
Reasoning in Circumscriptive ALCO

Stephan Grimm1, Pascal Hitzler2

1 FZI Research Center for Information Technologies, University of Karlsruhe, Germany
grimm@fzi.de

2 Institute AIFB, University of Karlsruhe, Germany
hitzler@aifb.uni-karlsruhe.de

Abstract. Non-monotonic extensions of description logics (DLs) allow for default and local
closed-world reasoning and are an acknowledged desired feature for applications, e.g. in the
Semantic Web. A recent approach to such an extension is based on McCarthy’s circumscription,
which rests on the principle of minimising the extension of selected predicates to locally close
off dedicated parts of a domain model. While decidability and complexity results have been
established in the literature, no practical algorithmisation for circumscriptive DLs has been
proposed so far. In this paper, we present a tableaux calculus that can be used as a sound
and complete decision procedure for concept satisfiability with respect to concept-circumscribed
ALCO knowledge bases. The calculus builds on existing tableaux for classical DLs, extended by
the notion of a preference clash to detect the non-minimality of constructed models.

1 Introduction

Modern description logics (DLs) are formalisations of semantic networks and frame-based knowledge
representation systems that build on classical logic. However, to also capture non-classical features,
such as default and local closed-world reasoning, non-monotonic extensions to DLs have been investi-
gated. While in the past such extensions were primarily devised on top of autoepistemic operators [7]
and default inclusions [2], a recent proposal [4] is to extend DLs by circumscription and to perform
non-monotonic reasoning on circumscribed DL knowledge bases. In circumscription, the extension of
selected predicates – i.e. concepts or roles in the DL case – can be explicitly minimised to locally close
off dedicated parts of a domain model, which results in a default reasoning behaviour. In contrast
to the former approaches, non-monotonic reasoning in circumscriptive DLs also applies to “unknown
individuals” not explicitly mentioned in a knowledge base, but whose existence is guaranteed due to
existential quantification.

The proposal in [4] presents a semantics for circumscriptive DLs together with decidability and
complexity results, in particular for fragments of the logic ALCQIO. However, a practical algorith-
misation for reasoning in circumscriptive DLs has not been addressed so far. In this paper, we present
such an algorithmisation that builds on existing DL tableaux methods. In particular, we present a
tableaux calculus that supports reasoning with concept-circumscribed knowledge bases in the logic
ALCO. We focus on the reasoning task of concept satisfiability, which is motivated by an application
of non-monotonic reasoning in a Semantic Web setting, described in [9]. While typical examples in
the circumscription literature deal with defeasible conclusions of circumscriptive abnormality theo-
ries, in this setting we use minimisation of concepts to realise a local closed-world assumption for the
matchmaking of semantically annotated resources.

The reason for our choice of ALCO as the underlying DL is twofold. First, we want to present
the circumscriptive extensions for the simplest expressive DL ALC for sake of a clear and concise
description of the tableaux modifications. Second, there is the necessity to deal with nominals within
the calculus in order to keep track of extensions of minimised concepts, so we include O.

The basic idea behind our calculus is to detect the non-minimality of candidate models, produced
by a tableaux procedure for classical DLs, via the notion of a preference clash, and based on the
construction of a classical DL knowledge base that has a model if and only if the original candidate
model produced is not minimal. This check can be realised by reasoning in classical DLs with nominals
and equality between individuals. We formally prove this calculus to be a sound and complete decision
procedure for concept satisfiability in circumscriptive ALCO. A similar idea has been applied in [12]
for circumscriptive reasoning in first-order logic, where a tableaux for first-order formulas in clausal

form was presented. However, this calculus does not directly yield a decision procedure for reasoning
with DLs as it is only decidable if function symbols are disallowed, which correspond to existential
restrictions in DLs.

The report is structured as follows. In Section 2 we recall circumscriptive description logics from
[4] for the case of ALCO. In Section 3, we present our tableaux calculus and prove it to be a decision
procedure for circumscriptive ALCO. We conclude in Section 4.

2 Description Logics and Circumscription

Description Logics (DLs) [1] are typically fragments of first-order predicate logic that provide a well-
studied formalisation for knowledge representation systems. Circumscription [11], on the other hand,
is an approach to non-monotonic reasoning based on the explicit minimisation of selected predicates.
In this section, we present the description logic ALCO extended with circumscription according to
[4], which allows for non-monotonic reasoning with DL knowledge bases.

2.1 Circumscriptive ALCO

The basic elements to represent knowledge in DLs are individuals that represent concrete objects
within a domain of discourse, concepts that group together individuals with common properties, and
roles that put individuals in relation. The countably infinite sets NI , NC and Nr of individual names,
concept names and role names, respectively, form the basis to construct the syntactic elements of
ALCO according to the following grammar, in which A ∈ NC denotes an atomic concept, C,Ci denote
complex concepts, r ∈ Nr denotes a role and ai ∈ NI denote individuals.

C,D −→ ⊥ | ⊤ | A | ¬C | C ⊓ D | C ⊔ D | ∃ r .C | ∀ r .C | {a1, . . . , an}

The semantics of the syntactic elements of ALCO is defined in terms of an interpretation I =
(∆I , ·I) with a non-empty set ∆I as the domain and an interpretation function ·I that maps each
individual a ∈ NI to a distinct element aI ∈ ∆I and that interprets (possibly) complex concepts and
roles as follows.

⊤I = ∆I , ⊥I = ∅
AI ⊆ ∆I , rI ⊆ ∆I × ∆I

(C1 ⊓ C2)
I = CI

1
∩ CI

2

(C1 ⊔ C2)
I = CI

1
∪ CI

2

(¬C)I = ∆I \ CI

(∀ r .C)I = {x ∈ ∆I | ∀y.(x, y) ∈ rI → y ∈ CI}
(∃ r .C)I = {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

({a1, . . . , an})
I = {aI

1
, . . . , aI

n}

Notice that we assume unique names for individuals, i.e. aI
1
6= aI

2
for any interpretation I and any

pair a1, a2 ∈ NI .
An ALCO knowledge base KB is a set of axioms that are formed by concepts, roles and individuals.

A concept assertion is an axiom of the form C(a) that assigns the membership of an individual a to a
concept C. A role assertion is an axiom of the form r(a1, a2) that assigns a directed relation between
two individuals a1, a2 by the role r. A concept inclusion is an axiom of the form C1 ⊑ C2 that states
the subsumption of the concept C1 by the concept C2, while a concept equivalence axiom C1 ≡ C2 is
a shortcut for two inclusions C1 ⊑ C2 and C2 ⊑ C1. An interpretation I satisfies a concept assertion
C(a) if aI ∈ CI , a role assertion r(a1, a2) if (aI

1
, aI

2
) ∈ rI , a concept inclusion C1 ⊑ C2 if CI

1
⊆ CI

2
and

a concept equivalence C1 ≡ C2 if CI
1

= CI
2
. An interpretation that satisfies all axioms of a knowledge

base KB is called a model of KB . A concept C is called satisfiable with respect to KB if KB has a
model in which CI 6= ∅ holds.

We now turn to the circumscription part of the formalism, that allows for non-monotonic rea-
soning by explicit minimisation of selected ALCO concepts. We adopt a slightly simplified form of
the circumscriptive DLs presented in [4] by restricting our formalism to parallel concept circumscrip-
tion (without prioritisation among minimised concepts). For this purpose we define the notion of a
circumscription pattern as follows.

2

Definition 1 (circumscription pattern, <CP). A circumscription pattern3
CP is a tuple (M,F, V)

of sets of atomic concepts called the minimised, fixed and varying concepts. Based on CP, a preference
relation on interpretations is defined by setting J <CP I if and only if the following conditions hold:

(i) ∆J = ∆I and aJ = aI for all aJ ∈ ∆J

(ii) ĀJ = ĀI for all Ā ∈ F
(iii) ÃJ ⊆ ÃI for all Ã ∈ M
(iv) there is an Ã ∈ M such that ÃJ ⊂ ÃI

For non-monotonic reasoning, a classical ALCO knowledge base is circumscribed with a circum-
scription pattern and reasoning is performed by means of the resulting circumscribed knowledge base,
defined as follows.

