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Abstract

We present a new algorithm for reasoning in the description
logic SHIQ, which is the most prominent fragment of the
Web Ontology Language OWL. The algorithm is based on
ordered binary decision diagrams (OBDDs) as a datastructure
for storing and operating on large model representations. We
thus draw on the success and the proven scalability of OBDD-
based systems. To the best of our knowledge, we present
the very first agorithm for using OBDDs for reasoning with
general Tboxes.

Introduction
In order to leverage intelligent applications for the Semantic
Web, scalable reasoning systems for the standardised Web
Ontology Language OWL1 are required. OWL is essen-
tially based on description logics (DLs), with the DL known
as SHIQ currently being among its most prominent frag-
ments. State-of-the art OWL reasoners, such as Pellet, Rac-
erPro or KAON2 already achieve an efficiency which makes
them suitable for practical use, however they still fall short
of the scalability requirements needed for large-scale appli-
cations. New ideas and approaches are therefore needed to
further push the performance of OWL reasoning.

In this paper, we present a promising new algorithm for
reasoning with SHIQ, which is based on ordered binary
decision diagrams (OBDDs) as a datastructure for storing
and operating on large model representations (Bryant 1986;
Huth & Ryan 2000). The rationale behind the approach is
the fact that OBDD-based systems feature impressive effi-
ciency on large amounts of data, e.g. for model checking for
hard- and software verification (Burch et al. 1990). Our al-
gorithm is indeed based on a reduction of SHIQ reasoning
to standard OBDD-algorithms, and thus allows to draw on
available algorithms and standard implementations for OB-
DDs, such as JavaBDD2.

The general idea of using OBDDs for reasoning with
DLs is not entirely new, and some related results have al-
ready been presented in (Pan, Sattler, & Vardi 2006). A
closer look also reveals that certain temporal logics to which
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OBDDs have been applied (e.g. CTL (Huth & Ryan 2000))
are closely related to modal logics which in turn are known
to have strong structural similarities to DLs (Schild 1991).
Hence it seems almost natural to apply OBDD-based tech-
niques for DL reasoning as well. The results from (Pan, Sat-
tler, & Vardi 2006), however, are still rather restricted since
they encompass only terminological reasoning in the basic
DLALC without general Tboxes.

In essence, OBDDs can be used to represent arbitrary
Boolean functions. These Boolean functions are then inter-
preted as a kind of compressed encoding of – usually very
large sets of – process states. Model checking and certain
manipulations of the state space can then be done directly
on this compressed version without unfolding it. In our ap-
proach, we employ OBDDs in a very similar way for encod-
ing DL interpretations. However, as DL reasoning is con-
cerned with all possible models, we will show by model-
theoretic arguments that for our purposes it is sufficient to
work only with certain representative models.

A birds eyes’ perspective on our results is as follows:
SHIQ knowledge bases can be reduced equisatisfiably to
ALCIb knowledge bases. A sound and complete decision
procedure based on so-called domino interpretations pro-
vides the next step. This procedure can in turn be realised by
manipulating Boolean functions, which establishes the link
with OBDD-algorithms. We will present our results in this
sequence, after introducing some notation.

Proofs were omitted due to lack of space, but can be found
in (Rudolph, Krötzsch, & Hitzler 2008).

Preliminaries
We first recall some basic definitions of DLs (see (Baader
et al. 2007) for a comprehensive treatment of DLs) and in-
troduce our notation. Next we define a rather expressive de-
scription logic SHIQb that extends SHIQ with restricted
Boolean role expressions (Tobies 2001). We will not con-
sider SHIQb knowledge bases, but the DL serves as a con-
venient umbrella logic for the DLs used in this paper. Also,
we do not consider assertional knowledge, and hence will
only introduce terminological axioms here.

Definition 1 A terminological SHIQb knowledge base is
based on two disjoint sets of concept names NC and role
names NR. A set of atomic roles R is defined as R B



NR ∪ {R− | R ∈ NR}. In addition, we set Inv(R) B R− and
Inv(R−) B R, and we will extend this notation also to sets of
atomic roles. In the sequel, we will use the symbols R, S to
denote atomic roles, if not specified otherwise.

