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Executive Summary

The notion of context has a very long history within several research communities, lead-
ing to vast studies about how to define a context, how to take into account information
coming from the context, how to contextualize or de-contextualize knowledge and infor-
mation, etc. Despite all these studies, a clear and unifying definition of the notion of con-
text is still missing. The goal of this deliverable is to provide a state-of-the-art overview
of context representation formalisms in order to clarify the required features of a context
model for networked ontologies. We first provide an abstract and generic mathematical
definition of context. We then identify several possible usages of context for ontologies.
These different usages are important for the evaluation of the approaches to represent-
ing and reasoning with context. Finally, we give an overview of some present approaches
for representing and reasoning with context which may be relevant for NeOn. We com-
pare the different approaches along several dimensions which are directly derived from
our generic context definition.

In terms of the usages of context, we find that supporting viewpoints and perspectives
and dealing with inconsistent, uncertain and vague information, will play a paramount
role in NeOn. To be able to address these usage scenarios for context, we believe
that the following approaches for contexts are relevant for NeOn: The networked ontol-
ogy model developed in WP1 will provide the most obvious form of context: Ontologies
will be embedded in a network of ontologies, which forms the context for its interpreta-
tion. Reasoning with inconsistent ontologies exploiting context information will be impor-
tant when different information sources with contradicting information will be integrated.
Context-based selection functions appear promising for addressing a number of differ-
ent problems. Finally, a combination of possibilistic and probabilistic logics seems to be
required to deal with the various forms of vagueness and uncertainty in a contextualized
way. These findings will be considered in the forthcoming deliverables D3.1.2, where
we will define the NeOn formalism for context representation, and in the accompanying
deliverable D3.2.1, where we will develop a prototype for reasoning with contexts based
on that formalism.
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Chapter 1

Introduction

1.1 The NeOn Big Picture

Real life ontologies and corresponding data are produced by individuals or groups in
certain settings for specific purposes. Because of this, they can almost never be consid-
ered as something absolute in their semantics and are often inconsistent with ontologies
created by other parties under other circumstances. In order to fully utilize networked on-
tologies, those disagreements must be identified prior to using them for reasoning. Each
ontology can be viewed as valid (or appropriate) in a certain context. The context can be
seen as a set of all circumstances, properties and facts within which the ontology has the
desired semantics. From the theoretical side, we could say that whenever the contextual
information is necessary, the target ontology cannot have fully defined static semantics
because it depends on some external information which we call context. We could call
such ontologies parametric onfologies because their semantics depends on the value
of contextual parameters. In this deliverable we provide a state-of-the-art-overview of
context languages relevant for NeOn. This report is part of the work performed in WP3
on dealing with context. As shown in Figure 1.1, this work belongs to the central part of
the research and development WPs in NeOn. One of the key points of this workpackage
is to model and provide a formalization of the context in which a so called parametric
ontology is valid. This model will support both a proper representation of the informa-
tion particular to the context and its formalization that allows reasoning with the modeled
context. The context representation formalism to be developed as part of WP3 has close
relations with various activities performed in other workpackages, as we will detail in
Section 1.3.

1.2 Ontologies and Context

The notion of context has a very long history within several research communities, lead-
ing to vast studies about how to define a context, how to take into account information
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Figure 1.1: The NeOn Big Picture

coming from the context, how to contextualize or de-contextualize knowledge and infor-
mation, etc. Despite all these studies, a clear and unifying definition of the notion of
context is still missing (the page dedicated to the word context in Wikipedia' contains
about ten different definitions, depending on the considered discipline).

Probably the most simple and concrete definition of context comes from linguistics. In-
deed, WordNet defines a linguistic context as the "discourse that surrounds a language
unit and helps to determine its interpretation”.? In a more general perspective, a context
can be considered as the information, facts, or assumptions, without which a particu-
lar situation, piece of information or word cannot be correctly understood. For exam-
ple, [Guh95] considers that a sentence in a knowledge base is context dependent if its
meaningfulness and its truth rely on some assumptions. Making explicit the context de-
pendencies, i.e. reifying the context, corresponds to making explicit these assumptions.
Taking as an example the sentence "it is crucial to take into account variables from the
environment", it seems obvious that it should be placed into its context to be correctly in-
terpreted. It would have very different meanings in the context of software development

Thttp://en.wikipedia.org/wiki/Context
2http://wordnet.princeton.edu/perl/webwn?s=context

2006 (© Copyright lies with the respective authors and their institutions.
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than in the context of agriculture planning. Similarly, different contexts can be situa-
tions in which a word can have different definitions. For example, the word "lecturer” is
interpreted differently in different countries®.

Context-aware computing [Dey01b] defines: "Context is any information that can be used
to characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the
user and application themselves." Judging by the many definitions of context in differ-
ent disciplines, the notion of context is itself context-sensitive, and it is hard to point
out the specific characteristic that distinguishes context from background, background
knowledge and/or the multiplicity of implicit facts and assumptions that is simply taken
for granted, unnoticed, left out, or suppressed as too obvious to mention. This is re-
flected in the reluctance in some important papers on context to actually define it, such
as McCarthy’s [McC86], and in his insistence that "there is no universal context".

The goal of this deliverable is not to establish a universal definition or to discuss this vari-
ety of definitions* but rather to focus on the question of how we can deal with context for
ontologies. Even in connection with ontologies, there is also some context-dependence
in the definition of context: ontologies themselves supply context, e.g. for browsing
(which again indicates that context can be practically anything), but mappings between
ontologies supply context too, as in C-OWL [BGHT03].

To survey the field of context of ontologies, we proceed along two dimensions:
1. What are usage scenarios of context for ontologies?
2. What approaches for the representation of and reasoning with context exist?

Finally, we establish the relationship between the two dimensions, i.e. we investigate
which approaches are applicable for which forms of usage. Usages of context are mani-
fold and include for example

e supporting different viewpoints, where the viewpoints may represent mutually in-
consistent perspectives, but each of them may be valid given a particular context,

e personalization of ontologies, where the context is provided by a user profile,

e dealing with imperfect information, e.g. inconsistent, uncertain and vague infor-
mation, where context can be exploited to allow useful interpretations despite the
presence of imperfection.

Similarly, there is a wide range of approaches to representing and reasoning with con-
texts:

e In some approaches such as context logics we find explicit support for talking
about contexts as first class citizens of the language.

Shttp://en.wikipedia.org/wiki/Lecturer
“there exist several surveys addressing these issues [BBG01, AS96, BGGB03]
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e In other approaches, context is implicitly provided e.g. via the relationship of an
ontology with other elements of a domain.

e Yet other approaches rely on extending ontology languages with the ability to rep-
resent contextual information about ontologies and their elements in the form of
numerical values indicating probabilities or possibilities of particular statements.

To study the existing concrete representations, we start from an abstract and generic
definition of context for ontologies: We consider a context as a modifier of semantics,
i.e., we define context via its function. If context for some information is provided, this
will alter the information’s meaning, i.e. its semantics. We then instantiate this generic
definition with the concrete representations of contexts in order to better understand
how different usages of context lead to different specializations of this definition, and so,
which kind(s) of concrete definition may be central for NeOn.

1.3 Relationship With Other Workpackages

The context representation formalism to be developed as part of WP3 has close relations
with various activities performed in other workpackages. We here discuss the relation-
ships with the three other workpackages, that — together with WP3 — form the four basic
dimensions of the NeOn project.

WP1 - Dynamics of Networked Ontologies One of the main goals of WP1 is the defi-
nition of the networked ontology model. The networked ontology model is closely related
to the notion of context developed as part of WP3. Firstly, the networked ontology model
needs to be able to represent context as defined in WP3. Secondly, the network of on-
tologies that a particular ontology is embedded in can itself be a special form of context:
In the networked scenarios of NeOn, ontologies are not treated as isolated entities, but
are related to other ontologies in various networked ways, including versioning and map-
ping information etc. These other ontologies together with these links can be understood
as a context for the ontology, as they will (in some cases) alter the knowledge which can
be inferred from the ontology. The exact semantics of the networked ontology model will
be provided by WP1.

WP2 - Collaboration From the collaborative perspective of WP2, the main objec-
tive is to characterize and to apply design rationales for networked ontologies within
knowledge-creating communities. Here, we may want to take into account also the so-
cial environment in which a knowledge object (database or ontology) is created or used,
i.e. the social context of the ontology. Knowledge objects and their elements can be seen
as elements of larger entities, together with the agents that have made (or use) them, the
organizations or institutions to which these agents belong, the roles established within
these organizations and the activities the agents perform. These larger entities can be

2006 (© Copyright lies with the respective authors and their institutions.
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modeled in terms of knowledge collectives (or communities) and of the projects in which
the collectives are involved. Typically, knowledge collectives share views or conceptual-
izations of the domain they deal with. These views are contexts that specify the sense
in which a concept is used by a given knowledge collective, and they are internal to the
knowledge production process. In the DOLCE-DnS ontology, which will be used in WP2
to deal with the collaborative aspects of networked ontologies, concept definitions, called
descriptions, are introduced, which correspond to this sense of ‘context’ [MVB*04]. In
DOLCE-DnS, all social and knowledge entities are put in the domain of discourse via
reification: social concepts and roles, as well as their descriptions. This allows to for-
mally characterize in a first-order theory the relationships among all these entities, and
to define properties ranging over them.