Definition 2 (circumscribed knowledge base). A circumscribed knowledge base circCP(KB) is a
knowledge base KB together with a circumscription pattern CP = (M,F, V), such that the sets M , F
and V partition the atomic concepts that occur in KB. An interpretation I is a model of circCP(KB)
if I is a model of KB and there exists no model J of KB with J <CP I.

The intuition behind the preference relation is to identify interpretations that are “smaller” in
the extensions of minimised concepts than others, to select only the “smallest” ones as the preferred
models of a knowledge base. Fixed concepts can be used to restrict this selection and to prevent certain
models from being preferred.

2.2 Reasoning with Circumscribed Knowledge Bases

The typical DL reasoning tasks are defined as expected (see [4]) with respect to the models of a
circumscribed knowledge base circCP(KB), which are just the preferred models of KB with respect to
CP. For our calculus, we focus on concept satisfiability, which we define next. Other reasoning tasks
can be reduced to concept satisfiability, as described in [4].

Definition 3 (circumscriptive concept satisfiability). A concept C is satisfiable with respect to
a circumscribed knowledge base circCP(KB) if some model I of circCP(KB) satisfies CI 6= ∅.

Observe that in classical DLs an atomic concept A is satisfiable with respect to a knowledge
base KB “by default” if there is no evidence for its unsatisfiability in KB , i.e. any A is satisfiable with
respect to the empty knowledge base. Now suppose that A is a minimised concept in a circumscription
pattern CP by which KB is circumscribed. Then, A is unsatisfiable with respect to circCP(KB = ∅). Only
if we explicitly assure that the extension of A is non-empty, e.g. by setting KB = {A(a)}, A becomes
satisfiable.

A known result in circumscription is that there is a close relation between fixed and minimised
predicates. Namely, fixed concepts are simulated by minimising them together with their complements,
which is achieved through introducing additional concept names and respective equivalence axioms.
The proofs of Lemma 1 and Proposition 1 are similar to that of [6, Theorem 1] but have been adapted
from the first-order case to the setting of circumscriptive description logics.

Lemma 1 (coincidence of complementarily minimised concepts). Let Ã, B̃ be atomic con-
cepts and let KB be a knowledge base with KB |= Ã ≡ ¬B̃. Furthermore, let CP = (M,F, V) be
a circumscription pattern with Ã, B̃ ∈ M . For any two models I,J of KB, J <CP I implies both
ÃJ = ÃI and B̃J = B̃I .

Proof. Let I,J be models of KB with J <CP I. According to condition (iii) from Definition 1, this
implies a) ÃJ ⊆ ÃI and b) B̃J ⊆ B̃I , as both Ã and B̃ are minimised. Since I and J are models
of KB , the extension of Ã is just the complement of the extension of B̃ in both I and J . Hence, a)
implies B̃J ⊇ B̃I and b) implies ÃJ ⊇ ÃI , such that we have both ÃJ = ÃI and B̃J = B̃I . ⊓⊔

3 The notion of circumscription pattern introduced in [4] is more general and allows the sets M , F and
V to also contain roles. There, a circumscription pattern according to Definition 1 is called a concept
circumscription pattern. However, in the general case role circumscription leads to undecidability, which
was also shown in [4]. As the calculus presented in this report does not allow for role circumscription, we
use the term circumscription pattern to denote a concept circumscription pattern in the sense of [4].

3

Proposition 1 (simulation of concept fixation). Let C be a concept, let KB be a knowledge base
and let CP = (M,F, V) be a circumscription pattern with F = {Ā1, . . . , Ān}. Furthermore, let

KB ′ = KB ∪ {Ãi ≡ ¬Āi | 1 ≤ i ≤ n}

and let
CP

′ = (M ∪ {Ã1, . . . , Ãn, Ā1, . . . , Ān}, ∅, V) ,

where Ã1, . . . , Ãn are atomic concepts that do not occur in KB, CP or C. Then, C is satisfiable with
respect to circCP(KB) if and only if it is satisfiable with respect to circCP′(KB ′).

Proof. Assume that C is satisfiable with respect to circCP(KB) and let I be a model of circCP(KB) with
CI 6= ∅. Let I ′ be an interpretation that coincides with I except that ÃI

′

i = ∆I \ ĀI
i for i = 1, . . . , n.

Since none of the Ãi occurs in KB , I ′ is a model of KB ′, and since CI = CI
′

6= ∅, C is satisfiable
with respect to KB ′. To prove that C is also satisfiable with respect to circCP′(KB ′), we show by
contradiction that I ′ is minimal with respect to <CP′ .

Assume that I ′ is not minimal with respect to <CP′ , such that there is a model J ′ of circCP′(KB ′)

with J ′ <CP′ I ′. By repeated application of Lemma 1, we know that ĀJ
′

i = ĀI
′

i and ÃJ
′

i = ÃI
′

i hold

for i = 1, . . . , n. Hence, the minimised predicate Ã for that ÃJ
′

⊂ ÃI
′

holds according to condition
(iv) of Definition 1 must be in the set M of the original circumscription pattern CP. Let J be the
interpretation that coincides with J ′ except that ÃJ

i = ∅ for i = 1, . . . , n. Obviously, J is a model of
KB . We show that J <CP I holds by verifying the conditions (i)-(iv) from Definition 1. Condition (i)

is trivially satisfied. From ĀJ
′

i = ĀI
′

i it follows that ĀJ
i = ĀI

i for i = 1, . . . , n, and hence condition

(ii) is satisfied. Since ÃJ
′

⊆ ÃI
′

holds for all Ã ∈ M , condition (iii) is satisfied. Since ÃJ
′

⊂ ÃI
′

holds for some Ã ∈ M , also condition (iv) is satisfied. Thus, we have that J <CP I and I cannot be
minimal with respect to CP, which contradicts the existence of J ′.

For the converse, assume that C is satisfiable with respect to circCP′(KB ′) and let I ′ be a model
of circCP′(KB ′) with CI

′

6= ∅. Let I be an interpretation that coincides with I ′ except that ÃI
i = ∅

for i = 1, . . . , n. Since none of the Ãi appears in either KB or C, I is a model of KB and CI 6= ∅,
such that C is satisfied in I. To prove that C is satisfiable with respect to circCP(KB), we show by
contradiction that I is minimal with respect to <CP.

Assume that I is not minimal with respect to <CP, such that there is a model J of circCP(KB)
with J <CP I. Let J ′ be the interpretation that coincides with J except that ÃJ

′

= ∆J \ ĀJ .
Obviously, J ′ is a model of KB ′. We show that J ′ <CP′ I ′ holds by verifying the conditions (i)-
(iv) from Definition 1. Conditions (i) and (ii) are trivially satisfied. From ĀJ

i = ĀI
i we know that

ĀJ
′

i = ĀI
′

i and also that ÃJ
′

i = ÃI
′

i for i = 1, . . . , n, as any two Āi, Ãi have complementary extensions,
and since ÃJ ⊆ ÃI for Ã ∈ M due to J <CP I, condition (iii) is also satisfied. From ÃJ ⊂ ÃI for
some Ã ∈ M it follows that ÃJ

′

⊂ ÃI
′

, satisfying condition (iv). Thus, we have that J ′ <CP′ I ′ and
I ′ cannot be minimal with respect to CP

′, which contradicts the existence of J . ⊓⊔

To illustrate the reasoning task of checking concept satisfiability with respect to circumscribed
knowledge bases we present the following example.

Example 1. The following knowledge base describes species living in the arctic sea.

KB1 = { Bears(PolarBear), ¬Bears(BlueWhale), EndangeredSpecies(BlueWhale) }

According to KB1, the polar bear is a kind of bear, while the blue whale is not. Moreover, the blue
whale is explicitly listed to be an endangered species, while the polar bear does not occur on this list.
The following circumscription pattern allows to “switch off” the open-world assumption for the list of
endangered species by minimising the extension of the concept EndangeredSpecies.