The set of Boolean role expressions B is defined as
BF R | ¬B | B u B | B t B.

We use ` to denote standard Boolean entailment between
sets of atomic roles and role expressions. Given a set R of
atomic roles, we inductively define:

• For atomic roles R, R ` R if R ∈ R, and R 0 R otherwise,
• R ` ¬U if R 0 U, and R 0 ¬U otherwise,
• R ` U u V if R ` U and R ` V , and R 0 U u V otherwise,
• R ` U t V if R ` U or R ` V , and R 0 U t V otherwise.
A Boolean role expression U is restricted if ∅ 0 U. The set
of all restricted role expressions is denoted T, and the sym-
bols U and V will be used throughout this paper to denote
restricted role expressions. A SHIQb Rbox is a set of ax-
ioms of the form U v V (role inclusion axiom) or Tra(R)
(transitivity axiom). The set of non-simple roles (for a given
Rbox) is inductively defined as follows:

• If there is an axiom Tra(R), then R is non-simple.
• If there is an axiom R v S with R non-simple, then S is

non-simple.
• If R is non-simple, then Inv(R) is non-simple.
A role is simple if it is atomic (simplicity of Boolean role
expressions is not relevant in this paper) and not non-simple.
Based on a SHIQb Rbox, the set of concept expressions C
is the smallest set containing NC , and all concept expressions
given in Table 1, where C,D ∈ C, U ∈ T, and R ∈ R is a
simple role. Throughout this paper, the symbols C, D will
be used to denote concept expressions. A SHIQb Tbox is a
set of general concept inclusion axioms (GCIs) of the form
C v D. A SHIQb knowledge base KB is the union of a
SHIQb Rbox and an according SHIQb Tbox.

As mentioned above, we will consider only fragments
of SHIQb. In particular, a SHIQ knowledge base is a
SHIQb knowledge base without Boolean role expressions,
and an ALCIb knowledge base is a SHIQb knowledge
base that contains no Rbox axioms and no number restric-
tions (i.e. axioms ≤n R.C or ≥n R.C). The related DL
ALCQIb has been studied in (Tobies 2001).

An interpretation I consists of a set ∆I called domain (the
elements of it being called individuals) together with a func-
tion ·I mapping individual names to elements of ∆I, concept
names to subsets of ∆I, and role names to subsets of ∆I×∆I.
The function ·I is extended to role and concept expressions
as shown in Table 1. An interpretation I satisfies an axiom
ϕ if we find that I |= ϕ, where

• I |= U v V if UI ⊆ VI,
• I |= Tra(R) if RI is a transitive relation,
• I |= C v D if CI ⊆ DI.

I satisfies a knowledge base KB, I |= KB, if it satisfies
all axioms of KB. Satisfiability, equivalence, and equisatis-
fiability of knowledge bases are defined as usual.

Name Syntax Semantics
inverse role R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}
role negation ¬U {〈x, y〉 ∈ ∆I × ∆I | 〈x, y〉 < UI}
role conj. U u V UI ∩ VI

role disj. U t V UI ∪ VI

top > ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

univ. rest. ∀U.C {x ∈ ∆I | 〈x, y〉 ∈ UI implies y ∈ CI}
exist. rest. ∃U.C {x ∈ ∆I | y ∈ ∆I: 〈x, y〉 ∈ UI, y ∈ CI}
qualified ≤n R.C {x ∈ ∆I | #{y ∈∆I|〈x, y〉 ∈RI, y ∈CI} ≤ n}
number rest. ≥n R.C {x ∈ ∆I | #{y ∈∆I|〈x, y〉 ∈RI, y ∈CI} ≥ n}

Table 1: Semantics of role (top) and concept constructors
(bottom) in SHIQb for an interpretation Iwith domain ∆I.

