation language, like satisfiability, or the preserva-
tion of specific models.
• The taking into account of proof-theoretic properties,

i.e. such relating to particular inference methods cho-
sen for reasoning with ontologies.
• The preservation of language classes, e.g. by requiring

that the merging of two OWL Lite ontologies shall not
result in an OWL ontology which is not in OWL Lite.

3. Determine what the ontology mapping is for this setting.
Usually, ontology mappings will be given by (binary) re-
lations between elements of ontologies, indicating which
elements shall be identified in the merging process. How-
ever, as the product of two ontologies may not always be
described conveniently as a set of pairs of elements – as in
the case of Set or Poset –, it needs to be understood at this
stage, what the product really is, and thus what ontology
mappings are in this setting.

4. Determine what pushouts are for this setting. While the
characteristics of a pushout are fully determined by the
previous steps, it is still necessary to find a particular in-
stance of the pushout (both for the object and the embed-
ding morphisms) in terms of the ontology language. This
requires to define a possible result for arbitrary pushout
operations and to show that it satisfies the formal require-
ments of a pushout. Difficulties at this stage arise from

the fact that, like products, pushouts are not guaranteed
to exist in general. Negative results may yield effective
conditions for the existence of pushouts or even suggest a
modification of the considered theory.

5. Algorithmize how to obtain the mapping. The issue of
how to obtain suitable ontology mappings is a separate is-
sue from the one discussed here, and will usually depend
heavily on the application domain and on the ontology
representation language chosen. Machine learning tech-
niques may be used here together with linguistics-based
approaches (see e.g. (Ehrig & Sure 2004)). Fuzzy rela-
tions usually obtained by such approaches may however
have to be defuzzified at some stage, in order to obtain
a precise ontology mapping which will be used for the
merging.

6. Algorithmize how to obtain the pushout. At this stage, it is
theoretically clear what the pushout – and thus the merged
ontology – will be. Casting this insight into an algorithm
may require a considerable amount of work. The prac-
titioner may also choose at this step to forego an exact
implementation of the merging, and settle for an approxi-
mate or heuristic approach for reasons of efficiency, while
at the same time being guided by the exact merging result
as the ontology to be approximated.

Conclusion and further reading
We have argued that the problem of merging ontologies
based on a given ontology mapping can be formulated con-
veniently in the language of category theory. This lead to the
well-known definition of the categorical pushout construc-
tion, which describes ontological merging independently
from the concrete implementation that was chosen. Since
pushouts do not exist in all categories, this also yields gen-
eral guidelines for devising systems of interrelated ontolo-
gies. Methods and insights from category theory could be
used to assist in the development both of rigorous theoretical
settings for ontology merging and of conceptually sound al-
gorithms for practical implementations. Conversely, similar
considerations can also be useful to validate merging con-
structions that have been conceived exclusively on practical
grounds, since one may ask in which sense (in which cat-
egory) a given merging process produces results of general
validity.

In the remainder of this section, we mention some related
work and point out connections to our approach. Despite
the little formal work done so far on ontology merging, ap-
plications demanded tools for this task. Early work in aid-
ing the user to create a merged ontology is included in the
Chimaera Ontology Environment (McGuinness et al. 2000).
The PROMPT Suite (Noy & Musen 2003) is a mapping and
merging tool using both linguistical and structural similarity
to propose merging candidates to the user. How to obtain
ontology mappings by using machine learning techniques
was studied in (Ehrig & Sure 2004). Finally we would like
to mention a methodology for creating a merged ontology
based on Formal Concept Analysis (Stumme & Maedche



2001). The ontologies are not explicitly merged, but rather a
new ontology is created based on the underlying instances.

