
How to reason with OWL in a logic programming system

Markus Krötzsch, Pascal Hitzler, Denny Vrandečić
AIFB, Universität Karlsruhe, Germany

Michael Sintek
DFKI GmbH, Kaiserslautern, Germany

Abstract

Logic programming has always been a major ontology
modeling paradigm, and is frequently being used in large
research projects and industrial applications, e.g., by means
of the F-Logic reasoning engine OntoBroker or the TRIPLE
query, inference, and transformation language and system.
At the same time, the Web Ontology Language OWL has
been recommended by the W3C for modeling ontologies for
the web. Naturally, it is desirable to investigate the interop-
erability between both paradigms. In this paper, we do so
by studying an expressive fragement of OWL DL for which
reasoning can be reduced to the evaluation of Horn logic
programs. Building on the KAON2 algorithms for trans-
forming OWL DL into disjunctive Datalog, we give a de-
tailed account of how and to what extent OWL DL can be
employed in standard logic programming systems. En route,
we derive a novel, simplified characterization of the sup-
ported fragment of OWL DL.

1 Introduction

Logic programming has been a major ontology modeling
paradigm since the advent of the Semantic Web. In partic-
ular F-Logic [11] as supported by different systems such
as OntoBroker,1 FLORA,2 and TRIPLE3 [19] were and are
being used widely for ontology modeling in research and
industry.

At the same time, the Web Ontology Language OWL
[14] has been recommended by the W3C as standard for
modeling complex ontologies on the web. Hence, there ex-
ist two competing major paradigms for expressive knowl-
edge representation for the Semantic Web. This situation is
also reflected by the Charter4 of the W3C Rule Interchange
Format Working Group formed in November 2005 as part
of the W3C Semantic Web Activity: The charter refers ex-
plicitly to several W3C member submissions, including the

1http://ontobroker.semanticweb.org
2http://flora.sourceforge.net
3http://triple.semanticweb.org
4http://www.w3.org/2005/rules/wg/charter

Semantic Web Rule Language SWRL [8] and the Web Rule
Language WRL [1]. While the former adheres to the con-
ceptual design decisions underlying OWL DL, the latter is
based on F-Logic.

The two paradigms differ in many respects. While OWL
DL is decidable, F-Logic is not.5 While F-Logic is a Turing-
complete programming paradigm, OWL DL can mainly be
used for specifying static knowledge bases. Probably the
most prominent conceptual difference is that OWL DL ad-
heres to the open world assumption, while F-Logic – and
logic programming in general – is committed to the closed
world assumption. Indeed, OWL DL is based on descrip-
tion logics and is thus basically a decidable fragment of
first-order predicate logic, from which it borrows its formal
semantics. The semantics of logic programming based lan-
guages like F-Logic differs from that of first-order logic in
certain ways, and this often also results in a procedural fla-
vor. OWL and standard logic programming paradigms [13]
thus differ in modeling styles and formal semantics in ways
which go beyond syntactic issues. The choice of modeling
language indeed inflicts heavily on the treatment of implicit
knowledge by means of reasoning support [7].

While – in an ideal universe – a single ontology represen-
tation language might be a desirable goal, it is only realis-
tic to expect that the currently evolving Semantic Web will
be highly heterogeneous, not only in terms of the knowl-
edge represented, but also in terms of ontology language
paradigms used. It is desirable, therefore, to embark on the
creation of integrated reasoning tools which can cope with
knowledge represented in different paradigms and thus es-
tablish language interoperability in a practical sense. Ac-
cordingly, various approaches have been proposed for inte-
grating logic programs and description logics [3, 2, 5, 17].

The study of language interoperability is a delicate is-
sue. Ideally, a general logic would be established within
which different ontology languages could be embedded se-
mantically. To date, however, it is rather unclear whether a
satisfactory such logic can and will be found, and whether
it will be possible to put such a logic to practical use.

5Indeed, logic programming with non-monotonic negation is usually
not even semi-decidable. See [18] for an account of the well-founded se-
mantics.

So instead of pursuing the search for a common gen-
eralization of different paradigms, we rather embark on
the complementary quest for large fragments which can
be mapped semantically into other languages, in the sense
that they can be dealt with procedurally by corresponding
tools. More precisely, we ask to what extent ontologies
from one paradigm can be processed correctly by an engine
from another paradigm. In this paper, we investigate this for
OWL and logic-programming based engines, such as XSB
Prolog,6 which can be understood as the basic underlying
paradigm for, e.g., OntoBroker, FLORA, and TRIPLE.

Much of the content of this paper is implicitly contained
in the Ph.D. thesis [15]. However, it takes considerable ef-
fort to trim the rather involved theory down to such an extent
that the results become accessible, and so we chose to share
our insights. The original contributions of the paper are as
follows.

• We provide a novel characterization for the OWL lan-
guage fragment which can be translated into logic pro-
grams.

• We give a crisp and accessible account of how to real-
ize the interoperability.

• We provide a specialized conversion tool for using the
approach.

The paper is structured as follows. In Section 2 we
present an overview of our work within some historic con-
text. In Section 3 we provide the novel characterization
for the mentioned OWL language fragment Horn-SHIQ,
which we can translate into logic programs, and discuss
some issues arising in this context. In Section 4 we dis-
cuss our tool which realizes the approach, and we provide a
comprehensive example that illustrates the translation. Lan-
guage interoperability within our approach is discussed in
Section 5. We close with conclusions in Section 6.

Acknowledgments. The authors wish to thank Boris
Motik for the numerous clarifying discussions during the
writing of this paper. He would deserve to be a co-author,
but chose not to. Furthermore, support by the German Fed-
eral Ministry of Education and Research (BMBF) under the
SmartWeb project (grant 01 IMD01 B), by the Deutsche
Forschungsgemeinschaft (DFG) under the ReaSem project,
and by the European Commission under contract IST-2003-
506826 SEKT is gratefully acknowledged.