WP4 - Human Ontology Interaction In a networked scenario of ontologies with poten-
tially thousands of classes and relations, a capability to not only visualize but intelligently
select and filter the right level of detail to be shown and interacted with is greatly im-
portant. The level of detail that is most appropriate for a given situation depends on (i)
userSs profile and group-wide preferences, (i) constraints of the user interface; e.g. a
display size, device mobility, bandwidth restrictions, or (iii) access/re-use rights a spe-
cific user has for an ontology s/he wishes to link, etc. From an HCI point of view what is
needed is the ability to customize user interfaces for working with multiple ontologies si-
multaneously, and allow users to perform actions that are relevant to a particular context.
Here, WP4 will rely on the notion of context developed in WP3 to improve the interaction
with networked ontologies.

1.4 Overview of the Deliverable

This deliverable is structured as follows. In Chapter 2, we provide a generic and abstract
formalization of context for ontologies to cover a range of different notions of context. The
purpose of this definition is to provide a basis for a characterization and comparison of
different context representation formalisms within a common framework by instantiating
the generic definition. The usage of context information for ontologies may be manifold.
In Chapter 3, we discuss different usages of context that may be relevant in the scope
of NeOn. In Chapter 4, we analyze existing approaches to the representation of and
reasoning with context and compare these approaches by describing them in terms of
our generic definition. Further, we describe how these approaches can be applied to
realize the different usages of context. We conclude with a summary and a roadmap for
future work in Chapter 5.
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Chapter 2

A Generic Definition for Context

In this chapter we provide a formal definition of context of an ontology'. This definition
does not attempt to give a notion of "context” in a more general sense. It is also not
intended to be operationalized in a reasoner. The purpose of this definition rather is to
provide a basis for a characterization and comparison of different context representation
formalisms within a common framework by instantiating the generic definition.

Contexts as modifiers of semantics. We are interested in knowledge expressed as a
set of assertions and rules. Examples are knowledge bases (or ontologies), and relations
between such knowledge bases.

If such a set of assertions is put into a context, then this means that the context alters
some of the meaning of the set of assertions. In other words, the context acts as a
modifier for the semantics of a knowledge base.

2.1 Formal abstract definition of context for an ontology

Let K be a knowledge base, which comes with an associated semantics S(K). Thus, S
is a function which associates a semantics to any knowledge base K.

Now, given a context C' and a knowledge base K, we denote by S’( K, C') the semantics
of K in the context C'. Thus, S’ is a function which associates to any knowledge base K
and context C' a semantics, e.g. expressed by the set of all logical consequences of K
in the context C'.

If we have empty context (denoted by (), then often we require S’(K, ) = S(K).

Note that there is a convenient way to describe the function S’ in many cases. Given a
knowledge base K and context C, it will often be possible to create a knowledge base
K’ such that S"(K,C) = S(K’). In these cases, reasoning within a context can be

"Please note that within this deliverable we do not distinguish between the use of the notion of "ontol-
ogy" and that of "knowledge base". However, for the logical characterization, we tend to prefer the term
"knowledge base".

2006 (© Copyright lies with the respective authors and their institutions.
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reduced to changes of the knowledge base K (converting it into K’), and by reusing
existing reasoners.

Formal Definition of Context We will now go into further detail. Taking some lan-
guage L, a knowledge base on L is a (possibly infinite) set of statements over L. Let
ICB(L) denote the set of all knowledge bases expressible in L.

Now, we consider a language Ly called knowledge language. A semantics for L, can
be formalized as a function S : KB(Ly) — KB(Ly) assigning to a knowledge base
K a knowledge base S(K') containing all logical consequences of K expressible in the
knowledge language.

Let furthermore be L. a language called context language for expressing contextual
knowledge. An L.-context semantics for Ly is then a function S : KB(Ly) x KB(L.) —
ICB(Ly). (The overloading of the symbol S is by purpose.)

In practice, one will mostly impose further restrictions on the knowledge base one works
with. E.g., a knowledge base could be required to contain only certain kinds of expres-
sions from Ly — as an easy example, take a database containing only tuples of entities
(or, similarly, a logic program containing only ground facts) while the entailed knowledge
(respectively the expressible queries) could have a much more complex structure. An-
other common constraint to knowledge bases is that they have to be finite (or at least
finitely representable in some sense). The set of finite knowledge bases over some
language Ly will be denoted by KBg, (Ly).

In many cases, additional constraints will be reasonable. In particular, we will call a
context semantics

e conservative, if S(Ly,0) = S(Ly) for all K € KB(Ly). This means that, if an
empty context (i.e. no contextual information) is provided, the semantics coincides
with the “pure” semantics of the knowledge language.

e extensive, if K C S(K,C) forall K € KB(Ly), i.e., all statements of the knowl-
edge base are as well logical consequences of it. In other words, any information
stated in the knowledge base can be deduced to be valid (and cannot be spoilt by
whatever context provided).

e knowledge-monotone, if K; C K5 implies S(K;,C) C S(K,,C) for all K1, K5 €
KB(Ly) and C' € KB(L.), i.e., all logical consequences remain valid if the know!-
edge base is augmented and the context does not change. Note, that this is not
always the case (cf. non-monotonic semantics by closed world assumption).

e context-monotone, it C; C C, implies S(K,Cy) C S(K,Cs) for all C,Cy €
KB(L.) and K € KB(Ly), i.e., if the information given by the context increases,
the derivable information does so as well. In particular, no previously valid conse-
quence can be invalidated by adding more contextual knowledge.
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e idempotent, it S(S(K,C),C) = S(K,C) foral C € KB(L.) and K € KB(Ly),
i.e., taking all consequences of a knowledge base under a certain context and then
taking again all consequences under the same context will yield nothing new.

e dependently reducible, if there is a function o : KB(Ly) x KB(L.) — KB(Ly),
such that S(K,C) = S(o(K,C),0), i.e., knowing a knowledge base K and a
context C', one can determine a new finite knowledge base with the same set of
consequences as K with context C'. l.e. for every contextualized knowledge base
we can determine a logically equivalent knowledge base without context.

e independently reducible, if there is a function 7 : KB(L.) — KB(Ly) such that
S(K,C) = S(KUT(C),0) forall K € KB(Lyx) and C' € KB(L.), i.e., any
context can be "translated" into Ly (independently from K') and simply added to
the knowledge base. In this case, contextual reasoning could be reduced to pure
reasoning over Ly, such that existing methods could easily be employed for this.

The above definition is very abstract. This is done on purpose to accommodate the
many practically important ways of context usage. In Chapter 4, we give some examples
of concrete instances of the abstract definition. Many more notions of context fit our
general definition. In the project, we will have to determine which concrete instances will
be used and supported by the NeOn system. These instances will have to be dealt with
on an individual basis when realizing the NeOn system.

2006 (© Copyright lies with the respective authors and their institutions.
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Chapter 3

Usages of Context

The usage scenarios of context information for ontologies are manifold. In this Chapter
we provide an overview of possible usages that may be relevant in the scope of the
NeOn project.

3.1 Supporting different Viewpoints and Perspectives

In practice the use of ontologies for different tasks and purposes requires to consider the
particular task as context for the ontology. The reason is that ontologies are often not
really designed independent of the task at hand [Stu06]. In general, the context of use
has an impact on the way concepts are interpreted to support certain functionalities. As
some aspects of a domain are important in one context but do not matter in another one,
an un-contextualized ontology does not necessarily represent the features needed for a
particular use. In order to solve this problem, we have to find ways to enable the repre-
sentation of different viewpoints that better reflect the actual needs of the application at
hand.

When talking about viewpoints, we can distinguish two basic use cases: In the first case,
the aim is providing means for maintaining and integrating different existing viewpoints.
In the second use case, one may want to extract a certain viewpoint from an existing
model that best fits the requirements of an application.

In many application domains (such as medicine [SYHB104]) it is acknowledged that the
creation of a single universal ontology is neither possible nor beneficial, because differ-
ent tasks and viewpoints require different, often incompatible conceptual choices. As
a result, we need to support situations where different parties commit to different view-
points that cannot be integrated by imposing a global ontology. This situation demands
for a weak notion of integration, in order to be able to exchange information between the
viewpoints. [Sto06] describes one such example from oncology: Oncology is a complex
domain where several specialties, e.g. chemotherapy, surgery, and radiotherapy are in-
volved in a sequence of treatment phases, each representing a particular viewpoint. A
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decision taken in a local viewpoint, i.e. for a particular oncology specialty, may have an
influence on the decision to be taken in another local viewpoint.

An approach to extracting different viewpoints from a corpus of documents is presented
in [FGMO06]. The authors introduce a word weighting schema as an alternative to
the standard TFIDF weighting (Term Frequency / Inverse Document Frequency). The
weighting schema is automatically learned from the background knowledge provided by
the user which corresponds to users’ different views on some documents. Then, differ-
ent taxonomic ontologies are constructed, each corresponding to a different viewpoint
on the same corpus of data.

3.2 Dealing with Temporal Information

One aspect of implicit, contextual information is its temporal component. The ability to
identify, represent and reason about time-dependent information is important for various
applications, such as databases, planning, scheduling, natural language processing,
news streams analysis, and others.

Some natural language applications where temporal information is relevant are infor-
mation extraction, question answering, and multi-document summarization. In [MCHO05],
the performance of question answering is considerably improved by detecting temporally
related events in text and converting them into an enriched logical representation.

