
Description Logic Rules
Markus Krötzsch and Sebastian Rudolph and Pascal Hitzler1

Abstract. We introduce description logic (DL) rules as a new rule-
based formalism for knowledge representation in DLs. As a fragment
of the Semantic Web Rule Language SWRL, DL rules allow for a
tight integration with DL knowledge bases. In contrast to SWRL,
however, the combination of DL rules with expressive description
logics remains decidable, and we show that the DL SROIQ – the
basis for the ongoing standardisation of OWL 2 – can completely
internalise DL rules. On the other hand, DL rules capture many ex-
pressive features of SROIQ that are not available in simpler DLs
yet. While reasoning in SROIQ is highly intractable, it turns out
that DL rules can be introduced to various lightweight DLs without
increasing their worst-case complexity. In particular, DL rules enable
us to significantly extend the tractable DLs EL++ and DLP.

1 INTRODUCTION
The development of description logics (DLs) has been driven
by the desire to push the expressivity bounds of these knowl-
edge representation formalisms while still maintaining decidability
and implementability. This has lead to very expressive DLs such
as SHOIN , the logic underlying the Web Ontology Language
OWL DL, SHOIQ, and more recently SROIQ [6] which is the
basis for the ongoing standardisation of OWL 22 as the next ver-
sion of the Web Ontology Language. On the other hand, more light-
weight DLs for which most common reasoning problems can be im-
plemented in (sub)polynomial time have also been sought, leading,
e.g., to the tractable DL EL++ [2].

Another popular paradigm of knowledge representation are rule-
based formalisms – ranging from logic programming to deductive
databases. Similar to DLs, the expressivity and complexity of rule
languages has been studied extensively [4], and many decidable and
tractable formalisms are known. Yet, reconciling DLs and rule lan-
guages is not easy, and many works have investigated this problem.

In this paper, we introduce DL rules as an expressive new rule
language for combining DLs with first-order rules in a rather natu-
ral way that admits tight integration with existing DL systems. Since
DLs can be considered as fragments of function-free first-order logic
with equality, an obvious approach is to combine them with first-
order Horn-logic rules. This is the basis of the Semantic Web Rule
Language SWRL [7], proposed as a rule extension to OWL. How-
ever, reasoning becomes undecidable for the combination of OWL
and SWRL, and thus more restricted rule languages have been in-
vestigated. A prominent example are DL-safe rules [9], which re-
strict the applicability of rules to a finite set of named individuals to
retain decidability. Another basic approach is to identify the Horn-
logic rules directly expressible in OWL DL (i.e. SHOIN), and this

1 Universität Karlsruhe (TH), Germany, [mak|sru|phi]@aifb.uni-karlsruhe.de
2 OWL 2 is the forthcoming W3C recommendation updating OWL, based on

the OWL 1.1 member submission, cf. http://www.w3.org/2007/OWL.

fragment has been called Description Logic Programs DLP [5].
DL rules can be characterised as a decidable fragment of

SWRL, which corresponds to a large class of SWRL rules in-
directly expressible in SROIQ. They are based on the observa-
tion that DLs can express only tree-like interdependencies of vari-
ables. For example, the concept expression ∃worksAt.University u
∃ supervises.PhDStudent that describes all people working at a uni-
versity and supervising some PhD student corresponds to the follow-
ing first-order formula:

∃y.∃z.worksAt(x, y)∧University(y)∧supervises(x, z)∧PhDStudent(z)

Here variables form the nodes of a tree with root x, where edges are
given by binary predicates. Intuitively, DL rules are exactly those
SWRL rules, where premises (rule bodies) consist of one or more of
such tree-shaped structures. One could, for example, formulate the
following rule:

worksAt(x, y) ∧ University(y) ∧ supervises(x, z) ∧ PhDStudent(z)
→ profOf(x, z)

Since SWRL allows the use of DL concept expressions in rules, we
obtain SROIQ rules, EL++ rules, or DLP rules as extensions of the
respective DLs. It turns out that DL rules are indeed “syntactic sugar”
in SROIQ, but we argue that a rule-based presentation is signifi-
cantly simpler in many cases, in particular since rules as the above
require the introduction of auxiliary vocabulary to be expressed in
SROIQ. On the other hand, DL rules truly extend the expressivity
in many simpler DLs, and we show that the favourable complex-
ity properties of the light-weight DLs EL++ and DLP are preserved
when adding DL rules.

