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Abstract. We investigate the concept product as an expressive feature for de-
scription logics (DLs). While this construct allows us to express an arguably very
common and natural type of statement, it can be simulated only by the very ex-
pressive DL SROIQ for which no tight worst-case complexity is known. How-
ever, we show that concept products can also be added to the DLs SHOIQ and
SHOI, and to the tractable DL EL++ without increasing the worst-case com-
plexities in any of those cases. We therefore argue that concept products provide
practically relevant expressivity at little cost, making them a good candidate for
future extensions of the DL-based ontology language OWL.

1 Introduction

The development of description logics (DLs) has been driven by the desire to push the
expressivity bounds of these knowledge representation formalisms while still maintain-
ing decidability and implementability. This has lead to very expressive DLs such as
SHOIN , the logic underlying the Web Ontology Language OWL DL, SHOIQ, and
SROIQ [1] which is the basis for the ongoing standardisation of OWL 21 as the next
version of the Web Ontology Language. On the other hand, more light-weight DLs for
which most common reasoning problems can be implemented in (sub)polynomial time
have also been sought, leading, e.g., to the tractable DL EL++ [2].

In this work, we continue these lines of research by investigating an expressive
feature – the concept product – in the context of various well-known DLs, showing that
this added expressivity does not increase worst-case complexities in any of these cases.
Intuitively, the concept product – hitherto sporadically described (e.g. in [3] or [4]) but
neglected by mainstream DL research and OWL standardisation efforts – allows us to
define a role that connects every instance in one class with every instance in another
class. An example is given in the title: Given the class of all elephants, and the class of
all mice, we wish to specify a DL knowledge base that allows us to conclude that any
individual elephant is bigger than any individual mouse, or, stated more formally:

∀(x).∀y.Elephant(x) ∧Mouse(y)→ biggerThan(x, y)

Using common DL syntax, one could also write ElephantI ×MouseI ⊆ biggerThanI,
which explains the name “concept product” and will also motivate our DL syntax.
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Maybe surprisingly, this semantic relationship cannot be specified in any but the
most expressive DLs today (except for not that widely known DLs that allow for role
negation, cf. [5, 6]). Using quantifiers, one can only state that any elephant is bigger
than some mouse, or that elephants are bigger than nothing but mice. Nominals also
allow us to state that some particular elephant is bigger than all mice, and with DL-safe
rules [7], one might say that all named elephants are bigger than all named mice. Yet,
none of these formalisations captures the true intention of the informal statement.

Now one could hope that this kind of statement would be rarely needed in practical
applications, but in fact it represents a very common modelling problem of relating
two individuals based on their (inferred) properties. Natural and life sciences provide a
wealth of typical examples, for example:

– Alkaline solutions neutralise acid solutions.
– Antihistamines alleviate allergies.
– Oppositely charged bodies attract each other.

Reasoning about such relations is important e.g. in the context of the HALO project2,
which sets out to develop reasoning systems for solving complex examination questions
from physics, biology, and chemistry. Qualitative reasoning about a given scenario is
often required before any concrete arithmetic processing steps can be invoked.

Another particularly interesting example is the task of developing a knowledge base
capturing our current insights about DL complexities and available reasoning imple-
mentations. It should entail statements like

– Any reasoner that can handle SHIQ can deal with every DLP-ontology.
– Any problem within ET can be polynomially reduced to any ET-complete

problem.
– In any description logic containing nominals, inverses and number restrictions, sat-

isfiability checking is hard for any complexity below or equal ET.

All of those can easily be cast into concept products. An interesting aspect of reasoning
about complexities is that it involves upper and lower bounds, and thus also escapes
from most other modelling attempts (e.g. using classes instead of instances to represent
concrete DLs). This might be a reason that the DL complexity navigator3 is based on
JavaScript rather than on more advanced DL knowledge representation technologies.