For convenience of notation, we abbreviate Tbox axioms
of the form > v C by writing just C. Statements such as
I |= C and C ∈ KB are interpreted accordingly. Note that
C v D can thus be written as ¬C t D.

Finally, we will often need to access a particular set of
quantified and atomic subformulae of a DL concept. These
specific parts are provided by the function P : C→ 2C:

P(C) B


P(D) if C = ¬D
P(D) ∪ P(E) if C = D u Eor C = D t E
{C} ∪ P(D) if C = QU.D with Q∈ {∃,∀,≥n,≤n}
{C} otherwise

We generalise P to DL knowledge bases KB by defining
P(KB) to be the union of the sets P(C) for all Tbox axioms
C in KB.

For our further considerations, we will usually express
all Tbox axioms as simple concept expressions as explained
above. Given a knowledge base KB we obtain its negation
normal form NNF(KB) by converting every Tbox concept
into its negation normal form as usual.

It is well-known that KB and NNF(KB) are equivalent.
We will usually require another normalisation step that sim-
plifies the structure of KB by flattening it to a knowledge
base FLAT(KB). This is achieved by transforming KB into
negation normal form and exhaustively applying the follow-
ing transformation rules:
• Select an outermost occurrence of QU.D in KB, such that

Q∈ {∃,∀,≥n,≤n} and D is a non-atomic concept.
• Substitute this occurrence with QU.F where F is a fresh

concept name (i.e. one not occurring in the knowledge
base).
• If Q∈ {∃,∀,≥n}, add ¬F t D to the knowledge base.
• If Q= ≤n add NNF(¬D) t F to the knowledge base.

Obviously, this procedure terminates yielding a flat
knowledge base FLAT(KB) all Tbox axioms of which are
Boolean expressions over formulae of the form A, ¬A, or

QU.A with A an atomic concept name.

Proposition 2 AnySHIQb knowledge base KB is equisat-
isfiable to FLAT(KB).



From SHIQ toALCIb
Next, we present a stepwise satisfiability-preserving and
polynomial-time transformation from the quite common de-
scription logic SHIQ to the rather “exotic” ALCIb. This
will allow to apply the presented reasoning algorithm to ter-
minological SHIQ knowledge bases.

From SHIQ to ALCHIQ. As has been shown in
(Motik 2006), everySHIQ knowledge base KB can be con-
verted into an equisatisfiable ALCHIQ knowledge base,
where ALCHIQ denotes the description logic SHIQ
without transitivity axioms. We letΘS(KB) denote the result
of this reduction, which is known to be time polynomial.

From ALCHIQ to ALCHIb≤. The DL ALCHIb≤ is
the fragment of SHIQb that contains no transitivity axioms
and no atleast restrictions (≥). Given an ALCHIQ knowl-
edge base KB, an ALCHIb≤ knowledge base Θ≥(KB) is
obtained by first flattening KB and then applying the fol-
lowing steps until all ≥n R.A have been eliminated.

• Choose an occurrence of a subconcept of form ≥n R.A in
the knowledge base.

• Substitute this occurrence by ∃R1.A u . . . u ∃Rn.A, where
R1, . . . ,Rn are fresh role names.

• For every i ∈ {1, . . . , n}, add Ri v R to the Rbox.

• For every 1 ≤ i < k ≤ n, add ∀(Ri u Rk).⊥ to the Tbox.

Observe that this transformation can be done in polyno-
mial time for unary coding of numbers. Note that the same
can be achieved for a binary encoding by using fresh roles
as binary digits for complex roles.

Lemma 3 Any ALCHIQ knowledge base KB is equisat-
isfiable to theALCHIb≤ knowledge base Θ≥(KB).

From ALCHIb≤ to ALCIb≤. In the presence of re-
stricted role expressions, role subsumption axioms can be
easily transformed into Tbox axioms, as the subsequent
lemma shows. This allows to dispense with role hierarchies
inALCHIb≤ thereby restricting it toALCIb≤.

Lemma 4 For any role names R, S , the Rbox axiom R v S
and the Tbox axiom ∀(R u ¬S ).⊥ are equivalent.