After providing preliminary definitions in Section 2, we introduce
DL rules in Section 3. Section 4 shows how DL rules can be inter-
nalised in SROIQ, while Section 5 employs a novel reasoning al-
gorithm to process EL++ rules directly. Finally, Section 6 introduces
DLP 2 and shows the tractability of this DL-based rule language.
Proofs are omitted for reasons of space; they can be found in [1].

2 PRELIMINARIES
In this section, we recall the definition of the expressive description
logicSROIQ [6]. We assume that the reader is familiar with descrip-
tion logics [3]. As usual, the DLs considered in this paper are based
on three disjoint sets of individual names NI , concept names NC , and
role names NR containing the universal role U ∈ NR.

Definition 1 A SROIQ Rbox for NR is based on a set R of atomic
roles defined as R B NR ∪ {R− | R ∈ NR}, where we set Inv(R) B R−

and Inv(R−) B R to simplify notation. In the sequel, we will use the
symbols R, S , possibly with subscripts, to denote atomic roles.

A generalised role inclusion axiom (RIA) is a statement of the form
S 1 ◦ . . . ◦ S n v R, and a set of such RIAs is a generalised role hierar-

Syntax Semantics
R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}
U ∆I × ∆I

> ∆I

⊥ ∅

¬C ∆I \CI

C u D CI ∩ DI

C t D CI ∪ DI

{a} {aI}
∀R.C {x ∈ ∆I | 〈x, y〉 ∈ RI implies y ∈ CI}
∃R.C {x ∈ ∆I | for some y ∈ ∆I , 〈x, y〉 ∈ RI and y ∈ CI}
∃S .Self {x ∈ ∆I | 〈x, x〉 ∈ S I}
≤n S .C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ S I and y ∈ CI} ≤ n}
≥n S .C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ S I and y ∈ CI} ≥ n}

Figure 1. Semantics of concept constructors in SROIQ for an
interpretation I with domain ∆I.

chy. A role hierarchy is regular if there is a strict partial order ≺ on
R such that

• S ≺ R iff Inv(S) ≺ R, and
• every RIA is of one of the forms:

R ◦ R v R, R− v R, S 1 ◦ . . . ◦ S n v R,
R ◦ S 1 ◦ . . . ◦ S n v R, S 1 ◦ . . . ◦ S n ◦ R v R

such that R ∈ NR is a (non-inverse) role name, and S i ≺ R for
i = 1, . . . , n.

The set of simple roles for some role hierarchy is defined inductively:

• If a role R occurs only on the right-hand-side of RIAs of the form
S v R such that S is simple, then R is also simple.

• The inverse of a simple role is simple.

A role assertion is a statement of the form Ref(R) (reflexivity),
Asy(S) (asymmetry), or Dis(S , S ′) (role disjointness), where S and
S ′ are simple. A SROIQ Rbox is the union of a set of role assertions
together and a role hierarchy. A SROIQ Rbox is regular if its role
hierarchy is regular.

Definition 2 Given a SROIQ Rbox R, the set of concept expres-
sions C is defined as follows:

• NC ⊆ C, > ∈ C, ⊥ ∈ C,
• if C,D ∈ C, R ∈ R, S ∈ R a simple role, a ∈ NI , and n a non-

negative integer, then ¬C, CuD, CtD, {a}, ∀R.C, ∃R.C, ∃S .Self,
≤n S .C, and ≥n S .C are also concept expressions.

Throughout this paper, the symbols C, D will be used to denote con-
cept expressions. A SROIQ Tbox is a set of general concept inclu-
sion axioms (GCIs) of the form C v D.