Another example where temporal reasoning can be used is in news analysis to dis-
tinguish related news items from unrelated ones. In this case, explicating the temporal
component of context in a formal model makes it possible to disambiguate some context-
dependent events and discover connections between them [MBO6].

A central theme of the Semantic Web is the aggregation of data from different sources.
With respect to temporal information one is often faced with the problem of implicit time
[GMFO04]. Sites often publish a piece of data that is true at the time of publication, with
the temporal qualification left implicit. Equally often, this data does not get updated when
it no longer holds (e.g., some sites still list Bill Clinton as the President and Yugoslavia
as a country). Even worse, such implicitly temporally qualified data is often mixed with
data that is not temporally qualified. When aggregating data from these sites, one has
to either make the time explicit or only selectively import those facts that are not likely to
have changed.

The semantic heterogeneity problem on the Web is further complicated when the se-
mantics of data not only differs across sources, but also changes over time. [ZMS04]
introduce the notion of temporal context as a formalization of the problem. They repre-
sent temporal context as a multi-valued method in F-Logic, and treat temporal relations
as constraints in an abductive constraint logic programming framework.
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3.3 Dealing with Inconsistent Information

In the distributed NeOn scenario, inconsistency occurs naturally even if each source of
information does not contain contradictory information. Inconsistency can occur due to
several reasons, such as modeling errors, migration or merging ontologies, and ontology
evolution. For example, information from different sources may need to be merged into
a single knowledge base. As each of the source may have been created independently,
it is reasonable to expect that the merged knowledge base may contain contradictory
information. Current DL reasoners can detect logical inconsistency. However, they only
provide lists of unsatisfiable classes. The process of resolving inconsistency is left to the
user or ontology engineers. The need to improve DL reasoners to reason with inconsis-
tency is becoming urgent to make them more applicable [HVHtTO05].

Contextual information can be used to resolve such conflicts. It can be used to se-
lect relevant consistent parts of the knowledge base which suffice for the task at hand.
Contextual information provides guidance for this selection process, as usually different
possibilities exist for resolving an inconsistency.

Consider e.g. two knowledge bases, one dealing with livestock data, and one dealing
with animal trade laws. As both knowledge bases may be in constant use, they will
be changing rapidly and dynamically, which makes a manual alignment unfeasible. Au-
tomated tools for aligning respectively merging the two knowledge bases are prone to
certain kinds of mistakes. In this case, a wrong alignment may e.g. be the result of
different usages or meanings of the word (i.e. class name) breed in the two knowledge
bases. Consequently, the merged knowledge base may contain inconsistencies.

Now, an application concerning mainly zoological aspects could use provenance or other
information and successively remove parts of the merged knowledge bases which stem
from the animal trade laws knowledge base, as in the case of conflicting information
the livestock data is more likely to contain the information needed. The context, in this
case, is given by the usage of the data, and the merged knowledge base is modified
accordingly.

3.4 Dealing with Uncertain or Vague Information

Information is often pervaded with uncertainty. There are many different types of un-
certainty [AM97]: knowledge is partial, beliefs are not fully reliable, the representation
language is inherently imprecise and information from multiple sources is conflicting, etc.
Often the uncertainty of information is related to the fact that it is only valid under certain
assumptions, circumstances — or in other words, in particular contexts. If that information
is preserved, it can later be used in reasoning.

In addition to uncertainty, information often comes with a certain level of vagueness.
Something is said to be vague if its definition, its boundaries, cannot be clearly estab-
lished. Classical examples are concepts like tall, big or adult, for which it is not clear
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where they begin and where they stop. Here, contextual information about the informa-
tion can be used for a more precise interpretation.

3.5 Personalization / User Profiling

User profiling is a research and application area accompanying many other fields of
research which provide their results through some kind of user interface. The function of
user profiles is to optimize one or several tasks a user performs with the system.

Good examples of such task optimization are advanced e-shops which use information
from pre-calculated user profiles showing to the user products which are more likely to
be bought. The function being optimized in such a scenario is the profit of the e-shop.
Another example would be personalized news delivery or personalized search where
by using user profiles we increase the quality of user’'s experience when browsing the
retrieved information.

In both of the above examples we deal with functions which are to be optimized (ex-
pressed implicitly or explicitly) and with a model (always expressed explicitly) which de-
termines ranking of retrieved information items (e.g. search results, new items or prod-
ucts). We call such a model a user profile. A common scenario is that such a model is
constructed and updated explicitly by manual intervention or implicitly by a background
process which observes and summarizes user’s behavior. In both cases the result is a
model which allows to analytically determine the user’s point of view and captures his
interests. To be broader, we could also say that different users have not only different
point of views but also attach different semantics to the same terms used to describe
information needs. A good example would be the word ’Madonna’ which has different
default semantics for different people.

Having in mind the above description we can say that a user profile is a model which
compensates differences in understanding of the same information - in other words, if
we define the context as a semantic modifier function, we can say a user profile models
a contextual view of a particular user to the common domain. This context can be static
or dynamic (perceived semantics of terms can change through time) and can be also
dependent on the 'upper level context’ or 'situation’ in which a user appears - e.g. a user
can have different understanding of the word 'Madonna’ when he talks to a local priest
or when he talks to his buddies in the local pub.

An important question is how to represent the user profile model. The most common rep-
resentation of the profile is analytical, as a set of weighted application terms/keywords -
such a vector is provided by the user or is calculated from the previous user’s activities.
More complex models could be in the form of taxonomies of term vectors (or other rep-
resentations) which capture more detailed contextual view of the data. An example of
taxonomic user profiles is SEKTbar Internet-Explorer plug-in ((GMGO04], see Figure 3.1)
which monitors user’s activities, builds taxonomy of user interests on the fly and through
such a model implements the function of the smart history of user browsing and poten-
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tially helps in ranking search results as a meta level above some search engine.

3.6 Situation Awareness in Pervasive Computing

Pervasive computing in concerned with the availability of many connected computing
devices in our environment. One of its goal is to take advantage of these devices in
order to help users in the more appropriate way. For that purpose, the notion of context
in which users are acting is very important: the more devices understand the context
in which the user is evolving, the more helpful they can be. We talk about context-
awareness or situation-awareness [Dey01a].

Although, several domains have considered the notion of context, the standpoints from
which this notion is considered are different: in pervasive computing, the context of
an application in terms of its physical parameters has been especially considered; in
human-computer communication, the context is most often the user task and the history
of its dialogue with the computer [Dou01]. So the notion of context can be a physical
situation (as the spatio-temporal location of some person) or functional (as the current
task of the person).

In pervasive computing, the physical context is of the outmost importance. In general, it
is acquired through sensor data (for instance, the temperature acquired by a thermome-
ter). These data are further elaborated into context characterization adapted to their
use (for instance high temperature for some clime controller). With regard to the sensor
data (a temperature), the information has been weakened (i.e., made less precise) but
is more adapted.

So, information such as pressure, temperature, sunlight, humidity and date are context
elements. If one wants to implement a temperature service the context will be restricted
to temperature, but for a clime monitoring station, information of temperature, sunlight
and date will be aggregated for regulating the heat sources.

A pervasive computing application must be able to get in and out of contexts: when the
user enters a building, the context related to the city she is in, is over-ruled by that of the
building (which will be over ruled by that of the room she is in, etc.). This context must
be forgotten upon exit of the building.

The various definitions of context in pervasive computing are very often related to an
application or a particular domain. The drawback of this characterization is its reliance
on the task : high temperature is not an absolute characterization. It depends on the use
of the room (a sauna or a sleeping room).

More than context, pervasive computing tends to manipulate a characterization of the
context in the perspective of an application. In consequence, it is difficult to dynami-
cally implement non expected applications with the characterization of context made for
another one.

However, multi-application context modeling is now understood in pervasive comput-
ing. [CCDGO5] raises the issue of considering context independently from applications.
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Figure 3.2 shows the layered way to progressively elaborate context information from
sensors to applications.

For this application-independent context modelling, the use of ontologies is natural be-
cause various context information have to be assembled [CCDGO05]. In [ERPO06], is even
proposed a context management system in which ontology matching is used for enabling
interoperability of contexts. This helps the perception and situation layers so that they
can support the dynamic evolution of the environment (new sensors and applications).

3.7 Scalability

Typical application scenarios addressed by NeOn involve large knowledge bases, and it
is of vital importance that corresponding tools scale well. Contextual information can be
used to address the scalability issue in different ways. Most importantly, context helps to
narrow the domain of interest, and can thus be employed to select relevant parts of the
knowledge base while ignoring other parts, thus reducing the size of the knowledge base
which has to be taken into consideration. Contextual information can also give usage
information, which in turn allows to select visualisation or reasoning methods which are
specifically tuned for the task at hand.

As an example, consider a knowledge base containing ontologies about geographical
and touristic data in different versions, together with versioning information. When plan-
ning the next holidays, contextual information would suggest to ignore both the geo-
graphical data and older versions, thus reducing the size of the knowledge base to be
taken into consideration. Another usage situation is given when querying the knowledge
base while on a holiday trip, e.g. using a mobile phone to retrieve data about a certain
point of interest. In this case the geographical data may be relevant, so that it should
not be ignored. However, the situation demands that the system responds quickly, even
at the expense of preciseness or correctness of the answer. The contextual information
would thus invoke heuristic or approximate reasoning algorithms which trade correctness
for speed.