Hence, for any ALCHIb≤ knowledge base KB, let
ΘH (KB) denote the ALCIb≤ knowledge base obtained by
substituting every Rbox axiom R v S by the Tbox axiom
∀(R u ¬S ).⊥. The above lemma assures equivalence of KB
and ΘH (KB) (and hence also their equisatisfiability). Obvi-
ously, this reduction can be done in linear time.

FromALCIb≤ toALCIF b. ALCIF b is the fragment
of ALCIb≤ that contains ≤ only in functionality restric-
tions, i.e. axioms of the form ≤1 R.>. Given an ALCIb≤
knowledge base KB, we obtain the ALCIF b knowledge
base ΘF (KB) by first flattening KB and then applying the
following steps until no more steps are applicable:

• Choose an occurrence of a subconcept of form the shape
≤n R.A which is not a functionality axiom ≤1 R.>.

• Substitute this occurrence by ∀(R u ¬R1 u . . . u ¬Rn).¬A
where R1, . . . ,Rn are fresh role names.
• For each i ∈ {1, . . . , n}, add ∀Ri.A and ≤1 Ri.> to the Tbox.

Obviously, this transformation can be done in polynomial
time (again assuming a unary encoding of the n), and we
establish the following equisatisfiability result.

Lemma 5 Any ALCIb≤ knowledge base KB is equisatis-
fiable to theALCIF b knowledge base Θ≤(KB).

From ALCIF b to ALCIb. We now show how the role
functionality axioms of the shape ≤1 R.> can be eliminated
fromALCIF b knowledge base.

Essentially, we do so by adding axioms that enforce that,
for every functional role R, any two R-successors coincide
with respect to their properties expressible in “relevant” DL
terms. While it is rather obvious that those axioms follow
from R’s functionality, the other direction (a Leibniz-style
“identitas indiscernibilium” argument) needs a closer look
and some intermediate constructions and results that can be
found in the accompanying technical report.

For an ALCIF b knowledge base KB, let ΘF (KB) de-
note the ALCIb knowledge base obtained from KB by re-
placing every role functionality axiom ≤1 R.> by axioms
• ∀R.¬D t ∀R.D for every D ∈ P(KB \ {≤1 R.> ∈ KB}),
• ∀(R u S ).⊥ t ∀(R u ¬S ).⊥ for each atomic role S in KB.

Clearly, also this transformation can be done in polyno-
mial time and space w.r.t. the size of KB, and we establish
the missing link for the desired transformation.

Lemma 6 AnyALCIF b knowledge base KB is equisatis-
fiable to theALCIb knowledge base ΘF (KB).

We have thus shown how to transform a SHIQ knowl-
edge base KB into an equisatisfiable ALCIb knowledge
base ΘFΘ≤ΘHΘ≥ΘS(KB) in polynomial time. As our
next step towards checking satisfiability in SHIQ, we can
therefore construct satisfiability checking procedures for
ALCIb.

Building Models from Domino Sets
We now introduce the notion of a set of dominoes for a given
terminological ALCIb knowledge base. Intuitively, each
domino abstractly represents two individuals in an ALCIb
interpretation, based on their concept properties and role
relationships. We will see that suitable sets of such two-
element pieces suffice to reconstruct models of ALCIb,
which also reveals certain model theoretic properties of this
not so common DL. In particular, every satisfiable ALCIb
Tbox admits tree-shaped models. This result is rather a
by-product of our main goal of decomposing models into
unstructured sets of local domino components, but it ex-
plains why our below constructions have some similarity
with common approaches of showing tree-model properties
by “unravelling” models.

After introducing the basics of domino representation,
we present a first algorithm for deciding satisfiability of a
ALCIb terminology based on sets of dominoes.



From Interpretations to Dominoes We first introduce the
basic notion of a domino set, and its relationship to interpre-
tations. Given a DL language with concepts C and roles R, a
domino is an arbitrary triple 〈A,R,B〉, whereA,B ⊆ C and
R ⊆ R. We will generally assume a fixed language and refer
to dominoes over that language only. Interpretations can be
deconstructed into sets of dominoes as follows.