An individual assertion can have any of the following forms: C(a),
R(a, b), ¬R(a, b), a 0 b, with a, b ∈ NI individual names, C ∈ C a
concept expression, and R, S ∈ R roles with S simple. A SROIQ
Abox is a set of individual assertions.

A SROIQ knowledge base KB is the union of a regular Rbox R,
and an AboxA and Tbox T for R.

We further recall the semantics of SROIQ knowledge bases.

Definition 3 An interpretation I consists of a set ∆I called domain
(the elements of it being called individuals) together with a function
·I mapping

• individual names to elements of ∆I,
• concept names to subsets of ∆I, and
• role names to subsets of ∆I × ∆I.

The function ·I is inductively extended to role and concept expres-
sions as shown in Table 1. An interpretation I satisfies an axiom ϕ if
we find that I |= ϕ:

• I |= S v R if S I ⊆ RI,
• I |= S 1 ◦ . . . ◦ S n v R if S I1 ◦ . . . ◦ S In v RI (◦ being overloaded to

denote the standard composition of binary relations here),
• I |= Ref(R) if RI is a reflexive relation,
• I |= Asy(R) if RI is antisymmetric and irreflexive,
• I |= Dis(R, S) if RI and S I are disjoint,
• I |= C v D if CI ⊆ DI.

An interpretation I satisfies a knowledge base KB (we then also
say that I is a model of KB and write I |= KB) if it satisfies all
axioms of KB. A knowledge base KB is satisfiable if it has a model.
Two knowledge bases are equivalent if they have exactly the same
models, and they are equisatisfiable if either both are unsatisfiable
or both are satisfiable.

Further details on SROIQ can be found in [6]. We have omitted
here several syntactic constructs that can be expressed indirectly, es-
pecially role assertions for transitivity, reflexivity of simple roles, and
symmetry.

3 DESCRIPTION LOGIC RULES
In this section, we formally introduce DL rules as a syntactic frag-
ment of first-order logic.

Definition 4 Consider some description logic L with concept ex-
pressions C, individual names NI , atomic roles R (possibly including
inverse roles), and let V be a countable set of first-order variables.
Given terms t, u ∈ NI ∪V, a concept atom (role atom) is a formula of
the form C(t) (R(t, u)) with C ∈ C (R ∈ R).

To simplify notation, we will often use finite sets S of (role and
concept) atoms for representing the conjunction

∧
S . Given such a

set S of atoms and terms t, u ∈ NI ∪ V, a path from t to u in S is
a non-empty sequence R1(x1, x2), . . . ,Rn(xn, xn+1) ∈ S where x1 = t,
xi ∈ V for 2 ≤ i ≤ n, xn+1 = u, and xi , xi+1 for 1 ≤ i ≤ n. A term t in
S is initial (resp. final) if there is no path to t (resp. no path starting
at t).

Given sets B and H of atoms, and a set x ⊆ V of all variables in
B∪H, a description logic rule (DL rule) is a formula ∀x.

∧
B→

∧
H

such that

(R1) for any u ∈ NI ∪ V that is not initial in B, there is a path from
exactly one initial t ∈ NI ∪ V to u in B,

(R2) for any t, u ∈ NI ∪V, there is at most one path in B from t to u,
(R3) if H contains an atom C(t) or R(t, u), then t is initial in B.

Here ∀x for x = {x1, . . . , xn} abbreviates an arbitrary sequence
∀x1. . . .∀xn. Since we consider only conjunctions with all variables
quantified, we will often simply write B → H instead of ∀x.

∧
B →∧

H. A rule base RB for some DL R is a set of DL rules for R.

The semantics of DL rules in the context of a description logic
knowledge base is given by interpreting both the rules and knowl-
edge base as first-order theories in the usual way, and applying the

standard semantics of predicate logic. This has been discussed in the
context of SWRL in [7], and we will not repeat the details here.

Note that Definition 4 ensures that role atoms in rule bodies es-
sentially form a (set of) directed trees, starting at initial elements.
Using the well-known equivalence of formulae {p → q1 ∧ q2} and
{p → q1, p → q2}, one can transform any rule into an equivalent set
of rules without conjunctions in rule heads. Since this can be done
in linear time, we will assume without loss of generality that all DL
rules are of this form.