3.8 Ontology Adaptation and Views on Ontologies

Originally ontologies have been conceived as a task-neutral description of a certain do-
main of interest that can be reused for different purposes, such that ontology-based
descriptions of information make it possible to use the information for different purposes
and in different contexts.

In scenarios of ontology reuse it is however often the case that the particular context of
use requires to adapt an existing ontology for the given purpose of use. Thus, depending
on the task to be accomplished — i.e. the context in this case — different views on the
ontology might be useful. The knowledge of the possible tasks could then itself be rep-
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resented explicitly in an ontology or it could be implicitly present by principles describing
how the domain knowledge can be restricted to that relevant for the considered task.
This notion of exploiting context has also been referred to as "knowledge lens": a se-
lection, filtering and viewing paradigm parameterized in several dimensions in order to
provide a conceptual view onto an ontology. The parameterization can be done with
regard to:

e Focus setting the stage for what facts are relevant. For instance, in the field of
cardiology, one may decide to consider all concepts related to the heart to be in
the focus of interest.

e Conceptual range defining what set of facts in the conceptual neighborhood of the
focus is of interest. For instance, one may parameterize this dimension in order to
see only what is conceptually very close to heart.

e Resolution determining at which level of abstraction one wants to consider the
selected parts.

e Perspective projecting from the multidimensional space of facts onto a simpler
subset; for instance one may only be interested in some aspect of the heart such
as its functioning.

There has been some work on specifying views on RDF data, mainly inspired by the
concept of views in database systems. The idea is to define rules for extracting and
possibly restructuring parts of a basic RDF model to better reflect the needs of a cer-
tain user or application. Different techniques have been proposed including the use of
named queries, the definition of a view in terms of graph traversal operations and the
use of integrity constraints for ensuring the consistency of a view. One way of further
subdividing related cases could be in analogy to operations of relational algebra (known
as a basic DB theory paradigm):

e Projection. In many cases, it may be beneficiary to hide (or forget) certain data.
As an example, imagine a large ontology maintained by several people. Every
entry is endowed with the information which person entered it at which time. For
"normal” retrieval tasks, this kind of information would be irrelevant and, moreover,
providing public access to it could not be appropriate. Thus it would be reasonable
to have a general and a public view, where the latter is a projection of the former.
The context here would be the role of the user as a, say, ontology administrator vs.
querying customer.

e Selection. This would be an alternative way to restrict present knowledge to the
parts relevant for a specific task or interest. Suppose, there is an ontology about
(extinct and alive) living beings — possibly maintained by the biology department
of some university. This ontology is going to be used as a source of information
about zoological gardens. Naturally, a potential web interface can be restricted to
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alive animals, i.e. we have a constraint on the ontology entry’s attributes. Here, the
purpose of the intended usage of the data would provide the context for selection.

e Join. Here — contrary to the cases before — an integrated view has to be created
by combination of separate sources. Obviously, knowledge from different ontolo-
gies has to be combined to be capable of providing comprehensive and adequate
support for users in many cases. E.g. it would be practical to combine the above
mentioned biological ontology with an ontology about geography and climate in
order to investigate, whether a certain species can be kept in a certain zoo in an
outdoor installation (this could be realized by a "join" of the climate of the animals
natural habitat with the zoo’s clime).

Obviously, the last kind of view generation necessitates the most sophisticated tech-
nologies, since it has to be ensured, that the used ontologies semantically agree on the
shared terminology. Thus, elaborated methods for associating ontologies are required.
Ideas in this direction have been described with the ontology-composition algebra by
Wiederhold [MWO04].

3.9 Using contexts for matching ontologies

Matching two (or more) ontologies consists of finding the correspondences (e.g., equiv-
alence, subsumption) between the elements of these ontologies (e.g., concepts, proper-
ties, formulas).

This a very important task because it helps restoring interoperability but a difficult one
because it is very hard to find these correspondences in the general case: independently
built ontologies can vary a lot on the terminology they use and the way they model the
same entities.

The problem is that domain ontologies are focussing on their particular domain and use
terms in a sense that is relevant to this domain (e.g., Ontology in computer science) and
which is not related to similar concepts in other domains. In one word, these ontologies
are designed in a context which is not explicit.

One way to help this process consists of using a third ontology as the context of the two
ontologies to be matched. This can typically be an upper-level ontology (Cyc [LG90],
Suggested Upper Merged Ontology (SUMO) [NP01] or Descriptive Ontology for Linguis-
tic and Cognitive Engineering (DOLCE) [GGMOO03]) that is used as external source of
common knowledge.

But this can also be made by reference to a specialized ontology that is known to cover
the ontologies to match. This particular ontology can be used for providing the missing
structure to poorly structured resources [AKtKvHO6].

Matching each of the ontologies to a common third ontology put these two ontologies in
the same context. This should be easier than the direct matching because: (i) upper
level ontologies having a broad coverage are more prone to provide matching super
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concepts of these ontologies, (ii) there are more chances that these alignments already
exists due to the availability of these ontologies.

Once the alignments between the two ontologies and the upper-level one are obtained,
it is easier to partition the ontology matching task in smaller matching problems because
the matching will identify the concepts having common super-concepts and can take
advantage of the exclusion assertions typically found in the upper-level ontologies.

It is also possible to compose the correspondences with the such as if a Novel in one
ontology is identified as less general than a Book in the context ontology which itself is a
sub-concept of Product which is identified with Good in the second ontology. Then, one
can conclude that Novel is less general than Good.

This involves reasoning about the ontologies.
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Figure 3.1: The screenshot shows the topic ontology of the user’s interests and the
most characteristic keywords from the root cluster. The user’s most recent interest is
highlighted with red color (the brighter the more relevant).
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Figure 3.2: Model for context in pervasive computing. Data coming from sensors are
aggregated and elaborated into the context used by applications (from [CCDGO05])).
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Chapter 4

Approaches to Representing and
Reasoning with Context

4.1 General Dimensions

The following list provides dimensions that should be used to characterize and compare
the approaches. It is directly derived from our generic context definition.

o Knowledge Language: What is the language that is used to encode the knowl-
edge for which the context is provided? In other words, what are the structures
that are put into context?

e Knowledge Semantics: How is the semantics formalized for the knowledge?

e Context Language: What is the language that is used to encode the context?
What are the structures that define the context?

e Context Semantics: How is the semantics used to modify the semantics of the
knowledge?

In addition, the following characteristics can be discussed.

e Scalability: An important aspect is the scalability of dealing with context. Here we
are faced with the classical tradeoff between expressivity vs. complexity. If known,
we provide complexity results for the relevant reasoning tasks.

e Acquisition: How can the context be acquired? Is it modeled manually, or do there
exist semi-automated or automated methods for the acquisition of context?
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4.2 Networked Ontology Models

4.2.1 Overview

In the networked scenarios of NeOn, ontologies are not treated as isolated entities, but
are related to other ontologies in various networked ways, including versioning and map-
ping information etc. These other ontologies together with these links can be understood
as a context for the ontology, as they will (in some cases) alter the knowledge which can
be inferred from the ontology. The exact semantics of the networked ontology model
will be provided by WP1. We here exemplarily describe one particular relation in a net-
work of ontologies, namely £-connections to establish links between individual ontology
modules.

&-connections (first described in [KLWZ03] and thoroughly treated in [KLWZ04]) evolved
out of the motivation to combine different description logic formalisms — thereby exploit-
ing their respective benefits — in a way that preserves decidability. Here, we give just a
very brief overview over the basic notions and results.

By introducing abstract description languages, a common framework for concrete de-
scription logics is provided. Interpretations are defined in the canonical way known from
description logics. Then, for two given description logic systems S; and S» and a non
empty set £ = {E; | j € J} of binary relation symbols, the resulting £-connection
C¢(S1,S,) is a new description logic the terms of which (distinguished into 1-terms and
2-terms) are inductively defined as follows (let i € {1, 2}):

e all atomic concepts of S; are i-terms,

e the set of i-terms is closed under the constructors of the description logic system
Si, and

e for every 1-term t, the expression (E};)*t is a 2-term and for every 2-term ¢, the
expression (E;)'t is a 1-term.

Consequently, an interpretation for C¢(S1,S») consists of an interpretation for S; and
So, respectively, as well as a binary relation between the corresponding domains for
every F;. An i-term is interpreted extensionally in the S;-domain. In particular, (E;)'t is
interpreted by those entities of the &;-domain having an £;-neighbor in the S3-domain
that belongs to the concept ¢. All other concept constructors are defined canonically.
Intuitively, £-connections allow to "switch" between separate DL-interpretations along
established links when building concept descriptions.

The main result about £-connections is the following: if TBox reasoning for both S; and
S, is decidable then so it is for 65(81, S»). This allows to construct so-called fusions
of description logics for special purposes. Note that fusing a, say, decidable DL for
describing static ontological knowledge with a temporal description logic could be a way
to incorporate dynamic context into an ontology (cf. also Section 4.5).
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In fact, £-connections capture a lot of expressivity from distributed description logics (see
[SSWO05] for a comparison), which will be described in Section 4.3.

4.2.2 Characterization Along Our General Dimensions

If, for example, £-connections are used for establishing relations between two ontologies,
then a context C' for an ontology (or knowledge base) K could consist of a set of other
ontologies which are linked to K by £-connections. The resulting semantics S’( K, C') of
K is described by means of the £-connections semantics.