CP = (M = {EndangeredSpecies}, F = ∅, V = {Bears})

The concept Bears⊓EndangeredSpecies is unsatisfiable with respect to the circumscribed knowledge
base circCP(KB1), reflecting that there cannot be an individual that is both an endangered species and
a kind of bear. The only endangered species in the preferred models of KB1 is the blue whale, which
is explicitly said to be no kind of bear.

4

Recently, however, the polar bear unfortunately had to be included in the list of endangered species,
which is reflected by the following update of KB1.

KB2 = KB1 ∪ { EndangeredSpecies(PolarBear) }

With respect to circCP(KB2), the concept Bears ⊓ EndangeredSpecies is satisfiable, as the polar bear is
a kind of bear and at the same time an endangered species in the preferred models of KB2.

Instead of using a concept assertion for the explicitly mentioned individual PolarBear, we could
alternatively update KB1 by introducing an existentially quantified object through an inclusion axiom
stating that the arctic sea is a habitat for an endangered bear species, as follows.

KB3 = KB1 ∪ { ∃ isHabitatFor .Bears ⊓ EndangeredSpecies(ArcticSea) }

the concept Bears ⊓ EndangeredSpecies is also satisfiable with respect to circCP(KB3). Observe that in
any preferred model of KB3 the extension of EndangeredSpecies contains an unknown individual whose
existence is propagated from the known individual ArcticSea via the role isHabitatFor. Alternative ap-
proaches to non-monotonic reasoning in DL, such as [8, 2], typically treat unknown objects differently
and do not allow for this kind of reasoning.

3 Tableaux Calculus for Circumscriptive ALCO

In this section, we introduce a tableaux calculus that decides the satisfiability of a concept with
respect to a circumscribed knowledge base. We build on the notion of constraint systems, which map
to tableaux branches in tableaux calculi, and we keep the presentation similar to the related work in
[7] and [5].

3.1 Constraint Systems and their Solvability

In addition to the alphabet of individuals NI , we introduce a set NV of variable symbols. We denote
elements of NI by a, elements of NV by x and elements of NI ∪ NV by o, all possibly with an index.
A constraint is a syntactic entity of one of the forms

o : C , (o1, o2) : r, ∀x.x : C

where C is an ALCO concept, r is a role and the o’s are objects in NI ∪ NV . A constraint system,
denoted by S, is a finite set of constraints. Let N

S
I denote the individuals and let N

S
V be the variables

that occur in a constraint system S, respectively.
Given an interpretation I, we define an I-assignment as a function αI : NI ∪NV 7→ ∆I , that maps

every variable of NV to an element of ∆I and every individual a to aI , i.e. αI(a) = aI for all a ∈ NI .
A pair (I, αI) of an interpretation I and an I-assignment αI satisfies a constraint o : C if

αI(o) ∈ CI , a constraint (o1, o2) : r if (αI(o1), α
I(o2)) ∈ rI and a constraint ∀x.x : C if CI = ∆I .

A solution for a constraint system S is a pair (I, αI) of an interpretation I and an I-assignment αI

that satisfies all constraints in S.
We denote by S[o1/o2] the constraint system that is obtained by replacing any occurrence of

object o1 by object o2 in every constraint in S. Furthermore, we define the constraint system SKB to
be obtained from an ALCO knowledge base KB by including one constraint of the form a : C for each
concept assertion C(a) ∈ KB , one constraint (a1, a2) : r for each role assertion r(a1, a1) ∈ KB and one
constraint ∀x.x : ¬C1 ⊔ C2 for each concept inclusion C1 ⊑ C2 ∈ KB , such that SKB captures all the
information in KB . We assume all complex concepts that occur in KB to be in negation normal form,
as described in [15].

To ensure termination of our calculus in the presence of general inclusion axioms, we further need
to introduce the notion of blocking (see e.g. [5]). We say that an object o1 is a direct predecessor of
an object o2 if the respective constraint system S contains a role constraint (o1, o2) : r for some role
r. We denote by predecessor the transitive closure of the direct predecessor relation. Moreover, we say
that, in a constraint system S, an object o2 is blocked by an object o1 if o1 is a predecessor of o2 and
if {C | o2 : C ∈ S} ⊆ {C | o1 : C ∈ S} holds.

Due to the analogy between a constraint system and a knowledge base the following Lemma holds.

5

Lemma 2. Let KB be an ALCO knowledge base, S be a constraint system with SKB ⊆ S and I be an
interpretation. If I is a model of KB then, for any I-assignment αI , (I, αI) is a solution for SKB .
Furthermore, for any solution (I, αI) for S, I is a model of KB.

Proof. ⇒: Assume that I is a model of KB . As no variables occur in SKB , all its concept and role
constraints are of the form a : C and (a1, a2) : r, respectively. Since I is a model of KB , aI ∈ CI holds
for any concept constraint and (aI

1
, aI

2
) ∈ rI for any role constraint in SKB . As for any assignment

αI(a) = aI , (I, αI) satisfies every concept and role constraint in SKB . Moreover, universal constraints
in SKB have the form ∀x.x : ¬C1 ⊔ C2. Since I satisfies their original concept inclusion C1 ⊑ C2, all
universal constraints in SKB are satisfied as well due to the fact that CI

1
⊆ CI

2
implies (∆I \CI

1
)∪CI

2
=

∆I . Hence, (I, αI) satisfies all constraints in SKB and is therefore a solution for it.
⇐: Assume that (I, αI) is a solution for S. Since (I, αI) satisfies all constraints in S and SKB ⊆ S,
it satisfies all constraints in SKB in particular. Hence, it holds that αI(o) ∈ CI for every concept
constraint, and (αI(o1), α

I(o2)) ∈ rI for every role constraint in SKB . Moreover, (∆I \CI
1
)∪CI

2
= ∆I

holds for every universal constraint ∀x.x : ¬C1 ∪ C2 ∈ SKB , which implies CI
1
⊑ CI

2
. Since there is

a one-to-one correspondence between constraints in SKB and axioms in KB , I satisfies every concept
assertion, role assertion and concept inclusion in KB and is therefore a model of KB . ⊓⊔

The calculus we present is based on finding a solution for constraint systems the interpretation of
which is a preferred model of an initial knowledge base with respect to a circumscription pattern. For
this purpose we define the notion of solvability.

Definition 4 (CP-solvability). A constraint system S is CP-solvable with respect to KB if there is
a model I of KB and an I-assignment αI such that (I, αI) is a solution for S and there is no model
J of KB with J <CP I.

By the next proposition, we reduce circumscriptive concept satisfiability to checking a constraint
system for its solvability.

Proposition 2 (satisfiability reduction). Let KB be an ALCO knowledge base, CP be a circum-
scription pattern and C be an ALCO concept. C is satisfiable with respect to circCP(KB) if and only
if SKB ∪ {x : C} is CP-solvable with respect to KB.

Proof.
⇒: Since C is satisfiable with respect to circCP(KB), there is a model I of circCP(KB) in which CI

is nonempty. Let a be an individual with aI ∈ CI . Since I is also a model of KB and due to
Lemma 2, (I, αI) is a solution for SKB for any I-assignment αI . Let αI

x,a be an I-assignment with

αI
x,a(x) = aI . Then, (I, αI

x,a) satisfies, besides the constraints in SKB , also the constraint x : C,

because of αI
x,a(x) ∈ CI , and is therefore a solution for SKB ∪ {x : C}. Since there is no other model

J of KB with J <CP I, SKB ∪ {x : C} is CP-solvable with respect to KB .
⇐: Since SKB∪{x : C} is CP-solvable with respect to KB , there is a model I of KB and an I-assignment
αI such that (I, αI) is a solution for SKB ∪ {x : C}. Moreover, there exists an element aI ∈ ∆I with
αI(x) = aI ∈ CI because (I, αI) satisfies the constraint x : C. By definition of CP-solvability, there
is no model J of KB with J <CP I, and thus, I is a model of circCP(KB) in which CI is non-empty.
Hence, C is satisfiable with respect to circCP(KB). ⊓⊔

3.2 Tableaux Expansion Rules

Constraint systems are manipulated by tableaux expansion rules, which decompose the structure
of complex logical constructs or replace variables by concrete individuals. By expanding a constraint
system with the resulting constraints, our calculus tries to build a model for the initial knowledge base
that is represented by the constraint system. To decide the satisfiability of a concept C with respect
to a circumscribed knowledge base circCP(KB) according to Proposition 2, we initialise the calculus
with the constraint system SKB ∪ {x : C} and repeatedly apply the tableau rules given in Table 3.2.
We assume that fixed concepts are simulated by minimising them together with their complements
according to Proposition 1, such that no fixed concepts occur in CP.

