
LOQUS: Linked Open Data SPARQL Querying System

Prateek Jain∗, Kunal Verma†, Peter Z. Yeh†, Pascal Hitzler∗ and Amit P. Sheth∗
∗Kno.e.sis Center, Wright State University, Dayton, OH

†Accenture Technology Labs, San Jose, CA

Abstract

The LOD cloud is gathering a lot of momentum, with the
number of contributors growing manifold. Many prominent
data providers have submitted and linked their data to other
dataset with the help of manual mappings. The potential of
the LOD cloud is enormous ranging from challenging AI is-
sues such as open domain question answering to automated
knowledge discovery. We believe that there is not enough
technology support available to effectively query the LOD
cloud. To this effect, we present a system called Linked Open
Data SPARQL Querying System (LOQUS), which automati-
cally maps users queries written in terms of a conceptual up-
per ontology to different datasets, creates a query plan, sends
sub-queries to the different datasets, merges the results and
presents them to the user. We present a qualitative evalua-
tion of the system based on real-world queries posed by other
researchers and practitioners.

Introduction
The Linked Open Data (LOD) methodology has recently
emerged as a powerful way of linking together disparate
data sources (Bizer, Heath, and Berners-Lee 2009). Using
this methodology, researchers have interlinked data from di-
verse areas such as life sciences, nature, geography, and en-
tertainment. Moreover, many prominent datasources (e.g.
Wikipedia1, PubMed2, data.gov3, etc.) – have also adopted
this methodology to interlink their data.

The result is the LOD cloud 4 – a large and growing col-
lection of interlinked public datasets represented using RDF
and OWL. Concepts (and instances) in a dataset are con-
nected to (and hence can be reached from) related concepts
(and instances) from other datasets through semantic rela-
tionships such as owl:sameAs. Hence, the LOD cloud is be-
coming the largest currently available structured knowledge-
base. It has a potential for applicability in many AI-related
task such as open domain question answering, knowledge
discovery, and the Semantic Web.

An important prerequisite before the LOD cloud can en-
able these goals is allowing its users (and applications) to

Copyright c© 2010, The authors. All rights reserved.
1http://en.wikipedia.org/wiki/Main Page
2http://www.ncbi.nlm.nih.gov/pubmed/
3http://data.gov
4http://linkeddata.org/

effectively pose queries to and retrieve answers from it. This
prerequisite, however, is still an open problem for the LOD
cloud. For example, in order to answer the following query
from Jamendo5 using the LOD cloud:

Select artists within Jamendo who made at least one al-
bum tagged as ‘punk’ by a Jamendo user, sorted by the num-
ber of inhabitants of the places they are based near.

This query requires user to select the relevant datasets,
identify the concepts in these datasets that the query maps
to, and merge the results from each dataset into a complete
answer. These steps are very costly in terms of time and
required expertise which is not feasible given the size (and
continued growth) of the LOD cloud. Apart from the sheer
size, issues such as schema heterogenity and entity disam-
biguation identified in (Jain et al. 2010) present profound
challenges with respect to querying of the LOD cloud.

In this paper, we present a Linked Open Data SPARQL
Querying System (LOQUS) – which allows users to effec-
tively pose queries to the LOD cloud without having to know
the exact structure and links between its many datasets. LO-
QUS automatically maps the user’s query to the relevant
datasets (and concepts) using an upper level ontology; then
executes the resulting query; and finally merges the results
into a single, complete answer.

We perform a qualitative evaluation of LOQUS on sev-
eral real-world queries and demonstrate that LOQUS al-
lows users to effectively execute queries over the LOD cloud
without a deep understanding of its datasets. We also com-
pare LOQUS with existing query systems for the LOD cloud
to highlight the pros and cons of each approach.

The rest of the paper is organized as follows. We begin by
providing the motivation behind our work. We then intro-
duce our approach followed by an end-to-end example and
evaluation. We conclude with related work, conclusion, and
future work.