2 OWL DLP, and how to do better

The straightforward candidate for an OWL DL fragment
to be processed by a logic programming system is DLP (De-
scription Logic Programs), as introduced in [4] and studied

6http://xsb.sourceforge.net

in detail in [20]. DLP is a naive Horn fragment of OWL DL,
and although it is of very limited expressiveness compared
with OWL DL, it appears to be a suitable core paradigm for
some practical purposes [6].

As sets of Horn clauses, DLP ontologies can be ex-
pressed as logic programs without negation, and although
their OWL semantics differs somewhat from their reading
under logic programming semantics [13], these two per-
spectives are compatible up to a certain extent [5]. From
an interoperability perspective, however, DLP is of limited
use as it is only a small fragment of OWL DL.

However, a larger OWL fragment than OWL DLP can
be mapped into clausal form by means of sophisticated al-
gorithms developed for the KAON2 OWL reasoner.7 The
result of this transformation is disjunctive Datalog without
function symbols, and this is done in such a way that the
resulting disjunctive Datalog programs can be processed in
a standard Datalog fashion without loosing any of the OWL
DL semantics of the original knowledge base. In order to
improve on OWL DLP, and in order to find a larger fragment
which is processable by a logic programming system, a nat-
ural starting point is thus the OWL DL fragment which is
translated to Horn clauses by means of the KAON2 transla-
tion algorithms. This fragment was called Horn-SHIQ in
[10]. In the following, we will basically analyze the Horn-
SHIQ fragment regarding the question as to what extent
it can be dealt with within a standard logic programming
system like XSB Prolog.

3 From OWL to Logic Programs

We next present and discuss the transformation of OWL
DL specifications into Horn logic programs as provided by
the KAON2 algorithm described in [9, 15], which compiles
SHIQ knowledge bases into (function- and negation-free)
disjunctive Datalog.8 The usage of this algorithm for our
purpose of casting OWL DL into Horn clauses is restricted
in two ways. On the one hand, the algorithm was devised
to handle the description logic SHIQ(D),9 while OWL DL
corresponds to SHOIN(D). This means that nominals are
not supported yet, and thus are excluded from our treatment.
On the other hand, a disjunctive Datalog program that is ob-
tained from the transformation is in general not processable
by logic programming system for Horn programs.

7http://kaon2.semanticweb.org
8A (function- and negation-free) disjunctive Datalog rule is a function-

symbol-free formula of the form A1∨ . . .∨An ← B1∧ . . .∧Bm. This in turn
is equivalent to the formula A1 ∨ . . .∨An ∨¬B1 ∧ . . .∧¬Bm in conjunctive
(or clausal) normal form. Any first order predicat logic formula that does
not contain quantifiers and functions symbols can be cast in such a Datalog
rule by means of standard algorithms.

9At the time of the writing of this paper, the conceived support for
concrete domains is not implemented yet, i.e., the program handles SHIQ
instead of SHIQ(D).

Figure 1. Algorithm for reducing SHIQ to
disjunctive Datalog.

The latter problem of incompatibility with Horn logic
reasoners can have various causes, each of which will be
discussed individually below. First of all, one obviously
has to ensure that none of the created rules have a dis-
junction in the head, i.e., that each clause contains at most
one non-negated literal. The SHIQ fragment for which
this is the case still is surprisingly large and has been dis-
cussed in [10]. In Section 3.2 below, we review these results
and derive a substantially simpler alternative characteriza-
tion. While this restriction eliminates disjunctions from
the rule heads, it still leaves the possibility of having rules
with empty heads, also known as integrity constraints. Sec-
tion 3.3 discusses how to model such constraints in a (strict)
Horn-logic setting. Another problem is the equality pred-
icate encountered in many OWL DL specifications, since
logic programming systems do usually not provide built-in
equality. In Section 3.4, we show how this can be taken into
account by the translation. Finally, the sophisticated algo-
rithms of KAON2 enable us to deal with some OWL DL
specifications that are not in the fragment of DLP. In partic-
ular, the system supports arbitrary existential quantifiers, as
is discussed in the next section.

3.1 The KAON2 Transformation Algorithm

Here, we sketch how the transformation algorithm of
KAON2 works in principle. An exhaustive treatment can
be found in [15]. The general workflow for transforming a
SHIQ knowledge base into a disjunctive Datalog program
is depicted in Fig. 1. The steps of the algorithm can roughly
be described as follows. (1) Transitivity axioms for roles S
are replaced by adding axioms of the form ∀R.C � ∀S .∀S .C
whenever S � R. This is a standard method for eliminating
transitivity axioms, and the resulting knowledge base is sat-
isfiable if and only if the original knowledge base is.

Employing the fact thatSHIQ can be regarded as a sub-
set of first-order logic, step (2) uses standard algorithms
to transform the knowledge base into conjunctive normal
form. This involves eliminating existential quantifiers by
Skolemization, and thus function symbols must be intro-
duced into the knowledge base.

Next, in step (3), the obtained set of clauses is partially
saturated by adding logical consequences. This is the cru-
cial step of the algorithm where one has to compute enough
consequences to allow for a reduction to function-free Dat-
alog. Since the computational complexity is ET for
SHIQ but only NP for disjunctive Datalog, it should not
come as a surprise that this transformation step can be ex-
ponential in the size of the input. The details of this step are
rather sophisticated and we refer interested readers to [15]
for details and proofs.

Now function symbols can safely be eliminated in step
(4). To ensure that this process still preserves satisfiability
of the knowledge base, one has to add a linear number of
auxiliary axioms. Finally, it is easy to syntactically trans-
form the resulting set of clauses into a disjunctive Datalog
program in step (5).