Moreover, since all DLs considered in this work support nomi-
nals, we will assume without loss of generality that all terms in rules
are variables. Indeed, any atom C(a) with a ∈ NI can be replaced
by C(x) ∧ {a}(x) for some new variable x ∈ V. In the presence of in-
verse roles, role atoms with individual names can be replaced by con-
cept atoms as follows: R(x, a) becomes ∃R.{a}(x), R(a, y) becomes
∃ Inv(R).{a}(y), and R(a, b) becomes ∃R.{a}(x) ∧ {b}(x). A similar
transformation is possible for rule heads, where generated concept
atoms {a}(x) are again added to the rule body.

Before considering the treatment of DL rules in concrete DLs, we
highlight some relevant special applications of DL rules.

Concept products Rules of the form C(x) ∧ D(y) → R(x, y) can
encode concept products (sometimes written C × D v R) assert-
ing that all elements of two classes must be related [10]. Ex-
amples include statements such as Elephant(x) ∧ Mouse(y) →
biggerThan(x, y) or Alkaline(x) ∧ Acid(y)→ neutralises(x, y).

Local reflexivity, universal role Rules of the forms C(x)→ R(x, x)
and R(x, x)→ C(x) can replace the SROIQ Tbox expression C v
∃R.Self and ∃R.Self v C. The universal role U of SROIQ can be
defined as >(x) ∧ >(y) → U(x, y). Hence, a DL that permits such
rules does not need to explicitly introduce those constructs.

Qualified RIAs DL rules of course can express arbitrary role in-
clusion axioms, but they also can state that a RIA applies only
to instances of certain classes. Examples include Woman(x) ∧
hasChild(x, y) → motherOf(x, y) and trusts(x, y) ∧ Doctor(y) ∧
recommends(y, z) ∧Medicine(z)→ buys(x, z).

4 DL RULES IN SROIQ

In this section, we show how knowledge bases of such rules can be
completely internalised into the DL SROIQ. Since SROIQ sup-
ports inverse roles, it turns out that one can relax condition (R1) of
DL rules as follows:

(R1’) for any u ∈ NI ∪ V that is not initial in B, there is a path from
one or more initial elements t ∈ NI ∪ V to u in B.

On the other hand, we need to adopt the notions of regularity and
simplicity to DL rule bases in SROIQ, which again restricts the per-
missible rule bases:

Definition 5 Consider a rule base RB and a knowledge base KB
for SROIQ. The set of simple roles of KB ∪ RB is the smallest
set of atomic roles containing every role R for which the following
conditions hold:

• If R or Inv(R) occur on the right-hand-side of some RIA of KB,
then this RIA is of the form S v R or S v Inv(R), and S is simple.

• If R or Inv(R) occur in some rule head of the form R(x, y) or
Inv(R)(x, y) in RB, then the according rule body is of the form
S (x, y) with S simple, or of the form C(x) where x = y.

Note that this is indeed a proper inductive definition, where roles that
do not occur on the right of either RIAs or rules form the base case.
The extended knowledge base KB ∪ RB is admissible for SROIQ
if all roles S (i) occurring in concept (sub)expressions of the form
≤n S .C, ≥n S .C, ∃S .Self, and Dis(S 1, S 2), and in role atoms of the
form S (x, x) (x ∈ V) are simple.

An extended knowledge base KB∪RB is regular if there is a strict
partial order ≺ on R such that

• S ≺ R iff Inv(S) ≺ R,
• the role box of KB is regular w.r.t. ≺, and
• for any rule B → R(x, y), each S (z, v) ∈ B satisfies one of the

following:

– S ≺ R, or

– there is no path from v to y, or

– S = R, there is no other R(z′, v′) ∈ B with a path from v′ to y,
and we find that: either x = z and there is no C(x) ∈ B, or y = v
and there is no C(y) ∈ B.