In this paper, we show that it is in fact not so difficult to extend a broad array of
existing description logics with enough additional modelling power to capture all of
the above, while still retaining their known upper complexity bounds. We start with the
short preliminary Section 2 to recall the definition of the DL SROIQ, and then proceed
by introducing the concept product formally in Section 3. Concept products there can
indeed be simulated by existing constructs and thus are recognised as syntactic sugar.
This is quite different for the tractable DL EL++ investigated in Section 4. Yet, we
will see that polynomial reasoning in EL++ with concept products is possible, thus
further pushing the EL envelope. In the subsequent Section 5, we show that SHOIQ

2 http://www.projecthalo.com/
3 http://www.cs.man.ac.uk/~ezolin/dl/



Table 1. Semantics of concept constructors in SROIQ for an interpretation I with domain ∆I.

Name Syntax Semantics
inverse role R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}
universal role U ∆I × ∆I

top > ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

nominals {a} {aI}
univ. restriction ∀R.C {x ∈ ∆I | 〈x, y〉 ∈ RI implies y ∈ CI}
exist. restriction ∃R.C {x ∈ ∆I | for some y ∈ ∆I , 〈x, y〉 ∈ RI and y ∈ CI}
qualified number ≤n S .C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ S I and y ∈ CI} ≤ n}
restriction ≥n S .C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ S I and y ∈ CI} ≥ n}

and SHOI with concept products are still NET-complete and ET-complete,
respectively, thus obtaining tight complexity bounds for a very expressive DL as well.
We omit most formal details for reasons of space – all proofs and extended definitions
are found in [8].

2 Preliminaries: the DL SROIQ

In this section, we recall the definition of the expressive description logic SROIQ [1].
We assume that the reader is familiar with description logics [9]. As usual, the DLs
considered in this paper are based on three disjoint finite sets of individual names NI ,
concept names NC , and role names NR containing the universal role U ∈ NR.

Definition 1. A SROIQ Rbox for NR is based on a set R of atomic roles defined as
R B NR ∪ {R− | R ∈ NR}. As usual, we set Inv(R) B R− and Inv(R−) B R.

A generalised role inclusion axiom (RIA) is a statement of the form S 1◦ . . .◦S n v R,
and a set of such RIAs is a SROIQ Rbox. An Rbox is regular if there is a strict partial
order ≺ on R such that S ≺ R iff Inv(S ) ≺ R, and every RIA is of one of the forms:
R◦R v R, R− v R, S 1 ◦ . . .◦S n v R, R◦S 1 ◦ . . .◦S n v R, S 1 ◦ . . .◦S n ◦R v R
such that R ∈ NR is a (non-inverse) role name, and S i ≺ R for i = 1, . . . , n. The set of
simple roles for some Rbox is defined inductively as follows:

– If a role R occurs only on the right-hand-side of RIAs of the form S v R such that
S is simple, then R is also simple.

– The inverse of a simple role is simple.

A SROIQ Tbox consists of concept inclusion axioms of the form C v D where C
and D are concept expressions based on the constructors shown in Table 1. As all DLs
in considered this paper support nominals, we do not explicitly need to introduce Abox
axioms, which can be internalised into the Tbox in the standard way [1]. A SROIQ
knowledge base thus is assumed to be the union of an Rbox and an according Tbox.



Further details on SROIQ can be found in [1]. We have omitted here several semantic
features that are not relevant to our study, especially various forms of role assertions.

An interpretation I consists of a set ∆I called domain (the elements of it being
called individuals) together with a function ·I mapping individual names to elements of
∆I, concept names to subsets of ∆I, and role names to subsets of ∆I ×∆I. The function
·I is inductively extended to role and concept expressions as shown in Table 1. An
interpretation I satisfies an axiom ϕ if we find that I |= ϕ:

– I |= S v R if S I ⊆ RI,
– I |= S 1 ◦ . . . ◦ S n v R if S I1 ◦ . . . ◦ S In v RI (◦ being overloaded to denote the

standard composition of binary relations here),
– I |= C v D if CI ⊆ DI.