Motivation
SPARQL6 has emerged as the de-facto query language for
the Semantic Web community. It provides a mechanism to
express constraints and facts, and the entities matching those
constraints are returned to the user. However, the syntax of

5http://dbtune.org/jamendo/
6http://www.w3.org/TR/rdf-sparql-query/

SPARQL requires users to specify the precise details of the
structure of the graph being queried in the triple pattern. To
ease querying from an infrastructural perspective, data con-
tributors have provided public SPARQL endpoints to query
the LOD cloud datasets. But with respect to a systematic
querying of the LOD cloud, we believe that the following
challenges identified previously in (Jain et al. 2010) make
the process difficult and should be addressed.

• Intimate knowledge of datasets: To formulate a query
which spans multiple datasets (such as the one mentioned
in the introduction) the user has to be familiar with mul-
tiple datasets. The user also has to express the precise
relationships between concepts in the RDF triple pattern,
which even in trivial scenarios implies browsing at least
two to three datasets.

• Schema heterogeneity: The LOD cloud datasets cater to
different domains, and thus require different modeling
schemes. For example, a user interested in music related
information has to skim through at least three different
music related datasets such as Jamendo, MusicBrainz,
MySpace. Even though the datasets belong to same do-
main, each have been modelled differently depending on
the creator. This is perfectly fine from a knowledge engi-
neering perspective, but it makes the querying of the cloud
difficult as it requires users to understand the various het-
erogeneous schemas. This issue stems from the Lack of
Conceptual Description of the LOD datasets.

• Entity disambiguation: Often the LOD cloud datasets
have overlapping domains and tend to provide informa-
tion about the same entity. To exemplify, both DBpe-
dia and Geonames have information about the city of
Barcelona. Although Geonames references DBpedia us-
ing the owl:sameAs property, which can confuse the
user as to which is the best source to answer the query.
This problem gets even more compounded when con-
tradictory facts are reported for the same entity by dif-
ferent datasets. For example, DBpedia quotes the pop-
ulation of Barcelona as 1,615,908, whereas according
to Geonames it is 1,581,595. One can argue this might
be because of a difference in the notion of the city of
Barcelona. But that leads to another interesting ques-
tion: Is the owl:sameAs property misused in the LOD
cloud?.

• Ranking of results: In scenarios where the results of
the query can be computed and returned by multiple
datasets, the result which should be ranked higher for a
specific query becomes an interesting and important ques-
tion. As presented above, the query related to population
of Barcelona can be answered by multiple datasets, but
which one of them is more relevant in a specific scenario?.
This issue has been addressed from the perspective of
popularity of datasets by considering the cardinalities and
types of the relationships in (Toupikov et al. 2009), but
not from the perspective of requirements with regard to a
specific query.

Our Approach
From a bird’s eyes perspective, LOQUS accepts SPARQL
queries serialized by the user using concepts from an up-
per level ontology. LOQUS identifies the datasets and the
corresponding queries to be excuted on these datasets us-
ing primarily the mappings of upper level ontology to these
LOD cloud datasets. This section introduces the architecture
of our querying system, approach used for query execution,
and the utilization of mappings for sub-query construction
and the technique used for processing the results. Figure 1
illustrates the overall architecture of LOQUS.

System Architecture LOQUS consists of the following
modules (1) Upper level ontology mapped to the domain
specific LOD datasets. (2) Module to identify the upper
level concepts contained in the query and perform the trans-
lations to the LOD cloud datasets. (3) Module to split the
query mapped to LOD datasets concepts into subqueries cor-
responding to different datasets. (4) Module to execute the
queries remotely and process the results and deliver the final
result to the user.