4.2.3 Usage Scenarios

Supporting Viewpoints and Perspectives Networked ontologies are suitable for sup-
porting viewpoints and perspectives. Here, a single node (or a set of nodes) in the net-
work of ontologies is used for the representation of a particular viewpoint. This viewpoint
can then be related with other viewpoints via mapping or bridging relations, as described
above for the case of £-connections.

Dealing with Temporal Information In a similar way as for the representation of view-
points, networked ontologies can also be used to represent different versions of a model.
The network of nodes then represents a version space, which can be considered as a
temporal context. It is then possible to rely on techniques from temporal logics to reason
over such version spaces, as for example described in [HS05]. In this approach it is
possible to ask queries such as: Does a statement hold in all versions? Does it hold in a
particular prior version? Since when does a statement hold?

Dealing with Inconsistent Information Representing knowledge in networked ontolo-
gies — instead of single isolated ontologies — opens new approaches to dealing with
contradicting information. Consider a scenario with multiple information sources that do
not contain contradictory information if considered isolated. Yet, taking other information
sources as contextual information into account may lead to inconsistencies. A global in-
terpretation may not allow to answer queries in a meaningful way. However, representing
each information source as a module in a networked ontology with local model seman-
tics can help to overcome this problem. Further, the knowledge about the relationships
between the individual nodes can be used in resolving inconsistencies.
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4.3 C-OWL and Distributed Description Logics

4.3.1 Overview

[BGH™ 03] defines context as "a model of some domain which is supposed to encode the
view of a party". C-OWL (Context OWL) has been designed as an extension of OWL in
order to contextualize ontologies, which means localizing their contents and thus enable
to encapsulate information. Consequently, in the C-OWL approach, multiple ontologies
are treated as separate entities, between which information interchange is realized only
by explicit mappings (so-called bridge rules) [BGH*03]. These bridge rules can be used
to specify subsumption, equivalence, and disjointness of concepts, roles and individuals
from different ontologies.

Formally', we consider an OWL space being a family of ontologies {(i, O;) }:c; for an
index set I. The ontologies are supposed to be ABox and TBox in the description logic
SHOZQ(D+).

A bridge rule from 1 to j is a statement of the form 7 : x =, Jiy,t:x = J iy,
itx — jiuy iz —>j:y ori:x —— j:yforxandy being concepts, or
individuals, or roles from O; and O;, respectively. A set M;; of bridge rules from i to j
will be called mapping.

A context space is a pair consisting of an OWL space { (i, O;) }icr and a family {M;; }; jer
of mappings.

Following this distributed approach, the semantics of C-OWL is formalized as a Local
Model Semantics (LMS), i.e., a separate model is assigned to every ontology. Corre-
spondences between entities of different models are formalized via domain relations
which are in turn used to interpret the bridge rules. From this point of view, a context can
be seen as a partial and approximate theory of the world from an individual’s perspective.
Hence it is not necessarily part of the structure of the world, rather a way of structuring
an individual’s representation. Reasoning will then be carried out locally with respect
to a single context and is shared only via explicitly specified connections, following the
principle of locality and compatibility.

Given an ontology O;, a local interpretation Z; = (A%, (.)%) of this ontology is either a
SHOIQ(D+) interpretation for O; or a so-called hole, which by definition satisfies all
axioms and facts.

An interpretation for a context space ({(i, O;) }icr, {M,;}ijez) consists of

e local interpretations of all ontologies O, and
e afamily {r;;}; jc; of domain relations with r;; C AT x A%,

Such an interpretation Z will be called model of the underlying context space if it satisfies
the bridge rules, i.e.:

"We refer to [BGHT 03] for the terminology.
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.I):i:xij:yiffmj(mzi)QyIj,

—_

2. Thita—=j:yiffry(a®) D y%,

8. Ii:a—j:yiffr(a®) =yh,

4 Thi:x—j:yiffry(@®)ny5 =0, and
5. Ti:x—j:yiffry(@a®)ny% £ 0.

4.3.2 Characterization Along Our General Dimensions

After introducing C-OWL, we will now show how the C-OWL approach fits into our gen-
eral definition of context in Section 2.1.

We consider a C-OWL context space with (local) ontologies O; where ¢ € I. Choosing
therefrom one local ontology Oy, to focus on, let L, be the local language of Oy, i.e. the
set of statements only referring to concepts, individuals, and roles from O,. Furthermore,
let L be the language built up from all concepts, individuals, and roles from all ontologies
of the context space. So obviously L, C L. We use L as knowledge language and L as
context language. The semantic of Oy, is then the set S(Oy) C L of the consequences
we can derive when simply discarding all “non-local” information, i.e. that about the
other O; with k& # j and all bridge rules {M;;}; jez. All other ontologies together with
the bridge rules constitute the context C' for O,. We are aware, that our notion of context
does not coincide with the use of the term in C-OWL, since in the C-OWL terminology,
every Oy, is conceived as a context on its own. However, we argue that our terminology
captures the intention more precisely, since e.g. the information present in the mappings
would in C-OWL terms be considered as outside of any context.

Obviously, Oy’s “global theory” S’(Oy, C') — all derivable consequences taking into ac-
count the distributed information of the considered context space — in general deviates
from S(Ok).

Characterizing this kind of semantic, we find that it is obviously conservative, extensive,
knowledge-monotone, and context-monotone.

Furthermore, [BS02] shows that a knowledge base in distributed description logic (the
underlying logic of C-OWL) only considering into and onto rules (the two first ones)
between concepts can be transformed into a classical SHZ Q knowledge base. Then,
under these restrictions, the C-OWL definition of context can be considered to be (at
least) dependently reducible.

4.3.3 Usage Scenarios

C-OWL for Supporting Viewpoints C-OWL has a direct application for supporting
reasoning with different viewpoints. Here, each viewpoint is represented in terms of a
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separate model with a local interpretation [GG98]. Relations between different view-
points are represented by context mappings that constrain the local interpretations.

C-OWL for Pervasive Computing Although work from McCarthy and Guha consider
contexts as independent theories related to some particular knowledge field, Fausto
Giunchiglia rather consider contexts as concurrent viewpoints on the same information.
He expresses the relations between contexts as h mappings z used for importing infor-
mation under some context into another. This approach can be useful in pervasive com-
puting when several information sources provide comparable information. These works
found their way within semantic web tools through the C-OWL language [BGH"03]. A
comparison of both approaches is made in [SB04].

4.4 Context Logics

4.4.1 Overview

In artificial intelligence, the notion of context generally concerns the representation and
use of information. The notion is used to account for phenomena such as the context
of validity of information [dK86] and the efficiency of reasoning in narrower contexis
[Guh95].

An early, influential but sketchy attempt to formalize context dependency was made by
John McCarthy [McC86]. The basic idea was to mark the dependency of propositions on
context and track this dependency through changes of context and stages of reasoning.
The basic step was to move from a (simple) proposition to the (meta) proposition that
the proposition in question is true in a context. The syntax for such meta-propositions,
retained in later developments, was

ist(c, p), for proposition p and context ¢

Contexts thus entered the theory as objects, enabling the theory to express changes of
context and the effects of such changes on propositions. Changes of context typically
involve making or dropping assumptions, so the syntax also allows compound, functional
terms for contexts such as assuming(p, ¢) (the context obtained from ¢ by assuming p).
With such terms, the theory can cover logically interesting consequences of context
change, expressed as

ist(c,p) = ist(d, q)

and similar formulas, called /ifting axioms (in reference to the case when the change
of context involves dropping assumptions). McCarthy’s ideas were later developed by
others, and found their way into a working Al system (Cyc, in the form of micro-theories
[Guh95]). The present state of this line of development is characterized by the formal




D3.1.1 Context Languages - State of the Art Page 31 of 52

system PLC (Propositional Logic of Context) [BBM95], which has also been applied to
the semantic Web (the aggregation problem [GMF04]).

The second main line of developing the logic of context stems from the ideas of Fausto
Giunchiglia [Giu93]. This line of development does not reify contexts in propositions
(i.e. it does not allow to speak about contexts as first-class citizens), but uses them
on the meta-level to index or collect propositions (in sub-theories). The model-theoretic
part of the resulting theory has also been applied in the theory of databases as the
Local Relational Model [SGMBO03]. The proof-theoretic part that formalizes contextual
reasoning — MCS (MultiContext Systems) — [GS94] uses bridge rules in the style of
natural deduction in (the approximate) place of lifting axioms. Relating these approaches
to each other, a recent comparison of the two sorts of context logic shows that MCS can
encode PLC, but not the other way around [SB04]. More generally, without going into
the (considerable) technical details of both the logics and their comparison, it can be
summarily said that "bridging is better than lifting". That is, the comparison shows that
MCS works better than PLC for modelling context dependency not only in reasoning but
also in truth-value assignment. The common reason why PLC lags behind MCS along
all these dimensions of modelling adequacy might be characterized by saying that PLC
takes context dependency too literally: it presumes some sort of initial, implicit unity that
is then diversified into different contexts, whereas MCS does not presume such a unity,
and emphasizes the opposite process (any unity only comes from “stitching” together
the contributions of different contexts).

4.4.2 Characterization Along Our General Dimensions

Comparing McCarthy’s formalization of context with the formalization proposed in this
deliverable, certain differences are immediately obvious. For one thing, McCarthy’s ist
predicate works on individual propositions, whereas the S and S’ functions work on
theories. Second, any ist statement is itself made in context, whereas .S’ statements are
themselves context-free. If we neglect this point, we could express the relation between
the two approaches by the formula S(ist(c,p)) = S'(p, ¢) ("if you know what it means
that p is true in ¢, you know what p means in ¢”). This formula falls under the general
idea that explicating truth-conditions is a way of explicating meaning.