Due to the transformations in steps (1) and (2), the output
of the algorithm is in general not semantically equivalent to
the input. Since all major reasoning tasks for SHIQ can
be reduced to satisfiability checking, it is sufficient for the
transformation to preserve satisfiability. However, combin-
ing the Datalog program with further axioms of first-order
logic generally destroys completeness of reasoning, i.e., the
resulting knowledge base might be (first-order) satisfiable
under some model that is not a model for the original OWL
ontology. In combination with a nonmonotonic reasoning
paradigm, such incompleteness often leads to unsoundness
as well. Fortunately, there are a number of axioms that one
can safely add without jeopardizing soundness or complete-
ness, as discussed in Section 5 below. Yet, in general, com-
pleteness of reasoning in the presence of additional axioms
can only be restored by applying the transformation algo-
rithm to the whole knowledge base again.

3.2 Horn-SHIQ

Now, we turn to the question which knowledge bases are
transformed exclusively into rules that do not contain dis-
junctions in the head. This class of knowledge bases has
already been introduced as Horn-SHIQ in [10], but in the
following we derive a novel characterization which greatly
simplifies the presentation. Generally, the description of
Horn-SHIQ exploits the insight that, whenever the nor-
mal form transformation yields only Horn clauses, any rel-
evant clause that is obtained by the saturation step (3) is also
Horn. Thus, it suffices to identify those SHIQ-axioms that
produce Horn-clauses after step (2) of the transformation
algorithm.

When defining Horn-SHIQ, one needs to consider the
details of the normal form transformation implemented in
KAON2. In particular, KAON2 performs a structural trans-
formation that introduces new names for subformulae. For
example, the axiom A � ∃R.∃R.C is transformed into ax-

C|ε = C pol(C, ε) = 1
(¬C)|1p = C|p pol(¬C, 1p) = −pol(C, p)
(C1 ◦ C2)|ip = Ci|p pol(C1 ◦ C2, ip) = pol(Ci, p)

for ◦ ∈ {	,
} and i ∈ {1, 2}
�R.C|2p = C|p pol(�R.C, 2p) = pol(C, p)

for � ∈ {∀,∃}
≤n R.C|3p = C|p pol(≤n R.C, 3p) = −pol(C, p)
≥n R.C|3p = C|p pol(≥n R.C, 3p) = pol(C, p)

Table 1. Positions in a concept (left) and their
polarity (right).

ioms A � ∃R.Q and Q � ∃R.C, where Q is a new concept
name. When done with care, such translations can help to
retain Hornness of a large class of clauses. Further details
on structural transformation (which, in general, does only
preserve satisfiability) are found in [15].

We recall the definition of Horn-SHIQ as given in [10],
which requires us to introduce a couple of auxiliary con-
cepts first. Subconcepts of some description logic concept
are denoted by specifying their position. Formally, a posi-
tion p is a finite sequence of integers, where ε denotes the
empty position. Given a concept D, D|p denotes the sub-
concept of D at position p, defined recursively as in Table 1
(left). In this paper, we consider only positions that are de-
fined according to this table, and the set of all positions in
a concept D is understood accordingly. Given a concept D
and a position p in D, the polarity pol(D, p) of D at position
p is defined as in Table 1 (right). Using this notation, we
can state the following definition of Horn knowledge bases.

Defintion 1 ([10, Definition 1]) Let pl+ and pl− denote mu-
tually recursive functions that map a SHIQ concept D
to a non-negative integer as specified in Table 2, where
sgn(0) = 0 and sgn(n) = 1 for n > 0. We define a func-
tion pl that assigns to each SHIQ-concept D and position
p in D a non-negative integer by setting:

pl(D, p) =

{
pl+(D|p) if pol(D, p) = 1,
pl−(D|p) if pol(D, p) = −1,

A concept C is Horn if pl(C, p) ≤ 1 for every position p in C
(including the empty position ε). An extensionally reduced10

ALCHIQ knowledge base KB is Horn if ¬C
 D is Horn
for each axiom C � D of KB.

While suitable as a criterium for checking the Hornness
of single axioms or knowledge bases, this definition is not
particularly suggestive as a description of the class of Horn
knowledge bases as a whole. Indeed, it is not readily seen
for which formulae pl yields values smaller or equal to 1

10A knowledge base is existentionally reduced if its ABox contains only
literal concepts. This can always be achieved by introducing new names
for complex concept terms.

D pl+(D) pl−(D)
⊥ 0 0
� 0 0
A 1 0
¬C pl−(C) pl+(C)
�

Ci maxi sgn(pl+(Ci))
∑

i sgn(pl−(Ci))⊔
Ci

∑
i sgn(pl+(Ci)) maxi sgn(pl−(Ci))

∃R.C 1 sgn(pl−(C))
∀R.C sgn(pl+(C)) 1
≥n R.C 1 n(n−1)

2 + n sgn(pl−(C))
≤n R.C n(n+1)

2 + (n + 1) sgn(pl−(C)) 1

Table 2. Definition of pl+(D) and pl−(D).

C+0 � � | ⊥ | ¬C−0 | C+0 	C+0 | C+0
C+0 | ∀R.C+0
C−0 � � | ⊥ | ¬C+0 | C−0 	C−0 | C−0
C−0 | ∃R.C−0 | A
C+1 � � | ⊥ | ¬C−1 | C+1 	C+1 | C+0
C+1 | ∃R.C+1 |∀R.C+1 | ≥n R.C+1 | ≤1 R.C−0 | A
C−1 � � | ⊥ | ¬C+1 | C−0 	C−1 | C−1
C−1 | ∃R.C−1 |∀R.C−1 | ≥2 R.C−0 | ≤n R.C+1 | A
Table 3. A grammar for defining Horn-
ALCHIQ. A and R denote the sets of all con-
cept names and role names, respecitvely.

for all possible positions in the formula. On the other hand,
Definition 1 is still overly detailed as pl calculates the ex-
act number of positive literals being introduced when trans-
forming some (sub)formula.

In order to derive a more convenient characterization, ob-
serve that, since we require the value of pl to be smaller or
equal to 1 at all positions of the concept, there cannot be any
sub-concepts of higher values, even though the value of the
subconcept is not decisive for some cases of the calculation
of pl (e.g. for pl+(∃R.C)). Thus we can generally restrict
to concepts with a pl-value ≤ 1. To do so, one has to con-
sider four different classes of concepts, having a pl-value ei-
ther =0 or ≤1 when occuring either at a positive or negative
position in a formula. Appropriate classes of ALCHIQ
concepts are defined in Table 3, where notation is simpli-
fied by omitting concepts that are obviously equivalent to
those already included. For example, we use ∃R.C instead
of ≥1 R.C, and exploit commutativity and associativity of 	
and
.