Upper Level Ontology The upper level ontology has
been created manually by reusing concepts from SUMO
(Niles and Pease 2001) and by identifying their equivalent
or subsuming concepts in the LOD cloud datasets. To
demonstrate, the SUMO concept of Nation can map to dif-
ferent concepts belonging to the datasets of the LOD cloud
such as http://dbpedia.org/ontology/Country (DBpedia),
http://www.geonames.org/ontology#A.PCLI (Geonames)
and http://data.linkedmdb.org/resource/movie/country
(linkedmdb). These mappings are at the schema level, and
thus complement the existing mappings at the instance level
provided by LOD cloud. Thus, reusing SUMO provides a
single point of reference for querying the LOD cloud and
consequently helps in query formulation. Further, because
the mappings are at the schema level, the ontology can be
utilized for reasoning and knowledge discovery over LOD
cloud datasets.

Mapping of Upper Level Concepts to LOD Datasets
Using the mappings from SUMO, the concepts specified
in the query can be mapped to concepts of the LOD cloud
datasets. The concepts from LOD cloud dataset are substi-
tuted in the basic graph pattern (in lieu of concepts from
SUMO) of the SPARQL query to create a query contain-
ing only concepts from the LOD datasets. The presence or
absence of multiple mappings for a given concept gives an
indication if the corresponding subqueries (which are cre-
ated in the next step) should be involved in a union or if they
should be joined to each other. Hence, this step also helps
in creating a query plan for the execution and processing of
results of the sub-queries.

Splitting of the Query Graph to Create Sub-Queries
The SPARQL query containing the concepts from the LOD
cloud datasets is partitioned into sub-queries corresponding

Cloud

1.Identify movies, countries

where they were shot and

the current population of

these countries.
2. Identify concepts

from upper level

ontology to serialize

into the query.

owl:Thing

Linked Open Data

Cloud

sumo:Nation

owl:sameClass geo:A.PCLI

owl:sameClass dbpedia;Country

sumo:Film

owl:sameClass linkedmdb:Film

Upper Level Ontology

3. Submit query to LOQUS

Select ?film ?nation ?pop

WHERE

{ ?film sumo:location ?nation;

 rdf:type silo:Film.

 ?nation rdf:type silo:Nation.

 sumo:population

?pop.}

5. Split the query graph into separate subqueries

SELECT ?nation ?pop ?nation1 ?propertyvar

WHERE

 {?nation rdf:type db:Country;

 dbprop:populationCensus ?pop.

 OPTIONAL {?nation owl:sameAs ?nation1.}

 OPTIONAL {?nation skos:closeMatch ?nation1.}

 OPTIONAL {?nation ?propertyvar ?nation1.}

 }

 JOIN WITH

 SELECT ?film ?nation ?nation1 ?propertyvar

WHERE

 {?Film linkedmdb:country ?nation ;

 rdf:type linkedmdb:film .

 OPTIONAL {?nation owl:sameAs ?nation1.}

 OPTIONAL {?nation skos:closeMatch ?nation1.}

 OPTIONAL {?nation ?propertyvar ?nation1.}

}

6. Execute queries on respective SPARQL endpoints and

retrieve results

LinkedMDB Results Geonames Results DBpedia Results

7. Process the results and return the results to user

 UNION JOIN

Film Nation Population

Geonames Results DBpedia Results LinkedMDB Results

4. Create LOD specific query using the

mappings

SELECT ?film ?nation ?pop

WHERE

 { ?film linkedmdb:country ?nation ;

 rdf:type linkedmdb:film .

 ?nation rdf:type dbpedia:Country ;

 geo:featureCode geo:A.PCLI ;

 dbprop:populationCensus ?pop ;

 geo:population ?pop .

 }

LOQUS

Figure 1: LOQUS Architecture

to the datasets whose concepts are being used in the query.
The division of the original query graph is done by analyz-
ing the namespaces of the concepts and taking cognizance
of the fact, that some vocabularies such as FOAF and SIOC
are reused by other datasets.