6

−→∀x
: if ∀x.x : C ∈ S and o : C 6∈ S for some o ∈ N

S
I ∪ N

S
V

then S← S ∪ {o : C}
−→⊓ : if o : C1 ⊓ C2 ∈ S and {o : C1, o : C2} 6⊆ S

then S← S ∪ {o : C1, o : C2}
−→⊔ : if o : C1 ⊔ C2 ∈ S and {o : C1, o : C2} ∩ S = ∅

then S ← S ∪ {o : C1} or S ← {o : C2}
−→∃ : if o1 : ∃ r .C ∈ S and {(o1, o2) : r, o2 : C} 6⊆ S and

o1 is not blocked
then S ← S ∪ {(o1, x) : r, x : C}, with x a new variable

−→∀ : if o1 : ∀ r .C ∈ S and (o1, o2) : r ∈ S and o2 : C 6∈ S
then S ← S ∪ {o2 : C}

−→O : if x : {a1, . . . , ak} ∈ S
then S ← S[x/ai] for any i ∈ {1, . . . , k} ⊂ N

−→<
CP

: if x : Ã ∈ S and Ã ∈MKB

then S ← S[x/a] for any a ∈ N
S
I ∪ {ι}, with ι a new individual

Table 1. Tableau Expansion Rules for Circumscriptive ALCO

Observe that the rules are parametric with respect to KB and CP. We denote by FKB and MKB the
finite projections of the potentially infinite sets F and M of fixed and minimised concepts in CP on
the concepts that occur in KB .

The rules −→∀x
, −→⊓, −→∃ and −→∀ are deterministic and their application yields a single result-

ing constraint system. Contrarily, the rules −→⊔, −→O and −→<CP
are non-deterministic, meaning

that they can be applied in multiple ways that yield different constraint systems. Any such non-
deterministic choice produces a branching point for backtracking when algorithmically determined.
In the −→⊔-rule, the disjunction leads to the choice of expanding on either of the disjuncts, while in
the −→O- and the −→<CP

-rule the presence of several individuals leads to the choice of selecting one
for replacement of the variable x. Moreover, the −→<CP

-rule introduces new individuals into the con-

straint system whenever ι is selected for replacement4, while the −→∃-rule introduces new variables
whenever an object lacks a role filler.

Definition 5 (completion). A completion of a constraint system S with regard to CP and KB is any
constraint system that results from the application of the tableaux rules to S, using CP and KB, and to
which none of the rules is applicable. (Often the parameters CP and KB for rule application are clear
from the context and are omitted.)

The repeated application of rules finally leads to a completion of the initial constraint system that
contains the exhaustive decomposition of complex constraints, which is established by the following
lemma.

Lemma 3 (termination). Let S be a constraint system. A repeated application of the tableaux rules
to S ultimately terminates, and yields a completion of S.

Proof (Sketch). After application of any of the rules, S is altered such that the rule condition is not
triggered again with the same parameters. Complex concepts that occur in constraints are decomposed
by the rules until their finite structure finally breaks down to atomic concepts, nominals and their
negations. Due to the finite structure of complex concepts and the blocking condition (see e.g. [5])
employed in the −→∃-rule only finitely many variables are introduced, and whenever the −→O-rule or
the −→<CP

-rule is applied to a nominal or an atomic concept, a variable is replaced by an individual,
such that the number of variables cannot grow infinitely. Hence, the resulting constraint system reaches
a point at which no rule is applicable to it and is then, by definition, a completion of S.

Moreover, we establish the result that the tableaux expansion rules of our calculus preserve the
solvability of constraint systems as follows.

4 The idea of including a new individual ι as a representative for the infinitely many remaining objects in
NI \ N

S
I in the domain is taken from [7].

7

Proposition 3 (solvability preservation). Let KB be an ALCO knowledge base, CP be a circum-
scription pattern and S, S′ be two constraint systems.

1. If S′ is obtained from S by application of a deterministic rule then S is CP-solvable with respect to
KB if and only if S′ is CP-solvable with respect to KB.

2. If S′ is obtained from S by application of a non-deterministic rule then S is CP-solvable with respect
to KB if S′ is CP-solvable with respect to KB. Furthermore, if S is CP-solvable with respect to KB
and a non-deterministic rule applies to S then it can be applied in such a way that the resulting
constraint system S′ is also CP-solvable with respect to KB.

Proof. For the first part, we consider the deterministic rules:
⇐: Assume that S′ is obtained from S by application of a deterministic rule and that S′ is CP-solvable
with respect to KB . Let (I, αI) be a solution for S′ such that I is a model of KB and there is no
model J of KB with J <CP I. For any of the deterministic rules it holds that S is a subset of S′,
and therefore (I, αI) is also a solution for S. Since there is no model J of KB with J <CP I, S is
CP-solvable with respect to KB .

⇒: Assume that S′ is obtained from S by application of a deterministic rule and that S is CP-solvable
with respect to KB . Let (I, αI) be a solution for S such that I is a model of KB and there is no model
J of KB with J <CP I. We subsequently consider the various deterministic rules.
−→∀x

:
If the −→∀x

-rule has been applied then S contains a constraint of the form ∀x.x : C and the resulting
constraint system S′ contains the concept constraint o : C for some o ∈ N

S
I ∪ N

S
V . As a solution

for S, (I, αI) satisfies ∀x.x : C and we have that CI = ∆I . From (NS
I ∪ N

S
V)I ⊆ ∆I it follows that

αI(o) ∈ ∆I , and hence this concept constraint is also satisfied by (I, αI), which is therefore a solution
for S′.
−→⊓:
If the −→⊓-rule has been applied then S contains a constraint of the form o : C ⊓ D and S′ contains
{o : C, o : D}. As a solution for S, (I, αI) satisfies the constraint o : C ⊓ D, and we have that
αI(o) ∈ (C ⊓D)I and, due to the semantics of ALCO, both αI(o) ∈ CI and αI(o) ∈ DI hold. Hence,
(I, αI) also satisfies the two constraints o : C and o : D, and is therefore a solution for S′.
−→∃:
If the −→∃-rule has been applied then S contains a constraint of the form o : ∃ r .C and S′ contains
the two constraints (o, x) : r and x : C, where x 6∈ N

S
V is a new variable. As a solution for S, (I, αI)

satisfies the constraint o : ∃ r .C, and we have that αI(o) ∈ (∃ r .C)I . Due to the semantics of ALCO
there is some aI ∈ ∆I for which both (αI(o), aI) ∈ rI and aI ∈ CI hold. Since x is new to S, we can
safely assume that αI(x) = aI . Then, (I, αI) also satisfies the two constraints (o, x) : r and x : C,
and is therefore a solution for S′.
−→∀:
If the −→∀-rule has been applied then S contains two constraints o1 : ∀ r .C and (o1, o2) : r, while the
resulting constraint system S′ differs by S′ \ S = {o2 : C}. Since (I, αI) satisfies S, it also satisfies
o1 : ∀ r .C and (o1, o2) : r, and we have that αI(o1) ∈ (∀ r .C)I and (αI(o1), α

I(o2)) ∈ rI . Due to
the semantics of ALCO, this implies that αI(o2) ∈ CI , and thus, (I, αI) also satisfies o2 : C and is
therefore a solution for S′.