The second main line of context logics mentioned above is realized in the C-OWL pro-
posal and is shown how to fit our general dimensions in 4.3.2.
4.4.3 Usage Scenarios

Context logics can be applied to many usage scenarios where the context can be mod-
eled explicitly. These include for example:

Context Logics for Dealing with Temporal Information Here, the context is used to
state that a given statement is valid at a particular point in time.
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Context Logics for Supporting Viewpoints Similarly the context can be used that a
statement belongs to a particular viewpoint.

Context Logics for Pervasive Computing This kind of approach can be used in per-
vasive computing in order to integrate and interpret data provided by sensors. Taking
advantage of the theory associated with the sensor enables to reduce the ambiguity
of the data it delivers. In that view, raw data issued from sensors, are generally not
weakened but rather enriched (and aggregated with other information sources allowing
to further precise their interpretation).

4.5 Temporal Models

4.5.1 Overview

One particular kind of contextual information is temporal: in order to adequately model
events and changing domains, an appropriate formalism has to accommodate means to
describe and reason about how events are temporally related. Hereby it is essential to
distinguish whether the change which has to be described takes place in the described
domain or in the description itself. Clearly, the information “Peter became father in 2006”
is different from “in 2006, the database has been updated by the fact that Peter is a
father”.

Providing temporal context can be subdivided into two tasks:

e providing a temporal model of the described domain specifying for the concepts
used in the model how they can be temporally situated to each other. A prominent
example would be causal relationships: knowing that event E; causes event Es it
would be natural to specify that F starts after — or at most simultaneously with —
FE,. Likewise, there are many other events with fixed order: birth and death of a
person, takeoff and landing of an airplane at a particular flight etc. See Figure 4.1
for a simple temporal model of a tsunami. The model relates three events: Earth-
quake, Waves and Tsunami with temporal relations, and specifies the duration of
an event.

e providing a "temporal reasoning environment" taking into account special inter-
pretation constraints on temporal predicates due to the temporal structure. As a
simple example: knowing that some event I, occurs before event £y and that
event F’5 happens during event Es,, we can conclude that £ occurs before E5 as
well. Such relationships and events have been modelled by e.g. Allen’s interval
algebra[AllI83]. In Allen’s algebra, events are represented by time intervals (in con-
trast to time points), and an exhaustive set of possible relations between them is
defined (see Figure 4.2). The algebra provides computational mechanism to find
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1 hour < duration(Tsunami) < 1day

Tsunami
sas 7™ g
before
Earthquake > Waves
or meets

Figure 4.1: A simple temporal model of a tsunami

relations between indirectly related events, to detect possible inconsistencies, and
to order events on a linear timescale.

Relation Symbol Inverse M eaning

X before Y b bi =
X meetsY m mi }—‘_¢
X overlaps Y o} oi }T{_¢

X starts Y S s '—‘_¢

X during Y d di }i

X finishes Y f f ]

X equals Y eq i‘

Figure 4.2: Allen’s basic temporal relations

Using these two kinds of contextual information would enable reasoning on given in-
stances. E.g. it could be deduced, whether two events (departure and arrival) can
belong to the same "process” (a special trip) with respect to their temporal arrangement.

4.5.2 Characterization Along Our General Dimensions

Imagine an analysis of the past history of a news feed, together with some background
knowledge was used for interpreting the meaning of a new news item. More precisely,
the background knowledge consists of various temporal models describing different sit-
uations or processes of interest. Given a new news item N, some temporal model
is selected by taking the past history of the news feed into account. The model gives a
possible interpretation to the news item /N, which could otherwise be just lexically related
to the news history. We can describe this by means of our abstract context definition.
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The temporal model selected based on the past history of the news feed is a context C'
for the new news item N. Without the model, N would be transformed into some onto-
logical knowledge K, with semantics S(K'). The context C' (consisting of the information
conveyed by the previous news items as well as possibly a set of Allen-style rules of how
time intervals can be related to each other), however, allows to create (more accurate)
ontological knowledge K’ from N, with associated semantics S(K'’). The context se-
mantics function S’ can thus be described by S'(K,C) = S(K’).

4.5.3 Usage Scenarios

Dealing with Temporal Information Temporal models can be used to interpret and
relate data with explicit temporal information. A typical example is news analysis. News
items come from different sources but have a timestamp attached. If temporal terms
within news can be identified, then an appropriate temporal model is invoked, and news
items (which are lexically unrelated) can be found to be semantically related (through
temporal relations in the model).

4.6 Context-based Selection Functions

4.6.1 Overview

Many non-standard reasoning tasks (including paraconsistent reasoning, ontology di-
agnosis, ontology evolution) rely on the notion of a selection function to determine for
a given knowledge base K a subset K’ C K that is relevant for a particular task or
context. Often the context is provided in the form of additional background knowledge,
represented in some context language, which may or may not be the same language
as the knowledge language itself. For example, [HvHtTO5] uses a given query as con-
text information for selecting a relevant subset of an (inconsistent) knowledge base for
meaningful query answering.

Selection functions such as those defined in [HYHH'05] only rely on syntactic properties,
e.g. determining how the axioms in C' are structurally connected with those in K, in order
to select the relevant subset. Of particular interest however are non-uniform, semanti-
cally inspired selection functions exploiting domain-specific background knowledge. An-
other option is to use weak background knowledge like co-occurrence of concept-names
on the Web as the basis for a lightweight semantic selection function.

4.6.2 Characterization Along Our General Dimensions

We can formalize a selection function in terms of our knowledge and context language
as follows: A selection function s f is a mapping

sf 1 KB(L) x KB(C) — KB(L) such that sf(K, C) C K)
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The modified semantics of K in the context C'is then simply that of the original semantics
after applying the selection function to K:

S'(K,C):=S(sf(K,C))

It is easy to see that in general S’ is not extensive, as it is required that s f (K, C') C K).
This is on purpose, as the goal of the selection function is to determine a relevant subset
of K to separate wanted from unwanted consequences. The context semantics of a
selection function is dependently reducible, in fact, the selection function itself constitutes
the reduction function o.

Whether S’ is conservative, idempotent, context-monotone and knowledge-monotone is
not determined by the general definition above, but will depend on further properties of
the selection function.

4.6.3 Usage Scenarios

Supporting Viewpoints and Perspectives Context-based selection functions can
support different viewpoints or perspectives for a given knowledge base by selecting the
knowledge that is relevant for the given perspective. For example, consider a knowledge
base containing statements about Rudi Studer like

Human(Rudi), headO f(AIF B, Rudi), Institute(AI F B),

Professor C 3headO f~!.Institute, Human T Mammal

If we now assume a selection function that is able to select relevant axioms for a
given context for the reasoning task of instance classification, we might obtain in a re-
search context: Professor(Rudi), Human(Rudi), while a biology context might return:
Mammal(Rudi), Human(Rudi).

Dealing with Inconsistent Information Dealing with inconsistent information is a
classical application domain of selection functions. The basic idea is that based on
an inconsistent knowledge base K B a maximal consistent subset KB’ C KB is se-
lected, which allows meaningful query answering [HvHtT05]. In general, there may be
many such maximal consistent subsets, which may result in different answers to a given
query. With a context-dependent selection function, it is possible to select the subset
that is most appropriate for a given context.

Personalization A similar intuition can be applied for personalization. Depending on
the user profile, different subsets of a given knowledge base may be relevant. Personal-
ized query answering can thus be realized using a context-dependent selection function,
where the user profile serves as the context.

Dealing with Uncertain Information In cases where knowledge bases contain uncer-
tain knowledge, it may be required that a certain subset is selected for further processing,
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e.g. for the task of query answering. Often information about the uncertainty is available
as contextual information, e.g. in the form of provenance information. It can thus be
exploited for the selection of the certain subset. This kind of context exploitation has for
example been used in [HV05a] for the task of ontology learning: The learned ontologies
are augmented with information about the confidence and relevance of ontology ele-
ments and then used for generating consistent ontologies that contain knowledge that is
"most likely correct".

Scalability One approach to improve the performance of reasoning processes is to
decrease the size of the knowledge base by selecting the subset of knowledge that is rel-
evant for the particular reasoning task. E.g. for the task of query answering, the context
is provided by the query under consideration. A context-dependent selection function
would select the a subset of the knowledge base based on this context information.

4.7 Approximate Reasoning

4.7.1 Overview

In different application areas, the requirements for reasoning services may be quite dis-
tinct; while in certain fields (as in safety-critical technical descriptions) precision is to be
rated as a crucial constraint, in other fields less precise answers could be acceptable
if this would be the price for a faster response behavior. A context could provide the
preference of particular tasks with respect to precision vs. time requirements.