Execution of Queries and Processing of Results The
foundation of the LOD cloud is on the reuse of URIs
across datasets typically to assert similarity between con-
cepts or to link them. In order to search for concepts sim-
ilar to the variables of the queries created in the previ-
ous step, their graph is appended with triples querying for
”owl:sameAs”, ”skos:closeMatch” and similar relations us-
ing the OPTIONAL pattern of SPARQL. This step helps in
identifying similar concepts and also join results from dif-
ferent datasets.

The results retrieved from the execution of the queries
are processed according to the query plan. For example,
assume that the query plan suggests that results for execu-
tion of query ”Search for nations and their corresponding
populations” (executed on Geonames and DBpedia), should
be in a ”union” with each other. To perform this operation
similar concepts are identified and grouped together. The
similarity is identified by using similarity properties such as

”owl:sameAs” or ”skos:closeMatch”. Thus, the Geonames
resource for Haiti http://sws.geonames.org/3723988/ can be
linked to the CIA Factbook concept http://www4.wiwiss.fu-
berlin.de/factbook/resource/Haiti by using the equiva-
lence established by the DBpedia concept for Haiti
http://dbpedia.org/page/Haiti, using an ”owl:sameAs” link.
Hence, answers from sub-queries can be merged and joined
together. This mechanism also allows for finding results
in scenarios which do not have a direct link by traversing
some common well known similarity properties as men-
tioned above and retrieving information from there.

Scenario Illustration A query submitted by the user using
the upper level ontology searching for ”Identify films, the
nations where they were shot and the population of these
countries” undergoes the following process

1. The user looks at the upper level ontology to identify the
relevant concepts and serializes them into a SPARQL
query.

Select ?film ?nation ?pop

WHERE

{ ?film sumo:location ?nation;

rdf:type sumo:film.

?nation rdf:type sumo:Nation;

sumo:population ?pop.}

2. By utilizing the mappings the LOD cloud dataset specific
query concepts are substituted in lieu of upper level on-
tology concepts.

Select ?film ?nation ?pop

WHERE {?film linkedmdb:country ?nation;

rdf:type linedmdb:film.

?nation rdf:type dbpedia:Country;

geo:featureCode geo:A.PCLI;

dbprop:populationCensus ?pop ;

geo:population ?pop.}

3. By identifying the different datasets to which the con-
cepts mentioned in the query graph pattern belongs, var-
ious sub-queries are created (each of which belong to
a separate dataset). The query plan is also generated
at this step by identifying if upper level ontology con-
cept has multiple mappings or single mapping to LOD
cloud dataset. For example, results of queries executed
on datasets which provide demographic information such
as DBpedia and geonames will be in ”UNION”, whereas
LinkedMDB query results would be joined with these re-
sults.

{

SELECT ?nation ?pop ?nation1 ?propertyvar

WHERE {?nation rdf:type db:Country;

dbprop:populationCensus ?pop.

OPTIONAL{?nation owl:sameAs ?nation1.}

OPTIONAL{?nation skos:closeMatch ?nation1.}

OPTIONAL{?nation ?propertyvar ?nation1.}

}

UNION

SELECT ?nation ?pop ?nation1 ?propertyvar

WHERE {?nation geo:featureCode geo:A.PCLI;

geo:population ?pop.

OPTIONAL{?nation owl:sameAs ?nation1.}

OPTIONAL{?nation skos:closeMatch ?nation1.}

OPTIONAL{?nation ?propertyvar ?nation1.}

}

}

JOIN

SELECT ?Film ?nation ?nation1 ?propertyvar

WHERE {?Film linkedmdb:country ?nation;

rdf:type linkedmdb:film.

OPTIONAL{?nation owl:sameAs ?nation1.}

OPTIONAL{?nation skos:closeMatch ?nation1.}

OPTIONAL{?nation ?propertyvar ?nation1.}

}

4. Using an available mapping of datasets and their corre-
sponding SPARQL endpoints, the sub-queries are exe-
cuted and the Table 1 to Table 3 illustrates some of the
results fetched by the three sub-queries given above.