Note that RIAs in regular SROIQ knowledge bases are allowed
to have two special forms for transitivity and symmetry, which we
do omit for the definition of regularity in DL rules to simplify nota-
tion. Since S in S (x, x) is simple, we can replace such role atoms by
concept atoms C(x) where C is a new concept name for which a new
axiom C ≡ ∃S .Self is added. We will thus assume that no role atoms
of this form occur in admissible knowledge bases.

One can now show that checking the satisfiability of extended
SROIQ knowledge bases that are admissible and regular is de-
cidable, and has the same worst-case complexity as reasoning in
SROIQ. This is achieved by a polynomial transformation of rule
bases into SROIQ axioms. The first step of doing this is to replace
“dead branches” of the tree-shaped query body by DL concepts.

Lemma 6 Any DL rule B→ H for SROIQ can be transformed into
a semantically equivalent rule B′ → H such that all paths in B′ are
contained in a single maximal path. If H = R(x, y), then y is the final
element of that maximal path, and if H = C(x) then there are no
paths in B. A rule with these properties is called linearised.

As an example, the DL rule that was given in the introduction can
be simplified to yield (using “ , ” instead of “∧” for brevity):

∃worksAt.University(x), supervises(x,z),PhDStudent(z)→profOf(x,z)

The above transformation allows us to reduce tree-shaped rules to
rules of only linear structure that are much more similar to RIAs in
SROIQ. But while all role atoms now belong to a single maximal
path, rules might still contain disconnected concept atoms, such as,
e.g., in the rule R(x, y) ∧C(z)→ S (x, y).

It can be shown that DL rules in SROIQ can be internalised.

Theorem 7 Consider a rule base RB and a knowledge base KB for
SROIQ, such that RB∪KB is admissible. There is aSROIQ knowl-
edge base KBRB that can be computed in time polynomial in the size
of RB, such that KB ∪ RB and KB ∪ KBRB are equisatisfiable.

Moreover, if KB ∪ RB is regular, then KB ∪ KBRB is also regular.

Considering again our introductory example, we arrive at the fol-
lowing SROIQ axioms (where S 1, S 2 are new auxiliary roles):

S 1 ◦ supervises ◦ S 2 v profOf

∃worksAt.University ≡ ∃S 1.Self PhDStudent ≡ ∃S 2.Self

Based on Theorem 7, we conclude that the problem of checking the

satisfiability of SROIQ knowledge bases extended with DL rules is
decidable, as long as the extended knowledge base is admissible and
regular. Since the internalisation is possible in polynomial time, the
worst-case complexity for this problem is the same as for checking
satisfiability of SROIQ knowledge bases.

5 DL RULES IN EL++

In this section, we investigate DL rules for the DL EL++ [2], for
which many typical inference problems can be solved in polynomial
time. As EL++ cannot internalise DL rules, they constitute a true ex-
tension of expressivity. We therefore take a different approach than
in SROIQ: instead of considering rule bases as an auxiliary set of
axioms that is successively reduced and internalised, we introduce
DL rules as core expressive mechanism to which all other EL++ ax-
ioms can be reduced. While EL++ rule bases offer many expressive
features formerly unavailable in EL++, we show that the complexity
of core inference problems remains tractable. We simplify our pre-
sentation by omitting concrete domains from EL++ – they are not
affected by our extension and can be treated as shown in [2].

Definition 8 An atomic role of EL++ is a (non-inverse) role name.
An EL++ Rbox is a set of generalised role inclusion axioms, and
an EL++ Tbox is a SROIQ Tbox that contains only the following
concept constructors: u, ∃, >, ⊥, as well as nominal classes {a}. An
EL

++ rule base is a set of DL rules for EL++ that do not contain
atoms of the form R(x, x) in the body.