Since in all of the cases (I, αI) is a solution for S′ and there is no model J of KB with J <CP I
by assumption, S′ is CP-solvable with respect to KB .

For the second part, we consider the non-deterministic rules:
⇐: Assume that S′ is obtained from S by application of a non-deterministic rule and that S′ is CP-
solvable with respect to KB . Let (I, αI) be a solution for S′ such that I is a model of KB and there
is no model J of KB with J <CP I. We subsequently consider the various non-deterministic rules.
−→⊔:
If the −→⊔-rule has been applied then S contains a constraint of the form o : C ⊔ D and the resulting
constraint system S′ differs from S by either S′ \ S = {o : C} or S′ \ S = {o : D}. without loss of
generality we can assume that S′ \S = {o : C}. Since (I, αI) is a solution for S′, it also satisfies o : C,
and we have that αI(o) ∈ CI , and thus also αI(o) ∈ CI ∪ DI . Hence, (I, αI) satisfies o : C ⊔ D and
is therefore a solution for S.

8

−→O,−→<CP
:

If either the −→O-rule or the −→<CP
-rule has been applied then S′ = S[x/a] for some individual

a ∈ NI . As a solution for S′, (I, αI) satisfies all the constraints in S[x/a], in particular those in
which x has been replaced by a. Let αI

x,a be the I-assignment that coincides with αI except that

αI
x,a(x) = aI . Then, (I, αI

x,a) satisfies all the constraints in S in which x occurs, and since S and S′

differ only by these, also all remaining constraints in S. Hence, (I, αI
x,a) is a solution for S.

Since in all the cases there is a solution for S and there is no model J of KB with J <CP I by
assumption, S is CP-solvable with respect to KB .

⇒: Assume that S′ is obtained from S by application of a non-deterministic rule and that S is CP-
solvable with respect to KB . Let (I, αI) be a solution for S such that I is a model of KB and there
is no model J of KB with J <CP I. We subsequently consider the various non-deterministic rules.
−→⊔:
If the −→⊔-rule has been applied then S contains a constraint of the form o : C ⊔ D and the resulting
constraint system S′ differs from S by either S′ \ S = {o : C} or S′ \ S = {o : D}. Without loss of
generality we can assume that S′ \ S = {o : C}, and that αI(o) ∈ CI holds for the solution (I, αI)
for S. Then, (I, αI) also satisfies o : C, and is therefore a solution for S′. Since there is no model
J of KB with J <CP I by assumption, the −→⊔-rule can be applied to S in such a way that S′ is
CP-solvable with respect to KB .
−→O:
If the −→O-rule has been applied then S contains a constraint of the form x : {a1, . . . , ak}. As a
solution of S, (I, αI) satisfies this constraint and there is some individual ai ∈ {a1, . . . , ak} with
α(x) = aI

i that can be picked for the application of the −→O-rule to yield S′ = S[x/ai]. Since the
constraint ai : {a1, . . . , ak} with i ∈ {1, . . . , k} is trivially satisfied, (I, αI) is a solution for S[x/ai],
and since there is no model J of KB with J <CP I by assumption, the −→O-rule can be applied to
S in such a way that S′ is CP-solvable with respect to KB .
−→<CP

:

If the −→<CP
-rule has been applied then S contains a constraint of the form x : Ã with Ã ∈ MKB . As

a solution for S, (I, αI) satisfies this constraint and there is some individual a ∈ NI with αI(x) = a.
We distinguish the two cases in which a) a is in N

S
I and b) a is a new individual not in N

S
I :

– a) In case a ∈ N
S
I , a can be picked for the application of the −→<CP-rule and it directly follows

that (I, αI) is a solution for the resulting constraint system S′ = S[x/a].
– b) In case a ∈ NI \ N

S
I , ι ∈ NI \ N

S
I can be picked for the application of the −→<CP-rule as a

representative for any new individual. Then, S[x/a] and S[x/ι] differ only by the naming of an
individual new to S and are in this sense isomorphic.5 Hence, as (I, αI) is a solution for S[x/a] it
is also a solution for the resulting constraint system S[x/ι] = S′.

Finally, since in all of the cases (I, αI) is a solution for S′ and there is no model J of KB with
J <CP I by assumption, the −→<CP-rule can be applied to S in such a way that S′ is CP-solvable
with respect to KB . ⊓⊔

3.3 Notions of Clash and Detection of Inconsistencies

Once a completion of an initial constraint system has been produced, its solvability can be verified
by using the notion of a clash. In addition to the clashes defined in [7, 14], which represent obvious
contradictions in a knowledge base, we additionally introduce the notion of a preference clash, which
reflects non-minimality of the respective model with regard to the preference relation <CP.

Definition 6 (Clashes). Let S be a constraint system.
S contains an inconsistency clash if at least one of the following holds:
(i) S contains a constraint of the form o : ⊥.
(ii) S contains two constraints of the form o : A, o : ¬A.

S contains an individual clash if at least one of the following holds:

5 See also the analogous argument in [7, Lemma 3.6].

9

(iii) S contains a constraint of the form a : {a1, . . . , ak}.
with a 6= ai for all i ∈ {1, . . . , k} ⊂ N.

(vi) S contains a constraint of the form a : ¬{a1, . . . , ak}.
with a = ai for some i ∈ {1, . . . , k} ⊂ N.

S contains a preference clash, parameterised with a circumscription pattern CP and an ALCO
knowledge base KB, if the following condition holds:

(v) the constraint system SKB ′ [ι/x] has a completion, with regard to
CP

′ = (∅, ∅, F ∪ M ∪ V) and KB ′, that does neither contain an
inconsistency clash nor an individual clash, while the ALCO
knowledge base KB ′ is constructed according to Algorithm 1.

Algorithm 1 Construct a knowledge base KB ′.

Require: a constraint system S produced for an initial ALCO knowledge base KB circumscribed with a
circumscription pattern CP = (M, F, V)

D ← {⊥}
KB ′ ← KB
for all Ã ∈MKB do

if there are constraints a1 : Ã, . . . , an : Ã ∈ S then

KB ′ ← KB ′ ∪ {Ã ⊑ {a1, . . . , an}}
D ← D ∪ {{a1, . . . , an} ⊓ ¬Ã}

else

KB ′ ← KB ′ ∪ {Ã ⊑ ⊥}
end if

end for

KB ′ ← KB ′ ∪ {(
⊔

D
Ã
∈D

D
Ã
)(ι)}, with ι a new individual

The idea behind the construction of KB ′ in Algorithm 1 is to freeze the instance situation for
minimised concepts as asserted in the current constraint system perceived as reflecting some model
I of the original knowledge base KB . Then, KB ′ is constructed such that for any of its models J it
holds that J <CP I, and thus, checking KB ′ for unsatisfiability verifies minimality of I. By inclusion
axioms for minimised concepts Ã, condition 3 of Definition 1 is assured to hold for each model of KB ′.
Moreover, by the disjunctive concept assertion, condition 4 of Definition 1 is assured to hold, such
that any model of KB ′ is actually “smaller” than I in some minimised concept, which is achieved
by mapping the not uniquely named individual ι to one that already occurs in the extension of a
minimised concept. Although in general we assume unique names in the formalism, the replacement
of the new individual ι by the variable x within SKB ′ [ι/x] in condition (v) of Definition 6 allows ι to
be (indirectly) identified with some other individual.

We illustrate the detection of clashes in our calculus by means of an example.

Example 2. Consider the circumscribed knowledge base circCP(KB) with the following knowledge base
KB and circumscription pattern CP.

KB = { ¬Bears(BlueWhale) , EndangeredSpecies(BlueWhale) }

CP = (M = {EndangeredSpecies}, F = ∅, V = {Bears})

We perform our calculus to check whether the concept Bears ⊓ EndangeredSpecies is satisfiable with
respect to circCP(KB).