5. Finally the results of these sub-queries are processed ac-
cording to the preidentified query plan. The results to be
involved in UNION are merged using equivalence prop-
erties such as ”owl:sameAs”, whereas the query results to

Nation Nation1 Population Property Var
geo:102358 db:Saudi Arabia 28161000 owl:sameAs
geo:1036973 db:Mozambique 21284000 owl:sameAs
geo:1269750 db:India 1147995000 owl:sameAs

Table 1: Result execution of queries over geonames

Nation Nation1 Population Property Var
db:Saudi Arabia geo:102358 28,686,633 owl:sameAs
db:Saudi Arabia cyc:en/SaudiArabia 28,686,633 owl:sameAs
db:Mozambique cyc:en/Mozambique 21,397,000 owl:sameAs
db:Mozambique umbel:Mozambique 21,397,000 owl:sameAs

Table 2: Result execution of queries over dbpedia

Film Nation Nation1 Property Var
lmdb:30356 lmdb:IN geonames:1269750 skos:closeMatch
lmdb:27302 lmdb:SA geonames:102358 skos:closeMatch
lmdb:35434 lmdb:MZ geonames:1036973 skos:closeMatch

Table 3: Result execution of queries over linkedmdb

be in JOIN are combined by looking for similar concepts.
The generated results as illustrated in Table 4 are returned
to the user.

Film Nation Population Nation Population
lmdb:30356 geo:1269750 1147995000 db:India 1028610328
lmdb:27302 geo:102358 28161000 db:Saudi Arabia 28,686,633

Table 4: Result of user submitted query

Evaluation
As a proof of concept we have implemented LOQUS using
the Jena7 Semantic Web Framework. The system takes a
SPARQL query serialized by the user using concepts from
the upper level ontology, and performs the appropriate map-
ping. LOQUS then executes the query and merges the re-
sults and presents the results to the user.

We perform a qualitative evaluation of our system with
DARQ (Quilitz and Leser 2008) and SQUIN (Hartig, Bizer,
and Freytag 2009). Our objective is to determine whether
our system allows users to execute and retrieve answers to
SPARQL queries over the LOD cloud without knowing the
individual datasets and by just using the concepts from the
upper level ontology. The lack of specification of LOD
datasets in the queries requires good quality mappings to
correctly identify the datasets which can be useful in an-
swering the queries. Further, the system has to provide an
efficient processing of the results for combining the results
of sub-queries.

A standard measure for assessing the quality of query-
ing systems are precision and recall. In our case, however,
there does not exist any benchmarks or even available base-
lines for measuring these statistics partly because this is an
emerging area. The sheer size of the LOD cloud makes it

7http://jena.sourceforge.net/

difficult to identify if all correct answers have been retrieved
and reported. Currently there is no easy way to create a base-
line for a large set of LOD cloud queries because there are
no available systems which can perform the task in a com-
plete manner, as required for creating a baseline reference.
At the same time, SPARQL endpoints also restrict the num-
ber of results returned for a specific query. Hence, getting
complete sets of answers is a challenge.

Queries and Results To evaluate our objective we took
queries which require information from multiple LOD
datasets and serialized them into SPARQL queries using
concepts from the upper level ontology. Table 5 presents
some of the queries used for evaluating LOQUS along with
statistics related to the execution of these queries. The
queries though small in number require information from
different sections of the LOD cloud and some of them have
been adopted from publicly available sources. The queries
have been executed successfully by LOQUS in a manner
similar to Query 1 (which is explained in Scenario Illus-
tration). All these queries are diverse and have different
characteristics. Query 1 does not involves any concepts
from LOD cloud datasets and the mentioned terms are vari-
ables or concepts from upper level ontology. Query 2 is
taken from Jamendo website. In the corresponding SPARQL
query, apart from URI for ”Punk” taken from Jamendo, the
remaining terms are again either variables or concepts from
upper level ontology. Query 3 involves processing results of
queries on LOD datasets (USCensus and SemWebCorpus),
which do not share a direct link in the LOD cloud. Thus,
LOQUS can unify answers even when sub-query answers
are not directly connected to each other. Query 4 (adopted
from DARQ) is identical in spirit to Query 2 as it mentions
specific LOD cloud concept (From DBpedia). However, the
query utilizes information from a single source. This il-
lustrates, that LOQUS can execute and process results for
queries involving just one dataset as well.