Note that we do not have any requirement for regularity or simplic-
ity of roles in the context of EL++. It turns out that neither is relevant
for obtaining decidability or tractability. The case of R(x, x) in bodies
is not addressed by the below algorithm, and an according extension
is left to future work. Since it is obvious that both concept and role
inclusion axioms can directly be expressed by DL rules, we will con-
sider only EL++ rule bases without any additional EL++ knowledge
base axioms. We can restrict our attention to EL++ rules in a certain
normal form:

Definition 9 An EL++ rule base RB is in normal form if all concept
atoms in rule bodies are either concept names or nominals, all vari-
ables in a rule’s head also occur in its body, and all rule heads are
of one of the following forms:

A(x) ∃R.A(x) R(x, y)
where A ∈ NC ∪ {{a} | a ∈ NI} ∪ {>,⊥} and R ∈ NR. A set B
of basic concept expressions for RB is defined as B B {C | C ∈
NC ,C occurs in RB} ∪ {{a} | a ∈ NI , a occurs in RB} ∪ {>,⊥}.

Proposition 10 Any EL++ rule base can be transformed into an
equisatisfiable EL++ rule base in normal form. The transformation
can be done in polynomial time.

When checking satisfiability of EL++ rule bases, we can thus re-
strict to rule bases in the above normal form. A polynomial algorithm
for checking class subsumptions in EL++ knowledge bases has been
given in [2], and it was shown that other standard inference prob-
lems can easily be reduced to that problem. We now present a new
algorithm for checking satisfiability of EL++ rule bases, and show
its correctness and tractability. Clearly, subsumption checking can
be reduced to this problem: given a new individual a ∈ NI , the rule
base RB∪{C(a), {a}(x)uD(x)→ ⊥(x)} is unsatisfiable iff RB entails
C v D. Instance checking in turn is directly reducible to subsumption
checking in the presence of nominals.

Algorithm 11 The algorithm proceeds by computing two sets: a set
E of inferred “domain elements”, and a set S of relevant subclass
inclusion axioms that are entailed by RB. The elements of E are rep-
resented by basic concept expressions of RB, i.e. E ⊆ B, and the
inclusion axioms in S are of the form C v D or C v ∃R.D, where
C,D ∈ E. Thus E and S are polynomially bounded by the size of RB.

Initially, we set E B {{a} | {a} ∈ B} ∪ {>} and S B ∅. Now a DL
rule is applied whenever we find that there is a match with the rule
body. Given a rule B→ H, a match θ is a mapping from all variables
in B to elements of E, such that the following hold:

• for every C(y) ∈ B, θ(y) v C ∈ S, and
• for every R(y, z) ∈ B, θ(y) v ∃R.θ(z) ∈ S.

The algorithm now proceeds by applying the following rules until no
possible rule application further modifies the set E or S:

(EL1) If C ∈ E, then S B S ∪ {C v C,C v >}.
(EL2) If there is a rule B → E(x) ∈ RB, and if there is a match θ

for B with θ(x) = θx, then S B S ∪ {θx v E}. In this case, if
E = C or E = ∃R.C, then E B E ∪ {C}.

(EL3) If there is a rule B → R(x, y) ∈ RB, and if there is a match θ
for B with θ(x) = θx and θ(y) = θy, then S B S∪{θx v ∃R.θy}.

(EL4) If {C v {a},D v {a},D v E} ⊆ S then S B S ∪ {C v E}.

Here we assume that C,D,D′ ∈ B, E ∈ B ∪ {∃R.C | C ∈ B}, and
R ∈ NR. After termination, the algorithm returns “unsatisfiable” if
⊥ ∈ E, and “satisfiable” otherwise.

The correctness of the above algorithm is shown by using the sets
E and S for constructing a model, which is indeed possible when-
ever ⊥ < E (see [1] for details). EL++ has a small model property
that allows us to consider at most one individual for representing
the members of each class. The set E thus is used to record classes
which must have some element, and matches θ use these class names
to represent (arbitrary) individuals to which some DL rule might be
applied.