Intuitively, the classes C+0 and C+1 define exactly those
concepts for which the value of pl is smaller or equal to 0
and 1, respectively. In particular, C+1 denotes the class of all
Horn concepts. Let us now show this formally.

Lemma 1 A SHIQ concept D is in C+0 (C−0) iff we find,
for every position p in D (in ¬D), that pl(D, p) = 0
(pl(¬D, p) = 0).

Proof: Observe that using ¬D in the condition for C−0 re-

flects the fact that those concepts occur only at negative
subpositions in concepts of type C+0 . The proof proceeds
by induction over the structure of concepts. For the base
cases ⊥, �, and A, the claim is obvious. Now let D = ¬C.
It is easy to see that D ∈ C+0 iff C ∈ C−0 . By the indcution
hypothesis, this is equivalent to pl(D, p) = pl(¬C, p) = 0 for
any p. Conversely, D ∈ C−0 iff C ∈ C+0 , which is equivalent
to pl(C, p) = 0 for every p in C. By the definition of pl−,
it is easy to see that this is equivalent to pl(¬D, p) = 0 for
every p in ¬D.

The remaining cases are very similar, and the arguments
for C+0 and C−0 are mostly symmetric. We exemplify the
required reasoning by considering the case D = ∃R.C.
Clearly, pl(D, ε) � 0, so D is not in C+0 . On the other hand,
we find that D ∈ C−0 iff C ∈ C−0 iff pl(¬C, p) = 0 for ev-
ery p. By the definition of pl−, this clearly is equivalent to
pl(¬D, p) = 0 for every p. All other cases are shown analo-
gously. �

The following is the crucial result for our characteriza-
tion.

Proposition 1 A SHIQ concept D is in C+1 (C−1) iff we
find, for every position p in D (in ¬D), that pl(D, p) ≤ 1
(pl(¬D, p) ≤ 1).

Proof: The proof proceeds as in Lemma 1, so we only con-
sider some specific cases of the induction. So assume that
D = C1
 C2. Then D ∈ C+1 iff C1 ∈ C+0 and C2 ∈ C+1 . By
the induction hypothesis and the definition of pl+, we obtain
pl(D, p) ≤ 1 for all p in D.

Conversely, assume that pl(D, p) ≤ 1 for all p in D. For
this to hold at all positions other than ε, C1 and C2 must
be in C+1 . In addition, pl(D, ε) = pl+(C1) + pl+(C2) ≤ 1
implies that pl+(C1) = 0 or pl+(C2) = 0. Without loss of
generality, we assume that pl+(C1) = 0. By the definition of
pl+ and pl−, it is easy to see that this implies pl(C1, p) = 0
for all p in C1. Thus, by Lemma 1, C1 ∈ C+0 . The case for
D = C1
 C2 and C−1 is simpler, since values of C1 and C2

are combined with the max operation here. All other cases
are shown analogously.�

Now we can sum up our results in the following corol-
lary.

Corollary 1 An extensionally reduced ALCHIQ knowl-
edge base KB is Horn iff, for all axioms C � D of KB, one
finds that (¬C
 D) ∈ C+1 .

We argue that this definition is more easy to comprehend
than the original characterization. For example, it is now
readily seen that the axiom ≥2 R.(C 	 ∃R.D) � ∀R.¬E is
of the form C−1 � C+0 and is thus Horn, whereas ∀R.¬E �
≥2 R.(C	∃R.D) is not. This is less obvious when consider-
ing the original definition. Also note that Corollary 1 only
depends on Table 3, but does not require the definition of

position, polarity, or any of the auxiliray functions pl(+/−).
It is possible to further extend the above characterisation to
SHIQ, and this has been done in [12].

So far, we only consideredALCHIQ knowledge bases,
i.e. we excluded transitivity from our treatment. The
reason is that transitivity axioms of SHIQ are replaced
by ALCHIQ axioms before axioms are transformed into
clausal normal form. These additional axioms can actu-
ally lead to non-Hornness as well. We refrain form giv-
ing a more precise description, which is readily obtained by
combining our results for ALCHIQ with the processing
of transitivity axioms described in [15].

3.3 Integrity Constraints

Even when restricting to Horn-SHIQ, the transforma-
tion algorithm can produce rules of the form← B1∧ . . .∧Bn

that do not have a head at all. These rules correspond to
clauses of the form ¬B1 ∨ . . . ∨ ¬Bn, and thus can be re-
garded as integrity constraints asserting that the statements
Bi can never become true simultaneously. A typical exam-
ple are the disjointness-conditions of classes in OWL DL,
e.g., the statement C 	 D ≡ ⊥ translates to← C(x) ∧ D(x).

While logic programming systems often do not support
such rules,11 this does not impose real restrictions on our
translation. To see why this is the case, recall that the logical
consequences of a Horn-program are obtained by consider-
ing its least (Herbrand) model: an atomic statement is a con-
sequence of a Horn-program if and only if it is entailed by
the least model. On the other hand, the role of integrity con-
straints is to disallow certain interpretations for the knowl-
edge base. In the case of Horn-logic this means that given
integrity constraints either eliminate the least model, thus
making the whole theory inconsistent, or otherwise have no
effect on the reasoning at all.

Therefore, it is not necessary to extend logic program-
ming systems with special capabilities to support integrity
constraints. Instead, we just translate clauses¬B1∨. . .∨¬Bn

into rules of the form inc ← B1 ∧ . . . ∧ Bn, where inc is a
freshly introduced nullary “inconsistency” predicate. One
can now query the system for inc: if the answer is “yes”
then inc is true in the least model, and thus every model nec-
essarily violates one of the constraints. If inc is not entailed,
then the knowledge base is consistent and can be queried as
usual.