We start with the constraint system initialised as follows.

SKB ∪ {x : Bears ⊓ EndangeredSpecies} = { BlueWhale : ¬Bears ,
BlueWhale : EndangeredSpecies , x : Bears ⊓ EndangeredSpecies }

10

From the application of the −→⊓-rule and the non-deterministic −→<CP
-rule, the following two re-

sulting completions are produced.

S1 = { BlueWhale : ¬Bears , BlueWhale : EndangeredSpecies , BlueWhale : Bears }

S2 = { BlueWhale : ¬Bears , BlueWhale : EndangeredSpecies ,
ι0 : Bears , ι0 : EndangeredSpecies }

The completion S1 obviously contains an inconsistency clash, since it contains both the constraints
BlueWhale : Bears and BlueWhale : ¬Bears.

For the completion S2, we construct the knowledge base KB ′ according to Algorithm 1 as follows.

KB ′ = { ¬Bears(BlueWhale) , EndangeredSpecies(BlueWhale) ,
EndangeredSpecies ⊑ {BlueWhale , ι0} ,
¬EndangeredSpecies ⊓ {BlueWhale , ι0}(ι) }

To check whether the completion S2 contains a preference clash, we need to check if KB ′ has a model,
while the new individual ι is not uniquely named. In our calculus, this is done by trying to produce a
clash-free completion of the following respective constraint system.

SKB ′ [ι/x] = { BlueWhale : ¬Bears , BlueWhale : EndangeredSpecies ,
∀x.x : ¬EndangeredSpecies ⊔ {BlueWhale, ι0} ,
x : ¬EndangeredSpecies ⊓ {BlueWhale , ι0} }

The constraint system SKB ′ [ι/x] has the following completion S′, in which the new variable x has
been replaced by the individual ι0 that was introduced by the −→<CP

-rule in the completion process
for S2 before.

S′ = SKB ′ [ι/x] ∪ { ι0 : ¬EndangeredSpecies , ι0 : {BlueWhale, ι0} }

S′ does neither contain an inconsistency clash nor an individual clash, and thus, S2 contains a pref-
erence clash according to condition (v) of Definition 6. Since both S1 and S2 contain some clash, the
initial constraint system SKB ∪ {x : Bears ⊓ EndangeredSpecies} has no clash-free completion. Hence,
due to Proposition 2 the concept Bears⊓EndangeredSpecies is unsatisfiable with respect to circCP(KB).

In the description logic literature [5, 14, 3, 10], tableaux methods for sound and complete reasoning
have been proposed for various DL variants including ALCO. They detect inconsistencies in DL
knowledge bases by checking completions of constraint systems for the occurrence of a clash. For sake
of completeness, we include this result in our presentation in form of the following proposition.

Proposition 4 (ALCO correctness). Let KB be an ALCO knowledge base and S be the completion
of a constraint system that contains at least the constraints of SKB , with regard to any circumscription
pattern and KB. Then S has a solution if and only if it contains neither an inconsistency clash nor
an individual clash.

Proof.
⇒: Assume that (I, αI) is a solution for S, for some model I of KB and an I-assignment αI . We
show by contradiction that S does neither contain an inconsistency clash nor an individual clash.
–inconsistency clash:
Assume that S contains an inconsistency clash. Then, it contains either a constraint o : ⊥ or two
constraints {o : A, o : ¬A}, and I must satisfy αI(o) ∈ AI ∩ (∆I \ AI) = ∅. Hence, I cannot be a
model of KB , which contradicts S to contain an inconsistency clash.
–individual clash:
Assume that S contains an individual clash. Then, it contains either a constraint a : {a1, . . . , an} with
a 6= ai for all i ∈ {1, . . . , n} or a constraint a : ¬{a1, . . . , an} with a = ai for some i ∈ {1, . . . , n}.
In the first case I must satisfy αI(a) = aI = aI

i = αI(ai) for two distinct individuals a and ai,
which cannot be the case since we assumed unique names. In the second case I must satisfy αI(a) =
aI ∈ ∆I \ {. . . , aI , . . .}. In both cases, I cannot be a model of KB , which contradicts S to contain an
individual clash.

11

⇐: Let S neither contain an inconsistency clash nor an individual clash. We construct an interpretation
I = (∆I , ·I) from S with ∆I = N

S
I ∪{ιx | x ∈ N

S
V }, together with an I-assignment αI : N

S
I ∪N

S
V 7→ ∆I

that maps each variable x in S to a distinct individual ιx not occurring in S, i.e. αI(x) = ιx for x ∈ N
S
V .6

We define the interpretation function ·I such that an atomic concept A is interpreted as AI = {αI(o) |
o : A ∈ S} and a role r as rI = {(o1, o2) | (o1, o2) : r ∈ S or o1 is blocked by o3 with (o3, o2) : r ∈ S}.
We show that (I, αI) satisfies every constraint in S.

For any concept constraint o : C in S we show that αI(o) ∈ CI by induction on the structure
of C. As base cases, we consider concepts of the form A, ¬A and {a1, . . . , ak}, ¬{a1, . . . , ak}, as well
as roles. If o : A is in S then αI(o) ∈ AI by definition. If o : ¬A is in S then o : A is not in S,
since S does not contain an inconsistency clash, and thus αI(o) ∈ ∆I \ AI . If a : {a1, . . . , ak} is in
S then αI(a) ∈ {aI

1
, . . . , aI

k}, since S contains no individual clash; as the −→O-rule is not applicable,
x : {a1, . . . , ak} cannot be in S . If a : ¬{a1, . . . , ak} is in S then αI(a) 6∈ {aI

1
, . . . , aI

k} and thus
αI(a) ∈ ∆I \ {aI

1
, . . . , aI

k}, since S contains no individual clash, while if x : ¬{a1, . . . , ak} is in S
then αI(x) = ιx ∈ ∆I \ {aI

1
, . . . , aI

k} due to the unique name assumption. If (o1, o2) : r is in S then
(αIS (o1), α

IS (o2)) ∈ rI by definition. For the induction step, we subsequently consider the various
complex forms of concepts. Observe that none of the tableaux rules can be applied to S, as it is a
completion.

– If S contains o : C ⊓ D then it contains both o : C and o : D, since the −→⊓-rule cannot be
applied. From the induction hypothesis we know that S satisfies these two constraints, and thus,
both αI(o) ∈ CI and αI(o) ∈ CI hold. Hence, αI(o) ∈ (CI∩DI) = (C⊓D)I and (I, αI) satisfies
o : C ⊓ D.

– If S contains o : C ⊔ D then it contains either o : C or o : D, since the −→⊔-rule cannot be
applied. Without loss of generality, we can assume that S contains o : C. From the induction
hypothesis we know that (I, αI) satisfies o : C, i.e. αI(o) ∈ CI , and therefore we have that
αI(o) ∈ (CI ∪ DI) = (C ⊔ D)I and that (I, αI) satisfies o : C ⊔ D.

– If S contains o1 : ∃ r .C then, since the −→∃-rule cannot be applied, we have one of the following
two cases: a) S contains both (o1, o2) : r and o2 : C for some o2 ∈ N

S
I ∪ N

S
V , b) o1 is blocked

by some o3 ∈ N
S
I ∪ N

S
V . In case a) we know from the induction hypothesis that S satisfies these

two constraints, and thus, both (αI(o1), α
I(o2)) ∈ rI and αI(o2) ∈ CI hold. Hence, αI(o1) ∈

(∃ r .C)I and S satisfies o1 : ∃ r .C. In case b) we know from the subset blocking condition that
S contains the constraint o3 : ∃ r .C, since o1 is blocked by o3. As o3 cannot be blocked itself
(see [5, Lemma 3.5]) and S is complete, there are constraints (o3, o2) : r, o2 : C in S for some
o2 ∈ N

S
I ∪N

S
V . From the induction hypothesis we know that (I, αI) satisfies these constraints, and

thus, both (αI(o3), α
I(o2)) ∈ rI and αI(o2) ∈ CI hold. From the definition of ·I and the fact that

o1 is blocked by o3 it follows that (αI(o1), α
I(o2)) ∈ rI , and hence, (I, αI) satisfies o1 : ∃ r .C.