An interpretation I satisfies a knowledge base KB (we then say that I is a model
of KB and write I |= KB) if it satisfies all axioms of KB. A knowledge base KB is
satisfiable if it has a model. Two knowledge bases are equivalent if they have exactly the
same models, and they are equisatisfiable if both are unsatisfiable or both are satisfiable.

3 Simulating Concept Products in SROIQ

We now formally introduce the DL concept product as a new constructor in description
logic knowledge bases. The DL SROIQ extended with this constructor will be denoted
SROIQ

×. It will turn out that concept products appear as syntactic sugar in SROIQ×

since they can be represented by combining nominals, inverse roles, and complex role
inclusion axioms.

Definition 2. A concept product inclusion is a statement of the form C × D v R where
C,D ∈ C are SROIQ concepts, and R is an atomic SROIQ role.

A SROIQ× Rbox is the union of a SROIQ Rbox with a set of concept product
inclusions based on roles and concepts for that Rbox. Simplicity of roles is defined as
in SROIQ where concept product axioms are considered as additional kinds of RIAs.
Especially, any role R occurring in such a statement is not simple in SROIQ×.

A SROIQ× knowledge base KB is the union of a SROIQ× Rbox R and a SROIQ
Tbox T (for R).

The model theoretic semantics of SROIQ is extended to SROIQ× by setting I |=
C × D v R iff CI × DI ⊆ RIfor any interpretation I.

We immediately observe that × generalises the universal role which can now be
defined by the axiom >×> v U. However, our extension of the notion of simplicity of
roles would then cause U to become non-simple, which is not needed. We conjecture
that one can generally consider the concept product to have no impact on simplicity
of roles, but our below approach of simulating concept products in SROIQ requires
us to impose that restriction. We leave it to future work to conceive a modified tableau
procedure for SROIQ× that directly takes concept products into account – our results
for SHOIQ× show that such an extended simplicity would not impose problems there.

Lemma 3. Consider aSROIQ× knowledge base KB with some concept product axiom
C × D v R. A knowledge base KB′ that is equisatisfiable to KB is obtained as follows:



– delete the Rbox axiom C × D v R,
– add a new RIA R1 ◦ R2 v R, where R1, R2 are fresh role names,
– introduce fresh nominal {a}, and add Tbox axioms C v ∃R1.{a} and D v ∃R−2 .{a}.

Clearly, the elimination step from the above lemma can be applied recursively to
eliminate all concept products. A simple induction thus yields the following result:

Proposition 4. EverySROIQ× KB can be reduced to an equisatisfiableSROIQKB in
polynomial time. In particular, satisfiability of SROIQ× knowledge bases is decidable.

Decidability of SROIQ was shown in [1]. Since SROIQ is already NET-
hard, this also suffices to conclude that the (currently unknown) worst-case complexities
of SROIQ× and SROIQ coincide.

4 Polynomial Reasoning with Concept Products in EL++

In this section, we investigate the use of concepts products in the DL EL++ [2], for
which many typical inference problems can be solved in polynomial time. EL++ cannot
simulate concept products as it does support nominals and RIAs, but no inverse roles.
While it is known that the addition of inverses makes satisfiability checking ET-
complete [10], we show that sound and complete reasoning with the concept product is
still tractable. We simplify our presentation by omitting concrete domains from EL++

– they are not affected by our extension and can be treated as shown in [2] – and by
considering only EL++× knowledge bases that are in a simplified normal form – the
normal form transformation for the general case is detailed in [8].

Definition 5. An EL++× knowledge base KB in normal form is a set of axioms of the
following forms:

A v C A u B v C R v T A × B v T
∃R.A v B A v ∃R.B R ◦ S v T

where A, B ∈ NC ∪ {{a} | a ∈ NI} ∪ {>}, C ∈ NC ∪ {{a} | a ∈ NI} ∪ {⊥}, and R, S ,T ∈ NR.