3.4 Equality

Equality plays an important role in many description log-
ics. The reason is that description logics have a classical
first-order semantics without a unique name assumption.

11Rules with an empty head typically only appear as queries.

X ≈ X, X ≈ Y ← Y ≈ X, X ≈ Z ← X ≈ Y ∧ Y ≈ Z
C(Y)← C(X) ∧ X ≈ Y for every concept name C

R(Y1, Y2)← R(X1, X2) ∧ X1 ≈ Y1 ∧ X2 ≈ Y2

for every role name R

Table 4. Horn axioms for describing equality.

Thus it is possible that syntactically different logical con-
stants denote the same element in a model. This can be
stated explicitly in the form of ABox statements such as
“a ≈ b” but it can also be concluded indirectly during rea-
soning.

The latter occurs when number restrictions appear in the
knowledge base: given the axioms ≤1R(a), R(a, b), and
R(a, c), we conclude that b and c must denote the same el-
ement. Indeed, it is standard to treat number restrictions by
translating them into logical formulae that include equality
statements. For example, the statement ≤nR(a) translates to
∀x1, . . . , xn+1.R(a, x1) ∧ . . . ∧ R(a, xn+1) → x1 ≈ x2 ∨ x1 ≈
x3 ∨ . . . ∨ xn ≈ xn+1, where the consequent denotes the dis-
junction of all pairwise equality statements among the vari-
ables. This is also the way how KAON2 treats number re-
strictions and thus these are closely tied to the support for
equality.

Unfortunately, equality reasoning in the presence of
functions symbols is a problem of formidable difficulty, and
an almost inevitable source of non-termination. Thus com-
mon logic programming systems typically do not provide
a native support for a general equality predicate. How-
ever, it is well known that one can axiomatically describe
an equality predicate in Horn logic, as long as only finitely
many predicate symbols are considered. The correspond-
ing clauses are depicted in Table 4. In order to ensure that
these rules do not impair decidability, one must slightly ex-
tend them to become DL-safe, as explained in Section 5.
In general, this restriction is also required for the proofs of
completeness of reasoning. Here, we only remark that with
the (DL-safe version of the) above rules, equality reasoning
is possible within logic programming systems.

4 Implementation and example

A precompiled binary distribution of the KAON2 imple-
mentation is available online, and can be downloaded free
of charge for research and academic purposes.12 KAON2
is a whole infrastructure for managing and reasoning with
ontologies, accessible via an API rather than through some
fixed user interface. It includes methods for obtaining the
basic disjunctive Datalog program, but does not yet incor-
porate the specific adjustments to logic programming sys-

12http://kaon2.semanticweb.org

tems described in the previous section. Therefore, we pro-
vide an additional wrapper application dlpconvert [16] as
part of the KAON2 OWL Tools.13 The latter is a collection
of command line tools applicable for tasks ranging from sat-
isfiability testing to the conversion of OWL specifications
into LATEX-processable logical formulae. In the following,
we briefly discuss the usage of dlpconvert and demonstrate
the algorithm for a concrete example.

In general, dlpconvert reads an ontology in OWL/RDF
or OWL/XML format and transforms it into a logic pro-
gram in Prolog syntax. If invoked without further argu-
ments, this transformation does not support Skolemization
of existential quantifiers or any form of non-Horn clauses
(thus defining a form of “DLP” based on Horn-SHIQ). If
the -X switch is used, dlpconvert uses the full capabilities
of KAON2 to produce disjunctive Datalog from arbitrary
SHIQ input.

There is also an -flogic option that syntactically ad-
justs the output for use in an F-Logic system. In particular,
this involves the usage of F-Logic’s “object oriented” syn-
tactic features, such as C::D for denoting subclasses. We
remark that the exact semantic interpretation of such syn-
tax might depend on the reasoning engine that is employed.
A typical approach is to axiomatize :: and similar syntacti-
cal constructs in the underlying (non-monotonic) logic pro-
gramming paradigm, and to regard classes and relations as
logical terms, rather than as predicates. In contrast, the orig-
inal semantics of F-Logic [11] was based on so-called “F-
Structures,” and employed classical monotonic negation. In
order to avoid lengthy discussions on the intended seman-
tics, we employ well-known Prolog syntax for the following
examples, and merely remark that all of the programs could
be adjusted for use in F-Logic reasoners such as OntoBro-
ker, FLORA, or TRIPLE as well.

Besides the serialization in Prolog and F-Logic, the im-
plementation also enables the user to serialize the translated
rulebase in either RuleML 0.914 or alternatively in the pro-
posed Semantic Web Rule Language SWRL [8] extension
of OWL.

Note that SWRL as of now does not allow for the use of
disjunctive head atoms in a rule. Therefore, the semantics
of SWRL rules in KAON2 do not follow the standard at
this point. In the standard, multiple atoms in the head of
a rule should be interpreted as being conjunctive, but the
serialization will print them meaning a disjunction. In order
to avoid ambiguities, only SWRL rules with a single literal
in the head should be used when interchanging SWRL files.
The implementation will warn you, if you have rules with
multiple head atoms.

For a concrete example of the transformation, consider
the ontology given in Table 5 (top). The according trans-

13http://owltools.ontoware.org
14http://www.ruleml.org/0.9/

lation to Horn-logic is given in the middle and lower parts
of the table. Let us first consider the middle part, which
shows the rules directly created in the translation. Some of
the rules clearly represent (part of) some SHIQ-axiom, as
is the case for “person(X) � nosiblings(X).” and axiom
(4). Other rules are obtained by more complicated reason-
ing steps, such as e.g. “parent(X) � manychildren(X).”
which is obtained from axioms (3) and (1). While such rules
are still fairly self-explicatory, there is also a number of ax-
ioms that include predicates of the form S f (X, X f) which do
not appear in the original knowledge base. These predicates
are introduced in the elimination of function symbols. Intu-
itively, S f (X, Y) holds iff Y = f (X). However, the predicates
S f are only satisfied for a finite number of constants, since
arbitrary application of functions is not needed and might
even lead to undecidability. The exact number of additional
function symbols may vary from case to case. Finally, two
of the rules represent inconsistency constraints by means of
the predicate inc as discussed in Section 3.3.