Definition 7 Given an interpretation I = 〈∆I, ·I〉, and a set
C ⊆ C of concept expressions, the domino projection of
I w.r.t. C, denoted by πC(I) is the set that contains for all
δ, δ′ ∈ ∆I the triple 〈A,R,B〉 with
• A = {C ∈ C | δ ∈ CI},
• R = {R ∈ R | 〈δ, δ′〉 ∈ RI},
• B = {C ∈ C | δ′ ∈ CI}.

It is easy to see that domino projections do not faithfully
represent the structure of the interpretation that they were
constructed from. But as we will see below, domino projec-
tions capture enough information to reconstruct models of
a knowledge base KB, as long as C is chosen to contain at
least P(KB). For this purpose, we now introduce the inverse
construction of interpretations from arbitrary domino sets.

Definition 8 Given a set D of dominoes, the induced
domino interpretation I(D) = 〈∆I, ·I〉 is defined as follows:

1. ∆I consists of all finite nonempty words overDwhere, for
each pair of subsequent letters 〈A,R,B〉 and 〈A′,R′,B′〉
in a word, we have B = A′.

2. For δ = 〈A1,R1,A2〉〈A2,R2,A3〉 . . . 〈Ai−1,Ri−1,Ai〉 a
word and A ∈ NC a concept name, we define tail(δ) B Ai,
and set δ ∈ AI iff A ∈ tail(δ),

3. For each R ∈ NR, we set 〈δ1, δ2〉 ∈ RI if ei-
ther δ2 = δ1〈A,R,B〉 with R ∈ R or δ1 =
δ2〈A,R,B〉 with Inv(R) ∈ R.

Mark that – following the intuition – the domino interpre-
tation is constructed by conjoining matching dominoes. We
find that certain domino projections contain enough infor-
mation to reconstruct models of a knowledge base.

Proposition 9 Consider a set C ⊆ C of concept expressions,
and an interpretation J , and let K B I(πC(J)) denote the
interpretation of the domino projection of J w.r.t. C. Then,
for any ALCIb concept expression C ∈ C with P(C) ⊆ C,
we have that J |= C iff K |= C. Especially, for anyALCIb
knowledge base KB, J |= KB iff I(πP(KB)(J)) |= KB.

Constructing Domino Sets The observation just made
can be the basis for designing an algorithm that decides
knowledge base satisfiability. Checking satisfiability often
amounts to the attempt to construct a (representation of a)
model. As we have seen, we may achieve this by trying to
construct a model’s domino projection. If this can be done,
we know that there is a model, if not, there is none.

In what follows, we first describe the iterative construc-
tion of such a domino set from a given knowledge base, and
then show that it is indeed a decision procedure for knowl-
edge base satisfiability.

Definition 10 Consider an ALCIb knowledge base KB,
and define C = P(FLAT(KB)). Sets Di of dominoes based
on concepts from C are constructed as follows:
D0 consists of all dominoes 〈A,R,B〉 which satisfy:

kb: for every concept C ∈ FLAT(KB), we have that�
D∈A D v C is a tautology3,

ex: for all ∃U.A ∈ C, if A ∈ B and R ` U then ∃U.A ∈ A,
uni: for all ∀U.A ∈ C, if ∀U.A ∈ A and R ` U then A ∈ B.

Given a domino set Di, the set Di+1 consists of all domi-
noes 〈A,R,B〉 ∈ Di satisfying the following conditions:
delex: for every ∃U.A ∈ C with ∃U.A ∈ A, there is some
〈A,R′,B′〉 ∈ Di such that R′ ` U and A ∈ B′,

deluni: for every ∀U.A ∈ C with ∀U.A < A, there is some
〈A,R′,B′〉 ∈ Di such that R′ ` U but A < B′,

sym: 〈B, Inv(R),A〉 ∈ Di.
The construction of domino sets Di+1 is continued until
Di+1 = Di. The final result DKB B Di+1 defines the canoni-
cal domino set of KB. The algorithm returns “unsatisfiable”
if DKB = ∅, and “satisfiable” otherwise.