A polynomial algorithm for checking class subsumptions in EL++ has been given
in [2], and it was shown that other standard inference problems can be reduced to that
problem. We now present a modified algorithm for EL++× – also using some modi-
fied notation – and show its correctness for this extended DL. The algorithm checks
whether a subsumption A v B between concept names is entailed by some normalised
EL++× knowledge base KB. To this end, it computes a set S of inclusion axioms that
are entailed by KB, where we only need to consider axioms of the forms C v D and
C v ∃R.D, where C,D are elements of the set B B NC ∪ {{a} | a ∈ NI} ∪ {>,⊥}.

The set S is initialised by setting S B {C v C | C ∈ B}∪ {C v > | C ∈ B}. Then the
rules in Table 2 are applied until no possible rule application further modifies S. The
rules refer to a binary relation{ ⊆ B × B that is defined based on the current content
of S. Namely, C { D holds whenever there are C1, . . . ,Ck ∈ B such that

– C1 is equal to one of the following: C, >, {a} (for some individual a ∈ NI), or A
(where the subsumption A v B is to be checked),



Table 2. Completion rules for reasoning in EL++×. Symbols C, D, possibly with subscripts or
primes, denote elements of B, whereas E might be any element of B ∪ {∃R.C | C ∈ B}.

(R1) If D v E ∈ KB and C v D ∈ S then S B S ∪ {C v E}.
(R2) If C1 uC2 v D ∈ KB and {C v C1,C v C2} ⊆ S then S B S ∪ {C v D}.
(R3) If ∃R.C v D ∈ KB and {C1 v ∃R.C2,C2 v C} ⊆ S then S B S ∪ {C1 v D}.
(R4) If {C v ∃R.D,D v ⊥} ⊆ S then S B S ∪ {C v ⊥}.
(R5) If {C v {a},D v {a},D v E} ⊆ S and C { D then S B S ∪ {C v E}.
(R6) If R v S ∈ KB and C v ∃R.D ∈ S then S B S ∪ {C v ∃S .D}.
(R7) If R ◦ S v T ∈ KB and {C1 v ∃R.C2,C2 v ∃S .C3} ⊆ S then S B S ∪ {C1 v ∃T.C3}.
(R8) If C × D v R ∈ KB, D′ v D ∈ S, and C { D′ then S B S ∪ {C v ∃R.D′}.

– Ci v ∃R.Ci+1 ∈ S for some R ∈ NR (i = 1, . . . , k − 1), and
– Ck = D.

Intuitively, C { D states that D cannot be interpreted as the empty set if we assume
that C contains some element. The option C1 = A reflects the fact that we can base
our conclusions on the assumption that A is not equivalent to ⊥ – if it is, the queried
subsumption holds immediately, so we do not need to check this case.4

After terminating with the saturated set S, the algorithm confirms the subsumption
A v B iff one of the following conditions hold:

A v B ∈ S or A v ⊥ ∈ S or {a} v ⊥ ∈ S (for some a ∈ NI) or > v ⊥ ∈ S.
It can indeed be shown that the algorithm is correct, and that it runs in polynomial

time. For reasons of space, we include only the completeness proof into this paper.

Lemma 6. Let S be the saturated set obtained by the subsumption checking algorithm
for a normalised EL++× knowledge base KB and some queried subsumption A v B. If
KB |= A v B then one of the following holds:

A v B ∈ S or A v ⊥ ∈ S or {a} v ⊥ ∈ S (for some a ∈ NI) or > v ⊥ ∈ S.