Our results demonstrate that we are able to provide a
mechanism to execute challenging queries on the LOD cloud
without any compromise on execution time and by covering
relevant datasets. The LOQUS approach also allows queries
to retrieve and merge results which involve resources not
directly connected to each other in the LOD cloud. Our
evaluation shows that the LOQUS approach allows effec-
tive federatation of SPARQL queries over the LOD cloud by
using SUMO, a common upper level ontology. Using this
approach we are able to answer queries, which cannot be an-
swered by other state of the art systems for LOD query pro-
cessing. Table 5 presents the various parameters on which
LOQUS was evaluated for the three queries. Due to the re-
strictions imposed by SPARQL endpoints, the number of re-
sults returned for the query may not match the total number
of entities available in datasets. The execution time has been
averaged over 5 runs of the query.

Qualitative comparison with other tools Table 6 com-
pares LOQUS with DARQ and SQUIN on various param-
eters. The queries were executed for LOQUS. For other

systems it is based on understanding of the capabilities of
the system. DARQ (Quilitz and Leser 2008) is a query en-
gine which provides transparent query access to multiple,
distributed SPARQL endpoints as if querying a single RDF
graph which relies on ”Service Descriptions” to specify the
capabilities of a SPARQL endpoint. One of the limitations
of DARQ is the use of predicates to decide the SPARQL
endpoint to send triple patterns. Hence, it requires predi-
cates to be bound. Thus it requires use of multiple queries
to fetch results for Query 1 and Query 2. Absence of direct
link between SemWebCorpus and USCensus, makes it im-
possible to fetch results for Query 3 using DARQ. SQUIN
(Hartig, Bizer, and Freytag 2009) allows LOD query answer-
ing by asynchronous traversal of RDF links to discover data
that might be relevant for a query during the query execution
itself. Hence, it requires at least one ground concept in the
”subject” or ”predicate” position of the triples contained in
the query. Due to this requirement for crawling data, it is
not possible to answer Query 1. Similarly Query 3 requires
crawling to be performed from two different ends and then
merging the crawled results and hence cannot be answered
by SQUIN.

Related Work
To the best of our knowledge this is the first work present-
ing a system which allows users to query the LOD cloud
without knowing the concepts from the diverse datasets and
their interlinks. However, there are existing work on query-
ing the LOD cloud which expects the user to know the
concepts and the datasets which can answer the queries
(introduced in the paper). These systems expect user to
know the datasets and cannot answer the queries used for
our evaluation. Another body of work which is related
is the work in upper level ontology creation. A num-
ber of well known upper level ontologies such as SUMO
(Niles and Pease 2001), Cyc (Reed and Lenat 2002), and
DOLCE (Gangemi et al. 2002) are available. In the past
various domain specific ontologies have been integrated
with these upper level ontologies (Oberle and others 2007;
de Melo, Suchanek, and Pease 2008) driven by application
specific needs. Other bodies of work relevant for this re-
search is in the area of federation of database queries and
schema matching and mapping.

Conclusion and Future Work
We have presented an approach for querying the LOD cloud
without intimate knowledge of the individual datasets and
the interconnecting relationships. Our results demonstrate
that we are able to provide a mechanism to execute chal-
lenging queries on the LOD cloud without any compromise
on execution time and by covering relevant datasets. The
LOQUS approach allows automatic retrieval and merging of
results for queries involving resources indirectly linked in
the LOD cloud. Our evaluation shows LOQUS approach al-
lows effective federation of SPARQL queries over the LOD
cloud by using SUMO, a common upper level ontology. Us-
ing this approach we are able to answer queries, which can-
not be answered by state of the art systems for LOD query

no. query # results Datasets execution
time(seconds)

Q1 Identify movies, countries where they were shot and the
latest population for these countries.