Since D0 is exponential in the size of the knowledge
base, the iterative deletion of dominoes must terminate after
finitely many steps. Below we will see that this procedure is
indeed sound and complete for checking satisfiability.

Note that, in contrast to tableau procedures, the presented
algorithm starts with a large set of dominoes and succes-
sively deletes undesired dominoes. Indeed, on can show that
the constructed domino set is the largest such set from which
a domino model can be obtained. The algorithm thus may
seem to be of little practical use. In the next section, we
will therefore refine the above algorithm to employ Boolean
functions as efficient implicit representations of domino sets,
such that the efficient computational methods of BDDs can
be exploited. Domino sets, however, are well-suited for
showing the required correctness properties.

An important property of domino interpretations con-
structed from canonical domino sets is that the (semantic)
concept membership of an individual can typically be (syn-
tactically) read from the domino it has been constructed of.

Lemma 11 Consider an ALCIb knowledge base KB with
non-empty canonical domino set DKB, and define C B
P(FLAT(KB)) and I = 〈∆I, ·I〉 B I(DKB). Then for all
C ∈ C and δ ∈ ∆I, we have that δ ∈ CI iff C ∈ tail(δ).
Moreover, I |= FLAT(KB).

Lemma 11 shows soundness of our decision algorithm.
Conversely, completeness can also be proven, which results
– together with Proposition 2 – in the following theorem.

Theorem 12 A terminological ALCIb knowledge base
KB is satisfiable iff its canonical domino set DKB is non-
empty. Definition 10 thus defines a decision procedure for
satisfiability of suchALCIb knowledge bases.

3Please note that the formulae in FLAT(KB) and in A ⊆ C are
such that this can easily be checked by evaluating the Boolean op-
erators in C as ifA was a set of true propositional variables.



Sets as Boolean Functions

We will now introduce how large sets (in our case the canon-
ical domino, respectively the intermediate sets during its
construction) can be effectively represented implicitly via
Boolean functions. This kind of encoding is rather stan-
dard within the field of BDD-based model checking. Due
to space reasons, we will only give a very brief overview on
OBDDs (for a general reference, see (Huth & Ryan 2000))
and not further elaborate on the technical details of their ma-
nipulation in this paper, however, the way of implementing
our approach can be directly derived from the algorithm de-
scribed in this section, as for every operation to be carried
out on the Boolean functions (namely combining them, per-
mutation of variables, instantiating variables etc.) there is an
algorithmic counterpart for the BDD-based representation.
Boolean Functions and Operations We first explain how
sets can be represented by means of Boolean functions. This
will enable us, given a fixed finite base set S , to represent
every family of sets S ⊆ 2S by a single Boolean function.

A Boolean function on a set Var of variables is a function
ϕ : 2Var → {true, false}. The underlying intuition is that ϕ(V)
computes the truth value of a Boolean formula based on the
assumption that exactly the variables of V are evaluated to
true. A simple example are functions of the form ~v� for
some v ∈ Var, which are defined as ~v�(V) B true iff v ∈ V .