Proof. We show the contrapositive: if none of the given conditions hold, then there
is a model I for KB within which the subsumption A v B does not hold. The proof
proceeds by constructing this model. The domain ∆I of I is chosen to contain only one
characteristic individual for all classes of KB that are necessarily non-empty, factorised
to take inferred equalities into account. To this end, we first define a set of concept
expressions B− B {C ∈ B | A { C}. A binary relation ∼ on B− that will serve us to
represent inferred equalities is defined as follows: C ∼ D iff C = D or {C v {a},D v
{a}} ⊆ S for some a ∈ NI .

We will see below that ∼ is an equivalence relation on B−. Reflexivity and symmetry
are obvious. For transitivity, we first show that elements related by ∼ are subject to the
same assertions in S. Thus consider C,C′ ∈ B− such that C ∼ C′. We claim that, for all
concept expressions E, we find that C v E ∈ S implies C′ v E ∈ S (Claim ∗). Assume
C , C′ and {C v {a},C′ v {a}} ⊆ S – the other case is trivial. But by our definition of
B−, we find that C { C′, and hence rule (R5) is applicable and establishes the required

4 This case is actually missing in [2], and it needs to be added to obtain a complete algorithm.



result. This also yields transitivity of ∼, since {C1 v {a},C2 v {a}} ⊆ S and C2 ∼ C3
implies C3 v {a} ∈ S and thus C1 ∼ C3. We use [C] to denote the equivalence class of
C ∈ B− w.r.t. ∼. These observations allow us to make the following definition of I:

∆I B {[C] | C ∈ B−} CI B {[D] ∈ ∆I | D v C ∈ S} for C ∈ NC

aI B [{a}] for a ∈ NI RI B {〈[C], [D]〉 ∈ ∆I × ∆I | C v ∃R.D ∈ S} for R ∈ NR.

Note that NI was assumed to be fixed and finite, and that all {a} ∈ B− for all a ∈
NI such that [{a}] is well-defined. Roles and concepts not involved in B− or S are
automatically interpreted as the empty set by the above definition. The definitions of
CI and RI are well-defined due to (∗) above.

We can now observe the following desired correspondence between I and S: For
any C,D ∈ B−, we find that [C] ∈ DI iff C v D ∈ S (Claim †). We distinguish various
cases based on the structure of D:

– D = ⊥. We can conclude [C] < ⊥I and C v ⊥ < S by noting that, for any
E ∈ B− we have that E v ⊥ < S. To see that, suppose the contrary. By A { E
there is a chain C1, . . . ,Ck ∈ B as in the definition of{ such that Ck = E. Using
Ck−1 v ∃R.E ∈ S and rule (R4), we conclude that Ck−1 v ⊥ ∈ S. Applying this
reasoning inductively, we obtain C1 v ⊥ ∈ S. But as C1 is of the form A, {a}, or >,
this contradicts our initial assumptions.

– D = >. By the initialisation of S, C v > ∈ S and also [C] ∈ >I.
– D ∈ NC . This case follows directly from the definition of I.
– D = {a} for some a ∈ NI . If [C] ∈ {a}I then [C] = [{a}], and hence C ∼ {a}. Since
{a} v {a} ∈ S, we obtain C v {a} ∈ S from (∗). Conversely, if C v {a} ∈ S, then
C ∼ {a} and hence {[C]} = {[{a}]} = {a}I as required.

It is easy to see that I 6|= A v B: since A ∈ B−, we find that [A] ∈ AI due to
A v A ∈ S by the initialisation of the algorithm. But since A v B < S, we have that
[A] < BI based on (†).