Introducing approximate reasoning in the Semantic Web field is motivated by the fol-
lowing observation: most nowadays’ specification languages for ontologies are quite
expressive, reasoning tasks are supposed to be very costly with respect to time and
other resources - this being a crucial problem in the presence of large-scale data. As a
prominent example, note that reasoning in most description logics including general con-
cept inclusion axioms (which is simply standard today) is at least EXPTIME complete, if
individuals are involved (as it is the case for OWL DL) even NEXPTIME complete. Al-
though those worst case time complexities are not likely to be thoroughly relevant for the
average behavior on real-life problems, this indicates that not every specifiable problem
can be solved with moderate effort. In many cases, the time costs will be the most crit-
ical ones, as a user will not be willing to wait arbitrarily long for an answer. More likely,
he would be prone to accept “controlled inaccuracies” as tradeoff for a quicker response
behavior. However, the current standard reasoning tools (though highly optimized for
accurate, i.e., sound and complete reasoning) do not comply with this kind of approach:
in an all-or-nothing manner, they will provide the whole answer to the problem after the
complete computation but provide no intermediate “approximate” information at all. So, a
desirable feature of a new kind of reasoning tool would be an “anytime behavior” denot-
ing the capability of yielding approximate answers to reasoning queries during ongoing
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computation: as time proceeds, the answer will be continuously refined to a more and
more accurate state until finally the precise result is reached. Clearly, one has to de-
fine this kind of behavior (and especially the notion of the intermediate inaccuracy) more
formally; one approach related to DL formalisms would be to employ the depth of con-
cept descriptions for measuring similarity (as a possible threshold for accuracy) between
them.

Altogether, there are several starting points for approximation in an ontology reasoning
setting. The first distinction to be made is whether approximation (and thus: controlled
inaccuracy) is introduced at the language level — i.e. on the reasoning input side — or
in the reasoning algorithms themselves. The first option would mean to weaken the
description of the terminology, the instances, and/or queries, the second one to modify
the reasoning methods or even completely design them anew. Therefore, in general, the
first option is to be preferred since this allows to reuse existent and optimized reasoning
systems.

An obvious technique for approximation on the ontology description and query level is
to reduce the complexity of a reasoning task by simplification. There are many ways for
this, we will just refer to two concrete approaches of them

e “Cutting” formulae at certain role depth. Deeper subformulae are substituted by
T or L. Depending on the concrete substitution technique, one can keep either
soundness or completeness.

e Alter disjunction into conjunction.
Since disjunction is known to be a major source for computational blowup (roughly
spoken, every possibility expressed in the disjunction has to be considered inde-
pendently), one soundness-preserving technique would be to substitute all dis-
junctions occurring in the (normal form of the) specification the by conjunctions
[HVO5D].

There is also a body of work on achieving scalability for semantic web reasoning, which
we will use as a base. We can distinguish at least three aspects. First, there is recent
work concerning distributed reasoning with ontologies, Second, there are novel reason-
ing algorithms which for the first time lead to worst-case optimal implementations for
certain reasoning tasks. Third, we aim to build on recent developments in using heuris-
tics and approximate reasoning techniques for achieving scalability. These approaches
need to be extended and adapted to the specific needs of NeOn.

4.7.2 Characterization Along Our General Dimensions

With respect to our semantics’ definition, the following statements could be made: Lan-
guage simplification refers to embedding mappings s : Ly — L; with L C Ly as well
as s(¢) = ¢ forall ¢ € L;. Thus, because of losing information, the approximate se-
mantics Sappr : KB(L}) — KB(L;) becomes “coarser” than the original (accurate) one
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(hereby note that approximate semantics has always to be defined against the intended
“limit”). It remains to formalize the influence, a context C' has on this. In this case we
think of a context as providing a simplification function s, so we would end up with the
semantics:

S': KB(Ly) x KB(Le) — KB(Ly) with S' (K, C) = Suppe({5(¢) | ¢ € K1)

The further aim would be to proceed via a sequence L C Ly"” C Ly ... Ly, such that
we again end up with the accurate semantics.

4.7.3 Usage Scenarios

Scalability Approximate reasoning is closely related to the scalability issue in our us-
ages of context. In this case, contextual information is used to select relevant parts of the
knowledge base to improve the efficiency of reasoning. For example, the simplification
function s defined above selects a subset of a knowledge base.

Ontology Adaption and Views Approximate reasoning can be realized via ontology
adaptation and views on ontologies. For example, the projection and selection opera-
tions proposed in Section 3.8 may be useful to define a simplification function.

Supporting Different Viewpoints and Perspectives The approximate reasoning ap-
proaches can be applied to improve efficiency of multi-viewpoint reasoning. A prelim-
inary work has been done in [Stu06] where a notion of approximate entailment in the
propositional logic is applied to deal with multi-viewpoint reasoning in OWL ontologies.

4.8 Reasoning with Inconsistent Ontologies

4.8.1 Overview

Inconsistency reasoning addresses the problem that answers obtained via classical rea-
soning are useless if the underlying knowledge base is inconsistent, i.e. contains con-
tradictory information. This is due to the fact that in classical logic inconsistency causes
everything to be a logical consequence of the knowledge base, which effectively means
that reasoning breaks down in this case.

However, realistic application scenarios, in particular for networked ontologies over real
data, should be more robust towards contradictory information. Inconsistency reasoning
thus strives to develop methods and algorithms for performing meaningful and useful
reasoning over inconsistent data.

To date, one can distinguish two major approaches to inconsistency reasoning, and we
will shortly discuss them both.
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The first approach is based on the idea that contradictory information be removed before
applying classical reasoning algorithms. This can be realized e.g. by starting with an
empty (thus consistent) ontology and to incrementally select and add such axioms to
that ontology, which do not result in inconsistency. This is done until a satisfying answer
to a given query is obtained. This selection is typically guided via a selection function,
which is based on some notion of relevance. This relevance may of course depend on
the particular context. Depending on the context, the inconsistency reasoner could thus
return different answers suitable for the context currently at hand. The approach just
described is of course closely related to that in 4.6.

The second approach does not modify the knowledge base but changes the semantics
under which it is reasoned with, employing a so-called paraconsistent semantics. The
semantics employed in this case uses four truth values, namely for true (1), false (f), un-
determined (u) and overdetermined (0). The fourth truth value, overdetermined, stands
for contradictory information. l.e., intuitively, if an assertion gets assigned the truth value
overdetermined, then this assertion is considered to be true and false at the same time.
Reasoning in such a four-valued logic can be done based on a corresponding model-
theoretic semantics. Naturally, four-valued reasoning should coincide with two-valued
reasoning in case the knowledge base is consistent. Apart from this constraint, there
exist a number of different proposals for paraconsistent semantics, which serve different
needs.

Contextual information is important for paraconsistent reasoning in order to determine
the parameters for the particular paraconsistent semantics to be employed, i.e. deci-
sions on how to exactly deal with contradictory information will be guided by contextual
information.

4.8.2 Characterization Along Our General Dimensions

Let K be an inconsistent ontology or knowledge base. In the first approach based on
the removal of contradictory information, let K’ C K be the consistent subset of K
which is used for answering some given query. The contextualized semantics of K is
thus expressed as the classical semantics of K’. The context semantics in this case is
dependently L-reducible. For the second approach based on paraconsistent reasoning,
the semantics of K is changed to a paraconsistent semantics, based on the contextual
information.

4.8.3 Usage Scenarios

Dealing with Inconsistent Information The approaches to reasoning with inconsis-
tent ontologies can be applied to deal with inconsistent information in a single knowledge
base. That is, when different knowledge bases are merged into a single knowledge base,
it is most likely that inconsistency will arise. Traditional logics, such as first order logic
or description logics, suffer from the triviality problem. That is, a single contradiction
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in the knowledge base leads to a knowledge base which entails everything. Our ap-
proaches can be applied to obtain meaningful information even if the knowledge base is
inconsistent.

Dealing with Uncertain Information Our approaches can also be applied to deal with
uncertainty which is due to incomplete or partial information. For example, given a pos-
sibilistic description logic knowledge base, a revision-based approach in [QLB06] can be
used to resolve the inconsistency in the knowledge base.

4.9 Probabilistic Logics and Bayesian Networks

4.9.1 Overview

Dealing with probabilistic uncertainty in the Semantic Web has been recognized as an
important problem in the recent decades. Many approaches have been proposed to ex-
tend description logics with probabilistic reasoning [Jae94, Hei94, GL02, DS05, NF04,
DP04, KLP97]. These approaches can be classified according to ontology languages,
the supported forms of probabilistic knowledge and the underlying probabilistic reason-
ing formalism. Heinsohn [Hei94] and Jaeger [Jae94] independently present a probabilis-
tic extension of the description logic ALC which is based on probabilistic reasoning in
probabilistic logics. The work in [Hei94] allows to represent generic probabilistic knowl-
edge about concepts and roles. However, it does not allow for assertional knowledge
about concept and role instances. In contrast, the work in [Jae94] allows for terminolog-
ical and assertional probabilistic knowledge about concept, roles and instances respec-
tively, but does not support assertional probabilistic knowledge about role instance. In
[GL02], the authors present a probabilistic extension of the description logic SHO Q(D),
called P-SHOQ(D). The underlying probabilistic reasoning formalism is based on the
notion of probabilistic lexicographic entailment. The probabilistic knowledge about con-
cept instances is expressed by a conditional constraint (D|{o})[l, u] with concept D,
individual o and real numbers [, u€[0,1]. However, P-SHOQ(D) does not allow for
probabilistic knowledge on role instances. Recently, Dirig and Studer [DS05] proposed
another probabilistic extension of ALC, which allows for assertional probabilistic knowl-
edge about concept and role instances. However, it does not allow for terminological
probabilistic knowledge.