Assuming that all steps of Algorithm 11 are computable in poly-
nomial time, it is easy to see that the algorithm also terminates in
polynomial time, since there are only polynomially many possible
elements for E and S, and each case adds new elements to either
set. However, it also has to be verified that individual steps can be
computed efficiently, and this is not obvious for the match-checks in
(EL2) and (EL3). Indeed, finding matches in query graphs is known
to be NP-complete in general, and the tree-like structure of queries
is crucial to retain tractability. Moreover, even tree-like rule bodies
admit exponentially many matches. But note that Algorithm 11 does
not consider all matches but only the (polynomially many) possible
values of θx (and θy). It turns out that there is indeed a algorithm that
checks in polynomial time whether a match θ as in (EL2) and (EL3)
exists, but without explicitly considering all possible matches.

Proposition 12 Consider a rule of the form B → C(x) (B →

R(x, y)), sets E and S as in Algorithm 11, and an element θx ∈ E

(elements θx, θy ∈ E). There is an algorithm that decides whether
there is a match θ such that θ(x) = θx (θ(x) = θx and θ(y) = θy),
running in polynomial time w.r.t. the size of the inputs.

Theorem 13 Algorithm 11 is a sound and complete procedure for
checking satisfiability of EL++ rule bases. Satisfiability checking, in-
stance retrieval, and computing class subsumptions for EL++ rule
bases is possible in polynomial time in the size of the rule base.

6 DLP 2
Description Logic Programs (DLP) have been proposed as a tractable
knowledge representation formalism for bridging the gap between
DL and (Horn) logic programming [5]. This clearly suggests further
extension with DL rules, and we will see below that reasoning with
this extension is still tractable. Moreover, various further features of
SROIQ can easily be included as well, and thus we arrive at a DL
rule language that might be dubbed DLP 2 in analogy to the ongoing
standardisation of the extended of OWL 2 based on SROIQ.

DLP has been defined in various ways, and a detailed syntac-
tic characterisation is found in [11]. Essentially, however, DLP can
be characterised as the fragment of SHOIQ that can entail neither
disjunctive information nor the existence of anonymous individuals.
The former condition has been extensively studied in the context of
Horn description logics [8], and rather complex syntactic definitions
can be given to characterise all admissible axioms of such logics.
Here, we adopt a much simpler definition that focusses on the essen-
tial expressive features without encompassing all alternative syntac-
tic forms of DLP axioms:

Definition 14 Atomic roles of DLP are defined as in SROIQ, in-
cluding inverse roles. A DLP body concept is any SROIQ concept
expression that includes only concept names, nominals, u, ∃, >, and
⊥. A DLP head concept is any SROIQ concept expression that in-
cludes only concept names, nominals, u, ∀, >, ⊥, and expressions of
the form ≤1.C where C is a DLP body concept.

A DLP knowledge base is a set of Rbox axioms of the form R v S
and R ◦ R v R, Tbox axioms of the form C v D, and Abox axioms of
the form D(a) and R(a, b), where C ∈ C is a body concept, D ∈ C is
a head concept, and a, b ∈ NI are individual names. A DLP rule base
is a set of DL rules such that all concepts in rule bodies are body
concepts, and all concepts in rule heads are head concepts.

A DLP 2 knowledge base consists of a DLP knowledge base that
additionally might contain Rbox axioms of the form Dis(R, S) and
Asy(R), together with some DLP rule base.

Note that neither regularity nor simplicity restrictions apply in
DLP. It is immediate that DLP Rbox and Tbox axioms can di-
rectly by expressed by DLP rules. The same holds for Abox ax-
ioms: though we cannot use the common translation of R(a, b) into
{a}(x) → ∃R.{b}(x), the DLP rule {a}(x) ∧ {b}(y) → R(x, y) serves
the same purpose. Hence we can restrict our further considerations
to DLP 2 knowledge bases into which all knowledge base axioms
other than Dis(R, S) and Asy(R) have been internalised. The core ob-
servation of this section is as follows:

Proposition 15 Any DLP 2 knowledge base KB can be transformed
into an equisatisfiable set of function-free first-order Horn rules with
at most five variables per formula, and this transformation is possible
in polynomial time w.r.t. the size of KB.