Finally, it only remains to show that I is indeed a model of KB. We argue that each
axiom of KB is satisfied by I by considering the possible normal forms:

– D v E with E ∈ B∪{∃R.E′ | E′ ∈ B}. If [C] ∈ DI, then C v D ∈ S by (†) and thus
rule (R1) can be applied to yield C v E. If E ∈ B, the claim follows from (†). For
E = ∃R.E′, we conclude that C { E′ and thus E′ ∈ B−. By definition of RI, we
find 〈[C], [E′]〉 ∈ RI, and since E′ v E′ ∈ S we can invoke (†) to obtain [E′] ∈ E′I

as required.
– C1 u C2 v D. This case is treated similar to the above case, using rule (R2) and

treating only the (simpler) case where D ∈ B.
– ∃R.D v E. If [C] ∈ ∃R.DI then 〈[C], [D′]〉 ∈ RI for some [D′] ∈ DI. By the

definition of RI and (∗), there is some D′′ ∈ [D′] such that C v ∃R.D′′ ∈ S. Since
D′′ ∈ B and [D′′] = [D′] ∈ DI, we can conclude D′′ v D ∈ S from (†). Thus rule
(R3) implies that C v E, and we obtain [C] ∈ EI by invoking (†).

– R v S . If 〈[C], [D]〉 ∈ RI then there is C v ∃R.D′ ∈ S with [D′] = [D]. Rule (R6)
thus entailed C v ∃S .D′ ∈ S, which yields 〈[C], [D]〉 ∈ S I by definition of S I.

– R ◦ S v T . This case is treated like the previous case, using (R7) instead of (R6).



– C × D v R. If [C′] ∈ CI and [D′] ∈ DI, then (†) yields {C′ v C,D′ v D} ⊆ S.
Since D′ ∈ B−, we have A{ D′ which clearly implies C { D′ by definition of{.
Hence rule (R8) was applied to yield C v ∃R.D′ ∈ S and by (R1) we also obtain
C′ v ∃R.D′ ∈ S. Now 〈[C′], [D′]〉 ∈ RI follows from the definition of RI. ut

Theorem 7. The problem of checking concept subsumptions in EL++× is P-complete.

Finally, one might ask how concept products affect other reasoning tasks, such as
conjunctive query answering in EL++×. As we have extended the original EL++ algo-
rithm in a rather natural way, we expect that the automata-based algorithm for conjunc-
tive query answering that was presented in [11] can readily be modified to cover EL++×,
so that the same complexity results for conjunctive querying could be obtained.

5 The Concept Product in SHOIQ and SHOI

Below, we investigate the use of concept products in SHOIQ, the description logic
underlying OWL DL. Since SHOIQ does not support generalised role inclusion ax-
ioms, concept products can not be simulated by means of other axioms. Yet, we will see
below that the addition of concept products does not increase the worst-case complexity
of SHOIQ which is still NET even for binary encoding of numbers. The proof
also shows that roles occurring in concept product inclusions can still be considered
simple without impairing this result. Finally, we will take a brief look at the DL SHOI
which is obtained from SHOIQ by disallowing number restrictions, and for which sat-
isfiability checking is only ET-complete. Again, we find that the addition of the
concept product to SHOI does not increase this worst-case complexity.

Definition 8. A SROIQ× knowledge base KB is in SHOIQ× if

– all Rbox axioms of KB are of the form S v R, R ◦ R v R, or C × D v R for R ∈ NR

a role name, S ∈ R an atomic role, and C,D ∈ C concept expressions,
– KB does not contain the universal role U or expressions of the form ∃R.Self.

For a fixed knowledge base KB, v∗ is the smallest binary relation on R such that:

– R v∗ R for every atomic role R,
– R v∗ S and Inv(R) v∗ Inv(S ) for every Rbox axiom R v S , and
– R v∗ T whenever R v∗ S and S v∗ T.

Given an atomic role R, we write Trans(R) ∈ KB as an abbreviation for: R◦R v R ∈ KB
or Inv(R) ◦ Inv(R) v Inv(R) ∈ KB.