On the other hand, the importance of pushouts is cer-
tainly well-known among researchers working on theoreti-
cal grounds. Particular examples are (Jannink et al. 1998),
where algebraic operations are illustrated by categorical
considerations (though the authors keep the actual categories
informal), or (Kent 2000; Schorlemmer, Potter, & Robertson
2002), where categories of local logics and logic infomor-
phisms are studied in a mathematically more rigorous way.
The latter efforts are based on the theory of information flow
(Barwise & Seligman 1997), which provides a formal model
of how information can be conveyed between heterogeneous
systems. Technically, this work builds on modelling the ac-
tual knowledge available in some (physical or logical) sys-
tem as a so-called classification, a simple relation between
the statements made in a system and the objects these state-
ments may or may not refer to. This component is aug-
mented with a collection of logical constraints, that describe
what is actually believed about the system, and which can be
regarded as a vehicle to control the loss of soundness and
completeness that occurs when transforming data as sug-
gested by this theory. Together with a classification one
obtains a so-called local logic which yields the most com-
plex ontological description considered in the information
flow framework (IFF) (Kent 2005). Classifications and local
logics in IFF are equipped with so-called infomorphisms3 to
obtain a category where constructions can be performed.

In spite of the simplicity of classifications, one can still
capture a considerable amount of logical formalisms in such
a relational scheme. This has been introduced earlier in the
framework of institution theory (Goguen & Burstall 1992),
where binary relations that capture the model theory |= of a
logic have been recognized as a convenient setting for uni-
fying the treatment of different logics. Categorical pushouts
were incorporated in this setting to implement modular pro-
gram specification on a mathematical rigorous basis (see ref-
erences in (Goguen & Burstall 1992)).

Though the study of the IFF is making considerable
progress, we believe that it is necessary to study formal ap-
proaches to ontology construction for other settings as well.
As explained, the IFF focuses on the use of local logics
for ontological specification, while other formalisms such
as F-Logic (Kifera, Lausen, & Wu 1995) and description
logics (Baader et al. 2003) are widely used in implemen-
tations. Though IFF, like institution theory, could still sub-
sume such logics, it may be asked whether the chosen in-
fomorphisms are the adequate translation method for these
concrete settings. Hence our suggestion is to search native
translation mechanism for common ontological formalisms
without loosing sight of the categorical modelling. The lat-
ter can provide guidance and reassurance for concrete imple-
mentations, but should not dictate what particular language
is used by ontology engineers and end-users.

3Infomorphisms are also known as “Chu mappings.” They are
closely related to the notion of a “Galois connection” between com-
plete lattices.

We stress the fact that this task is clearly distinguished
from the problem of ontology mapping. The latter raises
the question of how some particular ontologies are inter-
related, while we are asking for general constraints that a
well-behaved relationship between ontologies must satisfy.
Ontology mapping then relates to the task of identifying
concrete morphisms of this form, yielding a solution to the
specific translation problem in which the user is interested.
An overview of current approaches in ontology mapping is
given in (Kalfoglou & Schorlemmer 2003). Much effort is
put into obtaining sufficiently applicable mappings, possibly
in an approximate or heuristic way. These attempts to actu-
ally compute something that can be put to immediate prac-
tical use are contrasted by the lack of formal definitions of
what actually is to be computed. As in other areas (consider
software-engineering), approaches that are not founded on
a strong theoretical basis defy most mathematical reason-
ing on the resulting structures, eventually resulting in es-
tablished engineering principles that, in spite of their prac-
tical convenience, can hardly provide features that require
formal verification (like proving certain safety or reliability
constraints4).

In addition, the use of the machinery of category theory
depends on the formal (semantic) properties of the chosen
way of representing ontologies. The high-level language of
category theory provides simple and clearly specified inter-
faces for concrete implementations – whether concrete so-
lutions will eventually be compatible with these interfaces
remains to be seen.

Finally, for a more in-depth treatment of category the-
ory, numerous textbooks and research monographs can be
consulted. For an easy-paced introduction with a particular
emphasis on set-theoretic constructions we strongly recom-
mend (Lawvere & Rosebrugh 2003). Another very accessi-
ble textbook is (McLarty 1992). For a more extensive treat-
ment of pushouts and related constructions, the reader may
want to consult (Borceux 1994). Relations as subobjects of
categorical products are discussed in much more detail in the
first chapter of (Pedicchio & Tholen 2004), where order the-
ory is developed in this general setting. General motivation
for the application of category theory in computer science is
given in (Goguen 1991), whereas mathematical details are
omitted therein.
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