In [KLP97], a probabilistic generalization of the CLASSIC description logic, called P-
CLASSIC, is proposed. Unlike the work mentioned above, it is based on inference in
Bayesian networks as underlying probabilistic reasoning formalism. Furthermore, P-
CLASSIC only allows for terminological probabilistic knowledge about concepts and
roles, but does not support assertional knowledge about concept and role instances.
Later, Ding and Peng [DP04] propose a probabilistic extension to ontology language
OWL, called BayesOWL, which incorporates Bayesian networks and OWL. They develop
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a set of translation rules to convert an OWL ontology into a Bayesian network.

The above work only discusses the probabilistic extension of an ontology language(s).
To support networked ontologies, we need to consider the mapping between two ontolo-
gies where uncertainty exists. In [PDYPO05], the authors propose a Bayesian network
approach to ontology mapping, which is based on BayesOWL. In [MNJO05], a probabilis-
tic ontology mapping tool, which is based on Bayesian networks, is proposed. More work
can be done along this direction.

4.9.2 Characterization Along Our General Dimensions

Let K be a knowledge base in an ontology language, for example, description logics.
The context language is the conditional probabilistic terminology for probabilistic logic
or conditional probability table for Bayesian networks. The semantics of the context
language is a knowledge base which consists of K and probabilistic terminologies.

Let us take P-SHOQ(D) for example. The knowledge base K is simply a description
logic knowledge base with DL semantics. The context language C'is a set of probabilistic
terminology which consists of a generic part and an assertional part. The semantics of
the context language is modeled by a lexicographic consequence or a tight lexicographic
consequence, where a conditional constraint (D|C')[l, u] is a lexicographic consequence
of a set of terminology axioms and conditional constraints F under a general probabilistic
terminology P, iff Pr(D)€[l, u| for every lex-minimal Pr of 7 U {(C|T)[1,1]}.

4.9.3 Usage Scenarios

Dealing with Uncertain Information The probabilistic approaches can successfully
be applied to deal with uncertain information. The probabilistic information can be either
learned from the data or provided by the experts.

Scalability The probabilistic approaches can be also useful for scalable reasoning. For
example, if probabilistic information is available, we can choose a subset of a knowledge
base containing those formulae which have highest probability values.

Supporting Different Viewpoints and Perspectives When there are different view-
points, we need context mappings to link them. These context mappings can be simply
set by experts or automatically produced. Probabilistic information can provide additional
information that can be used to guide ontology mapping [MNJO05].
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4.10 Possibilistic logic

4.10.1 Overview

Possibilistic logic [DLP94] or possibility theory offers a convenient tool for handling uncer-
tain or prioritized formulas and coping with inconsistency. It is very powerful to represent
partial or incomplete knowledge [BLP04]. There are two different kinds of possibility the-
ory: one is qualitative and the other is quantitative. Qualitative possibility theory is closely
related to default theories and belief revision [DP91, BDP92] while quantitative possibil-
ity can be related to probability theory and can be viewed as a special case of belief
function [DP98]. One of the major problems with the quantitative possibility theory is that
the weights attached to formulas are usually hard to obtain. When numerical information
is not available, we often use qualitative possibility theory. In this case, a possibilistic
knowledge base can be viewed as a stratified knowledge base, i.e. knowledge bases in
which all pieces of information are assigned a rank.

The application of possibilistic logic to deal with uncertainty in the Semantic Web was first
studied in [Hol95]. However, their approach inherits a serious problem, called drowning
problem, from possibilistic logic. That is, too much information is lost after inconsistency
handling. In [MLBO05], an algorithm, called refined conjunctive maxi-adjustment (RCMA
for short) was proposed to weaken conflicting information in a stratified DL knowledge
base and some consistent DL knowledge bases were obtained. This algorithm is an
adaptation of an existing inconsistency handling algorithm in the possibilistic logic sett-
ting. To weaken a terminological axiom, they introduced a DL expression, called cardi-
nality restrictions on concepts. An interesting problem is to explore other DL expressions
to weaken a conflicting DL axiom (both terminological and assertional). In [QLBO06], a
revision-based approach is proposed to deal with inconsistency in a stratified DL knowl-
edge base. This approach weakens both conflicting Tbox and Abox statements using
nominals.

The approaches for inconsistency handling in possibilistic logic are related to the work in
Section 4.8. There are two challenging problems here. The first problem is how to stratify
the DL knowledge bases or how to assign ranks to each DL statement. A preliminary
work on this problem has been discussed in [QP06]. The second problem is how to
resolve inconsistency in a stratified knowledge base.

4.10.2 Characterization Along Our General Dimensions

Let K be a knowledge base in an ontology language L. The context information can
be used to obtain the weights or priority levels attached to formulae in the knowledge
base. That is, S(K, C) is a weighted knowledge base or a prioritized knowledge base.
Furthermore, the context information can be also used to guide how to resolve incon-
sistency in the knowledge base. It is clear that this context language is conservative.
However, it is neither extensive nor knowledge-monotonic, because the underlying logic
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(i.e. possibilistic logic) is inherently nonmonotonic.

4.10.3 Usage Scenarios

Dealing with Uncertain or Vague Information The possibilistic logic based ap-
proaches can be used to deal with uncertain information where uncertainty is due to
incomplete or partial information. The semantics of the possibilistic logic is closely re-
lated to the membership function in fuzzy logics.

Dealing with Inconsistent Information Another important feature of possibilistic logic
is that it can be used to handle inconsistency. Several inconsistency-tolerant conse-
quence relations have been proposed in possibilistic logic (or its variants).

Supporting Different Viewpoints and Perspectives Possibilistic logic based ap-
proaches may be useful to integrate different existing viewpoints. Many possibilistic
merging approaches have been proposed [Qi06] and they can be adapted to the inte-
grate different viewpoints. For example, we may be interested in a context dependent ap-
proach which was proposed in [LQBO06] to merge different possibilistic knowledge bases.
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Chapter 5

Conclusion

5.1 Summary

The goal of this deliverable was to provide a state-of-the-art overview of context rep-
resentation formalisms as a basis for a number of subsequent deliverables. We first
gave a generic definition of context. We then identified several use cases of our con-
text representation formalisms. These use cases are important for the evaluation of the
approaches to representing and reasoning with context. Finally, we gave an overview
of some approaches for representing and reasoning with context which may be relevant
for NeOn. To facilitate the comparison of different approaches, we proposed several
dimensions which are directly derived from our generic context definition.

5.2 Roadmap

In deliverable D3.1.2 we will define the NeOn formalism for context representation; in the
accompanying deliverable D3.2.1 we will develop a prototype for reasoning with contexts
based on that formalism.

In this deliverable we have provided an overview of both different usages of context as
well as approaches for representing and reasoning with context. While at this point we
cannot provide definite statements, which approaches will be supported or not, in the
following we attempt to identify those usages and approaches that will be particularly
relevant for NeOn.

NeOn has in its core the ambitious scenario that ontologies are developed in the open
environment in a distributed fashion. Moreover, it is not just the ontologies and meta-
data that are distributed, but we also assume that they are built by distributed teams. In
terms of the usages of context, this means that supporting viewpoints and perspectives
will play a paramount role in NeOn. In the scenarios addressed by NeOn, information
sources typically cannot be easily integrated without violating the overall consistency of
the system. Thus dealing with inconsistent information will be another important usage of
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context, where information about the provenance of ontological structures, about various
contexts and user profiles leads to the generation of SlocalS, consistent views out of a
globally inconsistent network of ontologies. Closely related is the problem of dealing with
uncertain and vague information, which will play an important role in the NeOn scenarios,
where ontologies are generated from a variety of sources that may be imprecise, vague
and contextualized in the first place (e.g. natural language text) and where automated
ontology learning algorithms introduce an additional dimension of uncertainty.

To be able to address these usage scenarios for context, we believe that the following
approaches for contexts are relevant for NeOn: The networked ontology model devel-
oped in WP1 will provide the most obvious form of context: Ontologies will be embedded
in a network of ontologies, which forms the context for its interpretation. Depending on
the types of relationships in the network of ontologies, different forms of context can be
realized: The context may be a temporal one if the network represents a version space;
it may be used to connect different viewpoints via alignments, etc. Reasoning with incon-
sistent ontologies exploiting context information will be important when different informa-
tion sources with contradicting information will be integrated. Context-based selection
functions appear promising for addressing a number of different problems. However, the
development of such functions that go beyond the state-of-the-art syntactic-based func-
tions will require significant research efforts. Finally, a combination of possibilistic and
probabilistic logics seems to be required to deal with the various forms of vagueness and
uncertainty in a contextualized way.

The rather wide range of different forms of context poses challenges for an integrated
representation format of context, which we will deliver as part of D3.1.2. A major de-
sign goal for the representation format will be the compatibility with the current OWL 1.0
standard and possibly upcoming future versions of OWL 1.1 and OWL 2.0. In [VVHC086]
we have already presented a proposal of how to embed annotations about ontology el-
ements within an ontology. This representation formalism may serve as a basis for car-
rying contextual annotations, as we have shown in [VVHCO06] for the case of information
about provenance. With respect to contextual information about the ontologies them-
selves, we envision a representation format compatible with OMV (Ontology Metadata
Vocabulary, [HPS'05]). This will provide a flexible mechanism to allow extensions for
particular forms of context. One such context form currently under consideration as an
OMV extension is argumentation information, i.e. information about why certain ontology
elements have been introduced.
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