Whenever R v∗ S and S v∗ R, the roles R and S are interpreted identically in any
model of KB. One could thus syntactically substitute one of them by the other, which
allows us to assume that all knowledge bases considered below have an acyclic Rbox.
Moreover, we assume that for all concept product inclusions A × B v R, both A and B
are atomic concepts. Obviously, this restriction does not affect expressivity, as complex
concepts in such axioms can be moved into the Tbox. Given a knowledge base KB, we
obtain its negation normal form NNF(KB) in the usual way. In particular, every GCI
C v D is transformed into a universally valid concept NNF(¬C t D). Furthermore, it is
possible to eliminate transitivity axioms using an according transformation in [7]:



Table 3. Transformation fromALCHOIQ× to C2. X is a meta-variable for representing various
term symbols in the final translation. The transformations πy are assumed to be analogous to the
given transformations for πx.

π(C v D) B ∀x.πy(¬C t D, x) π(R v S ) B ∀x.∀y.(¬R(x, y) ∨ S (x, y))
π(C × D v R) B ∀x.∀y.(¬C(x) ∨ ¬D(y) ∨ R(x, y)) π(KB) B

∧
ϕ∈KB π(ϕ)

πx(>, X) B > πx(A, X) B A(X) for any A ∈ NC

πx(⊥, X) B ⊥ πx({a}, X) B a ≈ X for any a ∈ NI

πx(¬C, X) B ¬πx(C, X) πx(C u D, X) B πx(C, X) ∧ πx(D, X)
πx(C t D, X) B πx(C, X) ∨ πx(D, X) πx(∀R.C, X) B ∀x.(R(X, x)→ πy(C, x))
πx(∃R.C, X) B ∃x.(R(X, x) ∧ πy(C, x)) πx(≥n R.C, X) B ∃≥n x.(R(X, x) ∧ πy(C, x))
πx(≤n R.C, X) B ∃≤n x.(R(X, x)→ πy(C, x))

Definition 9. Given a SHOIQ×knowledge base KB, let clos(KB) denote the smallest
set of concept expressions where

– NNF(¬C t D) ∈ clos(KB) for any Tbox axiom C v D,
– D ∈ clos(KB) for every subexpression D of some concept C ∈ clos(KB),
– NNF(¬C) ∈ clos(KB) for any ≤n R.C ∈ clos(KB),
– ∀S .C ∈ clos(KB) if Trans(S ) ∈ KB and S v∗ R for a role R with ∀R.C ∈ clos(KB).

Moreover, let Ω(KB) denote the knowledge base obtained from KB by removing all
transitivity axioms R ◦ R v R, and adding the axiom ∀R.C v ∀S .(∀S .C) for every
∀R.C ∈ clos(KB) with Trans(S ) ∈ KB and S v∗ R.

Slightly generalising according results from [7], one can show that any SHOIQ×

knowledge base KB is equisatisfiable to the ALCHOIQ× knowledge base Ω(KB).
Therefore, we can reduce satisfiability checking in SHOIQ× to satisfiability checking
in ALCHOIQ×. Following a widely known approach taken in e.g. in [3] or more
recently in [12], we can decide the latter problem by a reduction to C2, the two-variable
fragment of first-order logic with counting quantifiers for which this problem has been
shown to be NET-complete, even for binary coding of numbers [13]. Intuitively,
C2 admits all formulae of function-free first-order logic that contain at most two variable
symbols, and which may also use the counting quantifiers ∃≤n, ∃≥n, and ∃=n for any
n > 0. Such quantifiers impose the obvious restrictions on the number of individuals
satisfying the quantified formula. Moreover, binary equality ≈ can be defined from those
constructs. For formal details, see [13].

We transform ALCHOIQ× knowledge bases into C2 by means of the recursive
functions in Table 3, only slightly modifying the standard DL to FOL transformation
given e.g. in [7], where further explanations can be found. Omitting the standard proof
that π(KB) is indeed equisatisfiable to KB (cf. [7]), we obtain the following result:

Theorem 10. The problem of checking knowledge base satisfiability for SHOIQ× is
NET-complete, even for binary encoding of numbers.