Function-free Horn-logic with a limited number of variables per
rule is known to be tractable, and we can thus conclude the tractabil-
ity of DLP 2:

Theorem 16 Satisfiability checking, instance retrieval, and comput-
ing class subsumptions for DLP 2 knowledge bases is possible in
polynomial time in the size of the knowledge base.

7 CONCLUSION
We have introduced DL rules as a rule-based formalism for augment-
ing description logic knowledge bases. For all DLs considered in this

paper – SROIQ, EL++, and DLP – the extension with DL rules does
not increase the worst-case complexity. In particular, EL++ rules and
the extended DLP 2 allow for polynomial time reasoning for com-
mon inference tasks, even though DL rules do indeed provide added
expressive features in those cases.

The main contributions of this paper therefore are twofold. Firstly,
we have extended the expressivity of two tractable DLs while pre-
serving their favourable computational properties. The resulting for-
malisms of EL++ rules and DLP 2 are arguably close to being maxi-
mal tractable fragments of SROIQ. In particular, note that the union
of EL++ and DLP is no longer tractable, even when disallowing num-
ber restrictions and inverse roles: this follows from the fact that this
DL contains the DL Horn-FLE which was shown to be ET-
complete in [8].

Secondly, while DL rules do not truly add expressive power to
SROIQ, our characterisation and reduction methods for DL rules
provides a basis for developing ontology modelling tools. Indeed,
even without any further extension, the upcoming OWL 2 stan-
dard would support all DL rules. Hence OWL-conformant tools can
choose to provide rule-based user interfaces, and rule-based tools
may offer some amount of OWL support. We remark that in the
case of DLP and EL++, the conditions imposed on DL rules can be
checked individually for each rule without considering the knowl-
edge base as a whole. Moreover, in order to simplify rule editing, the
general syntax of DL rules can be further restricted without sacrific-
ing expressivity, e.g. by considering only chains rather than trees for
rule bodies. We thus argue that DL rules can be a useful interface
paradigm for many application fields.

Our treatment of rules in EL++ and DLP 2 – used only for estab-
lishing complexity bounds in this paper – can be the basis for novel
rule-based reasoning algorithms for those DLs, and we leave it for
future research to explore this approach.

REFERENCES
[1] Anonymous. Description logic rules. Full version with proofs, available

at http://dlrules.tripod.com/, 2007.
[2] Franz Baader, Sebastian Brandt, and Carsten Lutz, ‘Pushing the EL en-

velope’, in Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI
2005), Edinburgh, UK, (2005). Morgan-Kaufmann Publishers.

[3] The Description Logic Handbook: Theory, Implementation and Appli-
cations, eds., Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter Patel-Schneider, Cambridge University Press,
2007.

[4] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov,
‘Complexity and expressive power of logic programming’, ACM Com-
puting Surveys, 33, 374–425, (2001).

[5] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker,
‘Description logic programs: combining logic programs with descrip-
tion logic’, in Proc. 12th Int. Conf. on World Wide Web (WWW 2003),
pp. 48–57. ACM, (2003).

[6] Ian Horrocks, Oliver Kutz, and Ulrike Sattler, ‘The even more irre-
sistibleSROIQ’, in Proc. of the 10th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR2006), pp. 57–67. AAAI Press,
(June 2006).

[7] Ian Horrocks and Peter F. Patel-Schneider, ‘A proposal for an OWL
rules language’, in Proc. 13th Int. Conf. on World Wide Web (WWW
2004), eds., Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E.
Wills, pp. 723–731. ACM, (2004).

[8] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler, ‘Complex-
ity boundaries for Horn description logics’, in Proc. 22nd AAAI Conf.
(AAAI’07), (2007).

[9] Boris Motik, Ulrike Sattler, and Rudi Studer, ‘Query answering for
OWL-DL with rules’, J. Web Sem., 3(1), 41–60, (2005).

[10] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler, ‘All elephants
are bigger than all mice’, in Proc. 21st Int. Workshop on Description
Logics (DL-08), (2008).

[11] Raphael Volz, Web Ontology Reasoning with Logic Databases, Ph.D.
dissertation, Universität Karlsruhe (TH), Germany, 2004.