– If S contains o1 : ∀ r .C then it also contains o2 : C for every o2 ∈ N
S
I ∪ N

S
V with (o1, o2) : r ∈ S

, since the −→∀-rule cannot be applied. In case o1 is blocked by some o3 ∈ N
S
I ∪ N

S
V , S contains

constraints o2 : C for every o2 with (o3, o2) : r ∈ S, since it contains o3 : ∀ r .C due to the
subset blocking condition. By the definition of ·I and the fact that o3 cannot be blocked itself
(see [5, Lemma 3.5]), role instances r(αI(o1), α

I(o2)) can only be induced by the role constraints
(o1, o2) : r and (o3, o2) : r, and from the induction hypothesis we know that these are satisfied by
S together with the respective concept constraints o2 : C. Hence, we have that αI(o2) ∈ CI for
all role instances r(αI(o1), α

I(o2)) and S satisfies o1 : ∀ r .C.

By this, we have shown that (I, αI) satisfies every constraint in S and is therefore a solution for it. ⊓⊔

Based on this correspondence between clash-free completions and their solutions, we can establish
the correlation between solvability of constraint systems and the absence of preference clashes in their
completions, as the main result of this report by the following proposition.

Proposition 5 (circumscriptive ALCO correctness). Let KB be an ALCO knowledge base, CP be
a circumscription pattern and S be the completion of a constraint system that contains at least the
constraints of SKB , with regard to CP and KB. S is CP-solvable with respect to KB if and only if it
contains no inconsistency clash, no individual clash and no preference clash with respect to CP and
KB.

6 This construction is similar to the notion of a canonical interpretation as used in the literature such as [5]

12

Proof.
⇒: Assume that S is CP-solvable with respect to KB . According to Definition 4 there is a solution
(I, αI) for S, such that I is a model of KB and there is no model J of KB with J <CP I. From
Proposition 4, we know that S does neither contain an inconsistency clash nor an individual clash.
We show by contradiction that S does also not contain a preference clash.

Assume that S contains a preference clash with respect to CP and KB . Then, SKB ′ [ι/x] has a
completion S′ with regard to CP = (∅, ∅,M ∪ F ∪ V) and KB ′ that contains no inconsistency and
no individual clash, where the knowledge base KB ′ is constructed based on CP and KB according to
Algorithm 1. Observe that, by construction, KB ⊂ KB ′ and that ι is a new individual in KB ′ that
cannot occur in KB . Hence, we have that SKB ⊂ SKB ′ [ι/x] ⊆ S′. Proposition 4(⇐) implies that there
is a solution (J , αJ) for S′, since S′ is clash-free. Due to Lemma 2, and since SKB ⊆ S′, it follows that
J is a model of both KB ′ and KB . It remains to show that J <CP I, to contradict the containment of
a preference clash in S. Without loss of generality, we can assume that ∆I = ∆J and that aI = aJ for
all individuals a ∈ NI . We prove the following claims: a) ÃJ ⊆ ÃI for all Ã ∈ MKB , and b) ÃJ ⊂ ÃI

for some Ã ∈ MKB .

– a) Due to the inclusion axioms for minimised concepts inserted into KB ′ by Algorithm 1, and since
J is a model of KB ′, J has the property ÃJ ⊆ {αJ (a) | a : Ã ∈ S} for each Ã ∈ MKB . For every
Ã ∈ MKB , all the constraints a : Ã ∈ S are satisfied by (I, αI), i.e. αI(a) ∈ ÃI , and therefore
we have that {αI(a) | a : Ã ∈ S} ⊆ ÃI . Since αI and αJ coincide on individuals, it follows that
ÃJ ⊆ ÃI for all Ã ∈ MKB .

– b) By construction of KB ′, SKB ′ [ι/x] contains a constraint x :
⊔

Ã DÃ, and for one of the disjuncts

DÃ its completion S′ contains a constraint of the form x : {a1, . . . , an} ⊓ ¬Ã with ai : Ã ∈ S for
i = 1 . . . n. Since S′ is a completion to which none of the tableaux rules apply, the −→⊓- and the
−→O-rule have produced the constraints a : {a1, . . . , an} and a : ¬Ã in S′ in which the variable x
has been replaced by an individual a. As a solution for S′, (J , αJ) satisfies these two constraints
and we have that both αJ (a) ∈ (∆J \ ÃJ) and αJ (a) ∈ {αJ (a) | a : Ã ∈ S} hold. This implies
that αJ (a) 6∈ ÃJ and, since (I, αI) satisfies the constraint a : Ã, that αJ (x) = αI(a) ∈ ÃI . From
the arguments under b) we already know that ÃJ ⊆ ÃI , and since we have an element aI which
is in ÃI but not in ÃJ , it follows that ÃJ ⊂ ÃI .

⇐: Let S contain no clash. From Proposition 4 we know that there is a solution (I, αI) for S. We
show by contradiction that there is no model J of KB such that J <CP I.

Assume that there is a model J of KB with J <CP I. First we show that for some J -assignment
αJ , (J , αJ) is a solution for SKB ′ [ι/x], where the knowledge base KB ′ is constructed according to
Algorithm 1. Due to J <CP I we know that ∆J = ∆I and aJ = aI for all individuals a ∈ ∆I , and
that for some Ã ∈ MKB there is an element ιJ ∈ ∆J which is in ÃI but not in ÃJ . Let αJ

x,ι be a

J -assignment with αJ
x,ι(x) = ιJ . Since J is a model of KB , (J , αJ

x,ι) is a solution for SKB due to
Lemma 2. Moreover, as the individual ι is new to KB ′ and KB ⊂ KB ′ by construction of KB ′, the
replacement of ι by x does not affect any constraint in SKB and we have that SKB ⊂ SKB ′ [ι/x]. Hence,
it suffices to show that the constraints in SKB ′ [ι/x] \ SKB are satisfied by (J , αJ

x,ι). For this purpose,

we consider the axioms in KB ′ \ KB that are inserted into KB ′ by Algorithm 1, and that can be a)
concept inclusion axioms of the form Ã ⊑ {a1, . . . , an}, or b) the concept assertion axiom (

⊔
Ã DÃ)(ι)

with disjuncts DÃ of the form ¬Ã⊓ {a1, . . . , an}, for individuals {ai | ai : Ã ∈ S} with i ∈ {1, . . . , n}.

– a) For every Ã ∈ MKB , KB ′ contains an axiom Ã ⊑ {a1, . . . , an} with individuals ai that occur in
concept constraints of the form ai : Ã within S. Since S is a completion, in any constraint of the
form x : Ã the variable x has been replaced by an individual a ∈ N

S
I in S due to the −→<CP

-rule,

such that for any constraint o : Ã ∈ S we have that o = ai for some i ∈ {1, . . . , n}. Since I is
a solution for S, we have that ÃI ⊆ {αI(a1), . . . , α

I(an)} = {aI
1
, . . . , aI

n}. Since ÃJ ⊆ ÃI holds
by assumption, J satisfies ÃJ ⊆ {aI

1
, . . . , aI

n}, and thus, the axiom Ã ⊑ {a1, . . . , an} for every
Ã ∈ MKB . If there are no assertions Ã(ai) in KB ′ then ÃI = ∅ and the respective axiom has the
form Ã ⊑ ⊥. Hence, (J , αJ

x,ι) satisfies all the constraints ∀x.x : C that result from these inclusion
axioms in SKB ′ [ι/x].