The rules at the bottom of Table 5 define various aux-
iliary predicates that are needed for the correctness of the
translation. In order to restrict these definitions to a finite
number of terms, we introduce a predicate O that speci-
fies the individuals for which the program applies. In our
case, these are just the individuals from the ABox. Using
O, we define S f as discussed above. Further, we introduce
a predicate HU defining which terms are considered in the
program, namely individuals from O and their immediate
successors for each function symbol. The remaining rules
yield the equality theory of Section 3.4, though restricted to
the terms in HU.

The resulting program now allows us to conclude
several ABox statements. For example, we can de-
rive that “parent(Elaine)” and that “Sir Lancelot ≈
Lancelot du Lac.” However, asking queries requires special
care, since the generated program is not semantically equiv-
alent to the original knowledge base. We discuss this aspect
in the next section in greater detail.

5 Realized interoperability

The transformation of OWL DL into Horn logic pro-
grams described so far can be used to check satisfiability
of the knowledge base in a logic programming system. In
this section we describe which programs and rules can now
safely be added to the output of the transformation without
loosing soundness or completeness of reasoning. The fol-
lowing discussion affects querying as well, since asking a
query is equivalent to adding the query (as a rule with an
empty head) to the program, and checking satisfiability.

It has been remarked earlier that, in general, adding fur-
ther axioms to the transformed program requires to invoke
the transformation algorithm again. The reason is that ax-

ioms usually must be involved in the saturation step (3) of
the transformation, as described in Section 3.1. Adding ax-
ioms after the transformation thus impairs the saturation, so
that elimination of function symbols can yield incomplete-
ness.

5.1 Adding ground facts

First, we discuss under which circumstances ground lit-
erals (positive or negative) can be added to the transformed
knowledge base. Ground facts of the form C(a), ¬C(a), and
R(a, b) do not affect the saturation step of the transforma-
tion algorithm, since the associated inferences can also be
drawn from the final logic program. Thus, one can generally
disregard ABox axioms in the transformation and add them
afterwards instead. However, as illustrated in Section 4, the
transformed program needs to contain auxiliary axioms for
each individual that occurs in the ABox. Thus, when adding
axioms that introduce new individuals, one has to add an ax-
iom of the form O(a) to the program as well.

Adding auxiliary facts O(a) corresponds to “registering”
new individuals for reasoning with the program. This is
crucial, since the generated Datalog program does only re-
fer to the registered individuals. Indeed, every rule that
is obtained by the transformation uses only variables that
(finitely) depend on the predicate O. Thus, one can use
the generated rules only to deduce facts about the known
individuals, and reasoning for non-registered individuals is
bound to be incomplete. As we will see in the next section,
restriction to known individuals also ensures decidability.

The ability to add ¬C(a) to the resulting disjunctive Dat-
alog does of course refer to the usual first-order semantics of
negation. In the logic programming setting, it is thus trans-
lated to ←C(a), which can either be read as an integrity
constraint that disallows C(a), or as a query asking whether
C(a) is provable. As discussed in Section 3.3, the results de-
rived in this situation by a Horn logic programming system
fully agree with the semantics of first-order logic in both
cases. One should be aware that this hinges upon the fact
that one only asks for positive information: the given in-
tegrity constraint, when interpreted by the logic program,
states that C(a) cannot be true, not that it is false in a classi-
cal sense. Especially, negated ABox statements have noth-
ing to do with the nonmonotonic negation (as failure) that
is used in some logic programming systems.

The situation for facts of the form ¬R(a, b) is more in-
volved than for the above cases. Note that, in description
logics, such statements are often not allowed in the ABox at
all, and thus the lack of support for such negations does not
affect the soundness or completeness of the transformation
algorithm. Still, as observed in [15], adding ¬R(a, b) to the
knowledge base is unproblematic if the role R is simple, i.e.,
has no transitive subroles. As remarked in Section 3.1, the

TBox/RBox ABox
(1) Parent ≡ ∃ hasChild.�
(2) Person � ∃ childOf.Person
(3) ManyChildren � ≥2 hasChild.�
(4) NoSiblings � Person 	 ∀ childOf.(≤1 hasChild.�)
(5) childOf ≡ hasChild−1

hasChild(Elaine, Sir Lancelot)
noSiblings(Lancelot du Lac)
childOf(Lancelot du Lac,Elaine)

person(X) � nosiblings(X). person(X f 3) � person(X), S f 3(X, X f 3).
parent(X) � haschild(X, Y). parent(X) � manychildren(X).

haschild(Y, X) � childof(X, Y). haschild(X, X f 1) � manychildren(X), S f 1(X, X f 1).
haschild(X, X f 2) � parent(X), S f 2(X, X f 2). haschild(X, X f 0) � manychildren(X), S f 0(X, X f 0).

childof(X, X f 3) � person(X), S f 3(X, X f 3). childof(Y, X) � haschild(X, Y).

Y1 ≈ Y2 � nosiblings(X), childof(X, Z), haschild(Z, Y1), haschild(Z, Y2).
inc � manychildren(X), nosiblings(X0), childof(X0, X).
inc � X f 1 ≈ X f 0,manychildren(X), S f 1(X, X f 1), S f 0(X, X f 0).

S f (X, f (X)) � O(X). HU(X) � O(X). HU(f (X)) � O(X). (for f ∈ { f0, f1, f2, f3})
X ≈ X � HU(X).
X ≈ Y � Y ≈ X,HU(X),HU(Y).
X ≈ Z � X ≈ Y, Y ≈ Z,HU(X),HU(Y),HU(Z).