Boolean functions over the same set of variables can be
combined and modified in several ways. Firstly, there are
the obvious Boolean operators for negation, conjunction,
disjunction, and implication. By slight abuse of notation,
we will use the common (syntactic) operator symbols ¬, ∧,
∨, and → to also represent such (semantic) operators on
Boolean functions. Given, e.g., Boolean functions ϕ and
ψ, we find that (ϕ ∧ ψ)(V) = true iff ϕ(V) = true and
ψ(V) = true. Another operation on Boolean functions is ex-
istential quantification over a set of variables V ⊆ Var, writ-
ten as ∃V.ϕ for some function ϕ. Given an input set W ⊆ Var
of variables, we define (∃V.ϕ)(W) = true iff there is some
V ′ ⊆ V such that ϕ(V ′ ∪ (W \ V)) = true. In other words,
there must be a way to set truth values of variables in V such
that ϕ evaluates to true. Universal quantification is defined
analogously, and we thus have ∀V.ϕ B ¬∃V.¬ϕ as usual.
Mark that our use of ∃ and ∀ overloads notation, and should
not be confused with role restrictions in DL expressions.
Ordered Binary Decision Diagrams Ordered Binary De-
cision Diagrams are data structures that efficiently encode
Boolean functions. Structurally, a binary decision diagram
(BDD) is a directed acyclic graph whose nodes are labelled
by a variable from Var. The only exception are two termi-
nal nodes that are labelled by true and false, respectively.
Every non-terminal node has two outgoing edges, again la-
belled by true and by false. Every BDD based on a variable
set Var = {v1, . . . , vn} represents an n-ary Boolean function
ϕ : 2Var → {true, false}. The value ϕ(V) for some V ⊆ Var is
determined by traversing the BDD, beginning from a distin-
guished root node: at a node labelled with v ∈ Var, the eval-
uation proceeds with the node connected by the true-edge if
v ∈ V , and with the node connected by the false-edge other-

wise. If a terminal node is reached, its label is returned as a
result. An ordered BDD (short OBDD) is a BDD for which
there is a total order on Var such that any path in the BDD is
strictly ascending w.r.t. that order.

For any Boolean function ϕ : 2Var → {true, false} and
any ordering on Var there is (up to isomorphy) exactly
one minimal OBDD realising it, called the reduced OBDD
(ROBDD), and this minimal representative can be efficiently
computed from any non-minimal OBDD. This is used to
efficiently decide whether two OBDDs encode the same
Boolean function. The function that yields false for every
input is encoded by an ROBDD consisting of just two nodes:
the false-node, marked as root, and the (unused) true-node.

OBDDs for some Boolean formula might be exponen-
tially large in general, but often there is an order which
allows for OBDDs of manageable size. Finding the op-
timal order is NP-complete, but heuristics have shown to
yield good approximate solutions. Hence OBDDs are of-
ten conceived as efficiently compressed representations of
Boolean functions. In addition, many operations on Boolean
functions – such as the aforementioned “pointwise” nega-
tion, conjunction, disjunction, implication as well as propo-
sitional quantification – can be performed directly on the
corresponding OBDDs by fast algorithms.

Translating Dominos into Boolean Functions Now, let
KB = FLAT(KB) be a flattened ALCIb knowledge base.
The variable set Var is defined as Var B R∪

(
P(KB)×{1, 2}

)
.

We thus obtain an obvious bijection between sets V ⊆ Var
and dominoes over the set P(KB) given as 〈A,R,B〉 7→ (A×
{1}) ∪ R ∪ (B × {2}). Hence, any Boolean function over Var
represents a domino set as the collection of all variable sets
for which it evaluates to true. We can use this observation
to rephrase the construction of DKB in Definition 10 into an
equivalent construction of a function ~KB�.

We represent DL concepts C and role expressions U by
characteristic Boolean functions over Var as follows. Note
that the application of ∧ results in another Boolean function,
and is not to be understood as a syntactic formula.

~C� B


¬~D� if C = ¬D
~D� ∧ ~E� if C = D u E
~D� ∨ ~E� if C = D t E
~〈C, 1〉� if C ∈ P(KB)

~U� B


¬~V� if U = ¬V
~V� ∧ ~W� if U = V uW
~V� ∨ ~W� if U = V tW
~U� if U ∈ R

We can now define an inferencing algorithm based on
Boolean functions.