1023 LinkedMDB, Geon-
ames, DBpedia

80

Q2 Identify artists, whose albums have been tagged as punk
and the population of the places they are based near.

54 Jamendo, MusicBrainz,
Geonames, DBpedia

85

Q3 Identify congressional districts with active researchers in
the area of Semantic Web.

30 SemWebCorpus,
FOAF, Geonames,
USCensus

110

Q4 Find name, birthday and image of German musicians
born in Berlin.

8 DBpedia 65

Table 5: Result execution of queries using LOQUS

Metric LOQUS DARQ SQUIN
Requires user to know LOD
Datasets

X
√ √

Approach Uses upper level ontology
(SUMO) for query serializa-
tion and execution.

Requires formal description
of datasets in the form of
Service Description.

Requires an initial URI to
execute queries.

Query Creation Creates query correspond-
ing to every mapping for a
concept.

Creates queries only cor-
responding to the concepts
mentioned in the query.

Creates queries only cor-
responding to the concepts
mentioned in the query.

Failsafe Executes all subqueries for
multiple mappings. Hence
retrieves at least partial an-
swers if a specific endpoint
doesn’t work.

X X

Result Processing Query answers, retrieved
from different datasets are
merged and presented to
user.

Retrieves answers from
only one dataset.

Retrieves answers from
only one dataset.

Queries Answered Q1,Q2,Q3,Q4 Q4 Q2,Q4

Table 6: Comaparison LOD SPARQL Query Processing Systems

processing.
Our future work includes extending the upper level on-

tology for including other datasets, analysis of query logs
for better support of query answering and optimization of
query plans for faster query execution. We also plan to re-
lease the querying system and upper level ontology as an
open source project. We could not provide an online query-
ing system as demonstrator for this submission due to the
required anonymity. This will be added in the final version
of the paper.

References
Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked
data – the story so far. IJSWIS 5(3):1–22.
de Melo, G.; Suchanek, F.; and Pease, A. 2008. Integrat-
ing YAGO into the Suggested Upper Merged Ontology. In
ICTAI 2008.
Gangemi, A.; Guarino, N.; Masolo, C.; Oltramari, A.; and
Schneider, L. 2002. Sweetening Ontologies with DOLCE.
In EKAW 2002, volume 2473 of LNCS, 223–233.
Hartig, O.; Bizer, C.; and Freytag, J.-C. 2009. Executing
SPARQL Queries over the Web of Linked Data. In ISWC
2009, volume 5823 of LNCS, 293–309.

Jain, P.; Hitzler, P.; Yeh, P. Z.; Verma, K.; and Sheth, A. P.
2010. Linked Data is Merely More Data. AAAI Spring
Symposium ”Linked Data Meets Artificial Intelligence”.
Niles, I., and Pease, A. 2001. Towards a Standard Up-
per Ontology. In Proceedings of the International Confer-
ence on Formal Ontology in Information Systems – Volume
2001, 2–9.
Oberle, D., et al. 2007. DOLCE ergo SUMO: On Foun-
dational and Domain Models in the SmartWeb Integrated
Ontology (SWIntO). JWS 5(3):156–174.
Quilitz, B., and Leser, U. 2008. Querying Distributed RDF
Data Sources with SPARQL. In ESWC 2008, volume 5021
of LNCS, 524–538.
Reed, S., and Lenat, D. 2002. Mapping Ontologies
into Cyc. Technical report, Cycorp, Inc,. Available from
http://www.cyc.com/doc/white papers/.
Toupikov, N.; Umbrich, J.; Delbru, R.; Hausenblas, M.;
and Tummarello, G. 2009. DING! Dataset ranking using
formal descriptions. In WWW2009 Workshop on Linked
Data on the Web (LDOW2009).