C(Y) � C(X), X ≈ Y,HU(X),HU(Y).
(for C ∈ {person, parent,manychildren, nosiblings})

R(Y1, Y2) � R(X1, X2), X1 ≈ Y1, X2 ≈ Y2,HU(X1),HU(X2),HU(Y1),HU(X2).
(for R ∈ {childof, haschild})

O(Elaine). O(Sir Lancelot). O(Lancelot du Lac).

Table 5. An example ontology in Horn-SHIQ (top), and its translation into Horn-logic, consisting of
the translated rules (middle) and auxiliary axioms (bottom).

elimination of transitivity axioms performed by the algo-
rithm does not yield a logically equivalent knowledge base.
Moreover, even equisatisfiability is only ensured for formu-
lae that regularly belong to SHIQ.

Fortunately, the additional expressiveness of Horn logic
allows us to recover transitivity axioms for the case of neg-
ative non-simple roles as well. Indeed, transitivity of R can
simply be expressed by a rule R(X, Z)← R(X, Y) ∧ R(Y, Z).

As discussed in the following section, we could slightly
extend this rule to make it DL-safe and ensure decidabil-
ity. The addition of the above rule obviously is sound. On
the other hand, attempting to remove all transitivity axioms
in a preprocessing step and replacing them by axioms of
the above form after the transformation might destroy com-
pleteness of the algorithm. The reason is that (the trans-
formed) transitivity axioms play an important role during
the saturation step, where one must draw enough conse-
quences to justify the elimination of function symbols.

5.2 Complex rules and queries

Let us now turn to more complex rules and queries.
Given the discussion in the previous section, it should be

clear that all individuals that are added to a program must be
“registered” via statements of the form O(a). Failing to do
so generally results in incompleteness. If this is taken into
account, arbitrary ground (Horn) rules can safely be intro-
duced into the program. The situation for rules and queries
that include variables is more complicated, and registering
individuals is not sufficient in this case.

However, reasoning remains sound and complete if one
considers only rules that are DL-safe. The intention is to
restrict the scope of rules to those known individuals that
occur in the (finite) Herbrand universe of the transformed
program. More formally, we define a DL-safe rule as a
function-free Horn rule A ← B1 ∧ . . . ∧ Bn, such that for
every variable X that occurs in the rule, there is a non-DL
atom Bi within which X occurs. A common way to achieve
DL-safety is to add HU(X) for each variable occurring in
the head of a rule, effectively restricting each rule to the
Herbrand universe of the program.

It is also well known that the combination of OWL DL
with arbitrary Horn-rules is undecidable [8]. Restricting to
DL-safe rules thus does not only ensure completeness of
reasoning, but is also needed to obtain a decidable formal-
ism. Indeed, it is easy to see that DL-safe rules do not in-

troduce major termination problems, since they allow only
for finitely many possible variable assignments. In fact, any
DL-safe rule, and all of the generated program, could also
be “unfolded” into finitely many ground rules, and treated
as a propositional logic specification.

In addition to normal Horn-rules, many logic program-
ming systems also support certain kinds of nonmonotonic
negation operators. These can often be described as a kind
of negation as failure, though the exact definition of “fail-
ure” may vary (e.g. in taking cyclic proofs into account or
not). One might ask to what extent the generated program
allows for a sound and complete interaction with such non-
monotonic formalisms. However, given that the formal se-
mantics of such systems is often not defined with respect to
first-order logic, it is not clear what “sound” or “complete”
means in this setting. Clearly, nonmonotonic negation is
not sound with respect to the semantics of negation in de-
scription logics, and thus cannot be used to query for such
knowledge. On the other hand, nonmonotonic negation can
still be used “on top” of the knowledge base, provided that
the results are interpreted in an appropriate way. For ex-
ample, the query←not C(a) can safely be used to find out
whether the logic programming system fails to construct a
proof for C(a), and this knowledge could be used by other
modules of the logic program.

5.3 Termination

In addition to the question of semantic interoperability,
one also has to take into account whether the logic program-
ming system is actually able to work with the generated pro-
gram. Even though the problem of determining satisfiability
is decidable for the class of knowledge bases we consider,
this does not mean that a particular system will actually
decide all of the cases. Although the generated program
could be used with almost any logic programming system,
it turns out that simple SLD-resolution may run into loops
when evaluating the generated programs. Since the program
refers to finitely many individuals only, it is obvious that
termination is not a problem in principle. Modern systems
such as XSB Prolog usually employ tabling to detect loops
(or use modified bottom-up strategies like OntoBroker), and
this always suffices to obtain termination in our setting.

5.4 Offline processing

We have seen that certain facts, including ABox asser-
tions and negated ABox assertions for named classes, can
be added to the knowledge base after the translation per-
formed by the KAON2 translation algorithms. This feature
can be put to use for practical query answering, as it al-
lows to translate the knowledge base offline, which means
that the KAON2 algorithms do not have to be invoked again

once knowledge of a basic form is added or when the sys-
tem is queried. The benefit from this offline translation is
apparent from the involved worst-case complexities: The
KAON2 translation algorithms are ET, while the re-
sulting Datalog is polynomial.

The basic functionality of our approach is thus as fol-
lows: Given a Horn-SHIQ knowledge base, it is trans-
formed offline into Datalog. ABox assertions for named
classes can then be added to the Datalog knowledge base
as they become known. For querying, we allow only the
retrieval of instances of named classes, as this can be per-
formed without touching the Datalog knowledge base.

In principle however, it is possible to query for instances
of certain complex classes or TBox knowledge, however
this involves the addition of some OWL axiom to the orig-
inal Horn-SHIQ knowledge base, which in turn necessi-
tates to invoke the KAON2 translation algorithm again. We
think that this process can be enhanced by using incremen-
tal algorithms, but this remains to be investigated.