Definition 13 Given a flattened ALCIb knowledge base
KB and a variable set Var as above, Boolean functions
~KB�i are constructed based on the definitions in Fig. 1:

• ~KB�0 B ϕkb ∧ ϕuni ∧ ϕex,
• ~KB�i+1 B ~KB�i ∧ ϕ

delex
i ∧ ϕdeluni

i ∧ ϕ
sym
i

The construction terminates as soon as ~KB�i+1 = ~KB�i,
and the result of the construction is then defined as ~KB� B



ϕkbB
∧

C∈KB

~C� ϕdelex
i B

∧
∃U.C∈P(KB)

~〈∃U.C, 1〉�→ ∃
(
R ∪ C×{2}

)
.
(
~KB�i ∧ ~U� ∧ ~〈C, 2〉�

)
ϕuniB

∧
∀U.C∈P(KB)

~〈∀U.C, 1〉� ∧ ~U�→ ~〈C, 2〉� ϕdeluni
i B

∧
∀U.C∈P(KB)

~〈∀U.C, 1〉�→ ¬∃
(
R ∪ C×{2}

)
.
(
~KB�i ∧ ~U� ∧ ¬~〈C, 2〉�

)
ϕexB

∧
∃U.C∈P(KB)

~〈C, 2〉� ∧ ~U�→ ~〈∃U.C, 1〉� ϕ
sym
i (V)B~KB�i

({
〈D, 1〉 | 〈D, 2〉 ∈ V

}
∪
{
Inv(R) | R ∈ V

}
∪
{
〈D, 2〉 | 〈D, 1〉 ∈ V

})
Figure 1: Boolean functions for defining the canonical domino set in Definition 13.

~KB�i. The algorithm returns “unsatisfiable” if ~KB�(V) =
false for all V ⊆ Var, and “satisfiable” otherwise.

We claim that the above algorithm is a correct procedure
for checking consistency of terminological ALCIb knowl-
edge bases. First, note that all necessary computation steps
can indeed be implemented algorithmically: Any Boolean
function can be evaluated for a fixed variable input V , and
equality of two functions can (naively) be checked by com-
paring the results for all input sets (which are finitely many
since Var is). The algorithm terminates since there can be
only finitely many Boolean functions over Var.

Concerning soundness and completeness, it is easy to see
that the Boolean operations used in constructing ~KB� di-
rectly correspond to the set operations in Definition 10, such
that ~KB�(V) = true iff V represents a domino in DKB. Thus
soundness and completeness is shown by Theorem 12.

Conclusions and Related Work
The main contribution of this paper is that it provides a
new algorithm for terminological reasoning in the descrip-
tion logic SHIQ, based on ordered binary decision dia-
grams, which is a substantial improvement to (Pan, Sattler,
& Vardi 2006). Obviously, experiments will have to be done
to investigate whether the conceptual insights really work
in practice. A prototype implementation is under way, and
will be reported on in the future. OBDDs have shown excel-
lent practical performance in structurally and computation-
ally similar domains, so that some hope for practical appli-
cability of this approach seem to be justified.

Our major contributions in this paper are in fact twofold.
To prove correctness of our algorithm we had to elabo-

rate on the model theoretic properties ofALCIb. The tech-
nique was given in terms of Boolean functions being directly
transferable into an algorithm based on OBDDs. We thereby
provide the theoretical foundations for a novel paradigm for
DL reasoning, which can be explored further in terms of im-
plementations and evaluations, and also in other directions.

We also showed how a terminological SHIQ knowl-
edge base can be converted into an equisatisfiable ALCIb
knowledge base, thereby providing a foundational insight
that reasoning in SHIQ can be done by developing rea-
soning solutions for ALCIb. In particular, we showed that
(qualified) number restrictions can be eliminated if allowing
restricted complex role expressions.

The approach of constructing a canonical model (resp. a
sufficient representation of it) in a downward manner (i.e. by
pruning a larger structure) shows some similarity to Pratt’s
type elimination technique (Pratt 1979), originally used to
decide satisfiability of modal formulae. Canonical models

themselves are a widely used notion in modal logic (Black-
burn, de Rijke, & Venema 2001), however, due to the ad-
ditional expressive power of ALCIb compared to standard
modal logics like K (the counterpart of the DL ALC), we
had to substantially modify this notion.

Besides implementation and evaluation, in the future we
will extend our work towards Abox reasoning and to dealing
with more expressive OWL DL constructs such as nominals.
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