– b) Furthermore, due to the concept assertion (
⊔

Ã DÃ)(ι) in KB ′, SKB ′ [ι/x] contains the constraint

x :
⊔

Ã DÃ with disjuncts DÃ of the form ¬Ã ⊓ {a1, . . . , an}. Since from b) we know that ÃI ⊆

13

{aI
1
, . . . , aI

n}, and since aI = aJ for all individuals a, we get that ÃI = {aJ
1

, . . . , aJ
n } ⊆ ∆J . As for

some Ã ∈ MKB the element ιJ is in ÃI but not in ÃJ , we have that αJ
x,ι(x) ∈ ÃI \ ÃJ , and thus,

αJ
x,ι(x) ∈ ({aJ

1
, . . . , aJ

k } \ ÃJ) = (∆J \ ÃJ) ∩ {αJ
x,ι(a1), . . . , α

J
x,ι(ak)}. Hence, the pair (J , αJ

x,ι)

satisfies the constraint x :
⊔

Ã DÃ for some Ã ∈ MKB with ÃJ ⊂ ÃI , as one of its disjuncts is
satisfied.

Having shown that (J , αJ
x,ι) is a solution for SKB ′ [ι/x], from Proposition 3(⇒) and from Propo-

sition 4(⇒) it follows that there is a clash-free completion of SKB ′ [ι/x]. Hence, S must contain a
preference clash, which contradicts the existence of J . ⊓⊔

3.4 Sound and Complete Reasoning in Circumscriptive ALCO

Finally, we can show that the presented calculus provides an effective procedure for reasoning with
circumscribed knowledge bases, by the following theorems.

Theorem 1 (soundness). Let KB be an ALCO knowledge base, CP a circumscription pattern and C
an ALCO concept. If the repeated application of the tableaux rules results in a clash-free completion
of the constraint system SKB ∪ {x : C} then C is satisfiable with respect to circCP(KB).

Proof. Let S be the clash-free completion of SKB ∪ {x : C} produced by the tableaux procedure. Due
to Proposition 5(⇐), S is CP-solvable with respect to KB , and due to Proposition 3(⇐), SKB ∪{x : C}
also is. Finally, due to Proposition 2(⇐), C is satisfiable with respect to circCP(KB). ⊓⊔

Theorem 2 (completeness). Let KB be an ALCO knowledge base, CP a circumscription pattern
and C an ALCO concept. If C is satisfiable with respect to circCP(KB) then some repeated application
of the tableaux rules results in a clash-free completion of the constraint system SKB ∪ {x : C}.

Proof. Let C be satisfiable with respect to circCP(KB). Due to Proposition 2(⇒), the constraint system
SKB ∪ {x : C} is CP-solvable with respect to KB , and due to Lemma 3 the tableaux procedure results
in a completion S′ of SKB ∪{x : C}. From Proposition 3(⇒), we know that S′ is also CP-solvable with
respect to KB . Finally, due to Proposition 5(⇒), S′ does not contain any clash. ⊓⊔

By Theorem 1 and Theorem 2, the proposed tableaux calculus is a sound and complete decision
procedure for ALCO with concept circumscription.

4 Conclusion

We have presented a tableaux calculus for concept satisfiability with respect to circumscribed DL
knowledge bases in the logic ALCO. Building on tableaux procedures for classical DLs, the calculus
checks a constraint system not only for clashes due to inconsistent concept assertion and individual
naming, but also for preference clashes, which occur whenever the model associated with the constraint
system is not minimal with respect to the preference relation <CP. This check is performed by testing
a specifically constructed classical ALCO knowledge base for satisfiability, which requires reasoning
in classical DL with nominals and equality between individuals.

We have proved that the presented calculus is a decision procedure for concept satisfiability in
circumscriptive ALCO, to which other reasoning tasks can be reduced. By this we have devised a first
practical algorithmisation for description logic with circumscription that integrates well with state of
the art tableaux methods for DL reasoning. This lays a basis for further investigations on optimisation
of the calculus within the framework of tableaux procedures as a guided way for model construction.
We have implemented a first prototype7 of the calculus in Java that works together with ontology
development tools, such as Protégé8, via the DIG9 interface. Notice also that our algorithm does not
behave worse than the theoretical worst-case complexity, which was shown to be NExpNP-complete
in [4]. In our case, the call to the oracle corresponds to the calls to an ALCO-reasoner for checking

7 Available at http://www.fzi.de/downloads/wim/sgr/CircDL.zip .
8 http://protege.stanford.edu/
9 http://dl.kr.org/dig/interface.html

14

the preference clash, which is Exp-complete and thus as good as possible, since Exp is not known to
be different from NP.

As future work we see the update of the calculus to support more expressive features, such as
prioritisation between minimised concepts or the remaining constructs of the Web Ontology Language
OWL [13] and its latest version OWL 1.1.10 Moreover, optimisation issues need to be addressed
to obtain a more efficient reasoning procedure. First ideas for specific optimisations would be to
employ model caching techniques for the inner classical tableaux step as KB ′ might be identical in
multiple cases, to postpone assertions of individuals to minimised predicates to avoid constructing non-
minimal models, and to exploit early closing of tableaux branches through preference clash detection.
Besides these, it would be interesting to see how well preferential tableaux performs when included
in optimised state-of-the-art DL reasoners. Furthermore, as an open line for research it remains to
develop a methodology for the formulation of appropriate circumscription patterns in various cases of
non-monotonic reasoning, as pointed out in [4].

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The Description
Logic Handbook. Cambridge University Press, January 2003.

2. F. Baader and B. Hollunder. Embedding Defaults into Terminological Knowledge Representation For-
malisms. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and
Reasoning: Proc. of the Third International Conference (KR’92), pages 306–317. Kaufmann, San Mateo,
CA, 1992.

3. F. Baader and U. Sattler. Tableau Algorithms for Description Logics. In R. Dyckhoff, editor, Proceedings
of the International Conference on Automated Reasoning with Tableaux and Related Methods (Tableaux
2000), volume 1847 of Lecture Notes in Artificial Intelligence, pages 1–18, St Andrews, Scotland, UK,
2000. Springer-Verlag.

4. P. Bonatti, C. Lutz, and F. Wolter. Expressive Non-Monotonic Description Logics Based on Circum-
scription. In Patrick Doherty, John Mylopoulos, and Christopher Welty, editors, Proceedings of the Tenth
International Conference on Principles of Knowledge Representation and Reasoning (KR’06), pages 400–
410. AAAI Press, 2006.

5. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable Reasoning in Terminological Knowledge Represen-
tation Systems. J. Artif. Intell. Res. (JAIR), 1:109–138, 1993.

6. J. de Kleer and K. Konolige. Eliminating the Fixed Predicates from a Circumscription. Artif. Intell.,
39(3):391–398, 1989.

7. F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An Epistemic Operator for Description
Logics. Artificial Intelligence, 100(1-2):225–274, 1998.

8. F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge and Negation as Failure.
ACM Transactions on Computational Logic, 3(2):177–225, 2002.

9. S. Grimm and P. Hitzler. Semantic Matchmaking of Resources with Local Closed-World Reasoning. Int.
Journal of eCommerce (IJEC), 12(2):89–126, 2008.

10. J. Hladik and J. Model. Tableau Systems for SHIO and SHIQ. In V. Haarslev and R. Möller, editors,
Proceedings of the 2004 International Workshop on Description Logics (DL 2004). CEUR, 2004. Available
from ceur-ws.org.

11. J. McCarthy. Circumscription – A Form of Non-Monotonic Reasoning. Artificial Intelligence, 13(1–2):27–
39, 1980.

12. I. Niemelä. Implementing Circumscription Using a Tableau Method. In Proc. of the 12th Europ. Conf.
on Artificial Intelligence (ECAI’96). J. Wiley & Sons, 1996.

13. P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language; Semantics and Abstract
Syntax. http://www.w3.org/TR/owl-semantics/, November 2002.

14. A. Schaerf. Reasoning with Individuals in Concept Languages. Data Knowl. Eng., 13(2):141–176, 1994.
15. M. Schmidt-Schauß; and G. Smolka. Attributive Concept Descriptions with Complements. Artif. Intell.,

48(1):1–26, 1991.

10 http://owl1 1.cs.manchester.ac.uk/

15