SHOI
× is defined as the fragment of SHOIQ× without number restrictions. Ob-

viously, transitivity can be eliminated as in the case of SHOIQ×, hence we only need



to consider the problem of checking satisfiability ofALCHOI× KBs. We now further
reduce anALCHOI× KB to an equisatisfiableALCHOI KB in polynomial time. In
addition to the standard negation normal form, we now require another normalisation
step that simplifies the structure of KB by flattening it to a knowledge base FLAT(KB).
This is achieved by transforming KB into negation normal form and exhaustively apply-
ing the following transformation rule: Select an outermost occurrence of QR.D in KB,
such that Q∈ {∃,∀} and D is a non-atomic concept and substitute this occurrence with

QR.F where F is a fresh concept name, moreover, add ¬F t D to the knowledge base.
Obviously, this procedure terminates in polynomial time yielding a flat knowledge base
FLAT(KB) all Tbox axioms of which are Boolean expressions over formulae of the form
>, ⊥, A, ¬A, or QR.A with A an atomic concept name. Moreover, one can show that any
ALCHOI

× knowledge base KB is equisatisfiable to FLAT(KB). Next we show how to
eliminate concept products from such a knowledge base.

Lemma 11. Consider a flattenedALCHOI× knowledge base KB. Let C×D v R with
C,D ∈ NC be some concept product axiom contained in KB. Then a knowledge base
KB′ that is equisatisfiable to KB is obtained as follows:

– delete the Rbox axiom C × D v R,
– add C v ∃S 1.{o} and D v ∃S 2.{o} where S 1, S 2 are fresh roles and o is a fresh

individual name
– for all roles T with R v∗ T,substitute any occurrence of ∀T.A by ∀T.Au∀S 1.∀S −2 .A

Applied iteratively, this step eliminates all concept products. Having a flat knowl-
edge base is essential to ensure that this can be done in polynomial time. Based on the
known ET-completeness of SHOI [14], we now obtain the following result:

Theorem 12. The satisfiability checking problem for SHOI× is ET-complete.

6 Conclusion

We have investigated the concept product as an expressive feature for description log-
ics. It allows statements of the form C × D v R, expressing that all instances of the
class C are related to all instances of D by the role R. While this construct can be sim-
ulated in SROIQ with a combination of inverse roles, nominals, and role inclusion
axioms, we have shown that it can also be added to many weaker DLs that do not sup-
port such simulation. In particular, each of the extended DLs EL++×, SHOIQ×, and
SHOI

×preserves its known upper complexity bound P, NET, and ET. For
the tractable logic EL++×, we also provided a detailed algorithm that might serve as a
basis for extending existing EL++ implementations with that new feature.

Our results indicate that concept products, even though they are hitherto only avail-
able in SROIQ, do in fact not have a strong negative impact on the difficulty of rea-
soning in simpler DLs. In contrast, the features used to simulate concept products in
SROIQ may have much more negative impact in general. Inverse roles, for example,
are known to render EL++ ET-complete [10]. Since concept products provide a
valuable modelling tool that can be applied in many scenarios, they appear as a nat-
ural candidate for future extensions of the DL-based Web Ontology Language OWL,
possibly even in the ongoing OWL 2 effort.



Our results also entail a number of research questions for future works. First of
all, one might ask what other features available (indirectly) in SROIQ could be easily
ported back to less complex DLs. We are currently investigating a broad generalisation
of concept products that appears to be rather promising in this respect.

But also the study of concept products as such bears various open problems. As
remarked in Section 3, the simulation of concept products in SROIQ causes roles to be
classified as non-simple. Yet, their use in number restrictions merely provides an alter-
native way of describing nominals, so that it might be conjectured that this restriction
could be relaxed. Other obvious next steps are the investigation of concept products
for SHIQ and SHOQ, the direct treatment of concept products in further reasoning
algorithms, and the possible augmentation of other popular tractable DLs with this fea-
ture. Moreover, implementations and concrete syntactical encodings for OWL would
be important to make concept products usable in practice.
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