6 Conclusions

Employing the transformation algorithm of KAON2, we
gave a detailed description of how a considerable fragment
of OWL DL can be processed within logic programming
systems. To this end, we derived an enhanced characteriza-
tion of Horn-SHIQ, the description logic for which this
translation is possible, and explained how the generated
Datalog programs can be used in a standard logic program-
ming paradigm without sacrificing soundness or complete-
ness of reasoning. The primary contribution of our study
thus is to clarify to which extent KAON2 enables semantic
interoperability between the ontology modeling paradigms
of description logics and logic programming, and how this
interoperability can be realized in practice. Nonetheless, the
described procedure may actually find practical applications
within research projects such as SmartWeb.15

Our contribution leaves various open questions to be in-
vestigated in the future. Can the KAON2 transformation al-
gorithms be used for merging OWL and F-Logic databases?
Can they possibly contribute to establishing powerful inte-
grated or hybrid systems based both on the logic program-
ming and on the description logic tradition? Can practical
systems for large scale applications be developed where dif-
ferent ontology language paradigms can be dealt with in an
interoperable way?

The sophisticated KAON2 algorithms significantly en-
large the class of SHIQ ontologies processable in a logic
programming system. Although this extended scope is re-
flected in an increased worst-case complexity and rules out
the possibility of a semantically equivalent transformation,

15http://www.smartweb-project.de

it still allows for nontrivial semantic interactions between
the two paradigms. Such interaction does not only yield
ways to transfer knowledge between heterogeneous sys-
tems, but also, as in the case of DL-safe rules, can encom-
pass future extensions of the current ontology modeling lan-
guages.

References

[1] J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hit-
zler, M. Kifer, R. Krummenacher, H. Lausen, A. Polleres,
and R. Studer. Web Rule Language (WRL). W3C
Member Submission 09 Sept. 2005, http://www.w3.org/
Submission/2005/SUBM-WRL-20050909/, 2005.

[2] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effec-
tive integration of declarative rules with external evaluations
for semantic-web reasoning. In Y. Sure and J. Domingue,
editors, Proc. of Third European Semantic Web Confer-
ence (ESWC2004), Budva, Montenegro, June 2006, volume
4011 of Lecture Notes in Computer Science, pages 273–287.
Springer, 2006.

[3] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.
Combining answer set programming with description log-
ics for the semantic web. In D. Dubois, C. A. Welty,
and M.-A. Williams, editors, Proc. of Ninth Int. Conf. on
the Principles of Knowledge Representation and Reasoning
(KR2004), Whistler, Canada, June 2004, pages 141–151.
AAAI Press, 2004.

[4] B. Grosof, I. Horroks, R. Volz, and S. Decker. Description
logic programs: Combining logic programs with description
logics. In Proc. of WWW 2003, Budapest, Hungary, May
2003, pages 48–57. ACM, 2003.

[5] P. Hitzler, P. Haase, M. Krötzsch, Y. Sure, and R. Studer.
DLP isn’t so bad after all. In Proc. of the WS OWL – Ex-
periences and Directions, Galway, Ireland, November 2005,
2005.

[6] P. Hitzler, R. Studer, and Y. Sure. Description logic pro-
grams: A practical choice for the modelling of ontologies.
In 1st WS on Formal Ontologies meet Industry, FOMI’05,
2005.

[7] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Handler.
Semantic web architecture: Stack or two towers? In F. Fages
and S. Soliman, editors, Proc. of Principles and Practice
of Semantic Web Reasoning. 3rd Int. WS, PPSWR 2005,
Dagstuhl Castle, Germany, Sept. 2005, volume 3703 of Lec-
ture Notes in Computer Science, pages 37–41. Springer,
Berlin, 2005.

[8] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web
Rule Language combining OWL and RuleML. W3C
Member Submission 21 May 2004, http://www.w3.org/
Submission/2004/SUBM-SWRL-20040521/, 2004.

[9] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ
description logic to disjunctive datalog programs. In
D. Dubois, C. A. Welty, and M.-A. Williams, editors, Proc.
of the 9th Int. Conf. on Knowledge Representation and Rea-
soning (KR2004), pages 152–162, 2004.

[10] U. Hustadt, B. Motik, and U. Sattler. Data complexity of rea-
soning in very expressive description logics. In Proc. 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 466–
471, 2005.

[11] M. Kifer, G. Lausen, and J. Wu. Logical foundations of
object-oriented and frame-based languages. Journal of the
Association for Computing Machinery, 42:741–843, 1995.

[12] M. Krötzsch, S. Rudolph, and P. Hitzler. On the complexity
of Horn description logics. Technical report, Institute AIFB,
Universität Karlsruhe, 2006.

[13] J. W. Lloyd. Foundations of Logic Programming. Springer,
Berlin, 1988.

[14] D. McGuinness and F. v. Harmelen. OWL Web Ontology
Language Overview, 2004. W3C Recommendation 10 Feb.
2004, http://www.w3.org/TR/owl-features/.

[15] B. Motik. Reasoning in Description Logics using Resolution
and Deductive Databases. PhD thesis, Universität Karlsruhe
(TH), Germany, 2006.

[16] B. Motik, D. Vrandečić, P. Hitzler, Y. Sure, and R. Studer.
dlpconvert – converting OWL DLP statements to logic pro-
grams. In European Semantic Web Conference 2005 De-
mos and Posters, May 2005. System available at http:
//owltools.ontoware.org/.

[17] R. Rosati. DL+log: Tight integration of description log-
ics and disjunctive datalog. In P. Doherty, J. Mylopou-
los, and C. A. Welty, editors, Proc. of Tenth Int. Conf.
on Principles of Knowledge Representation and Reasoning
(KR2006), Lake District of the United Kingdom, June 2006,
pages 68–78. AAAI Press, 2006.

[18] J. S. Schlipf. The expressive powers of the logic program-
ming semantics. Journal of Computer and System Sciences,
51:64–86, 1995.

[19] M. Sintek and S. Decker. TRIPLE – A query, inference, and
transformation language for the semantic web. In Proc. of
the Int. Semantic Web Conf. (ISWC02), Sardinia, Italy, 2002.

[20] R. Volz. Web Ontology Reasoning with Logic Databases.
PhD thesis, Universität Karlsruhe (TH), Germany, 2004.

