
Algorithms for Paraconsistent Reasoning with OWL ?

Yue Ma1,2, Pascal Hitzler2, and Zuoquan Lin1

1Department of Information Science, Peking University, China
2AIFB, Universität Karlsruhe, Germany

{mayue,lz}@is.pku.edu.cn, {yum,hitzler}@aifb.uni-karlsruhe.de

Abstract. In an open, constantly changing and collaborative environment like
the forthcoming Semantic Web, it is reasonable to expect that knowledge sources
will contain noise and inaccuracies. Practical reasoning techniques for ontolo-
gies therefore will have to be tolerant to this kind of data, including the ability to
handle inconsistencies in a meaningful way. For this purpose, we employ para-
consistent reasoning based on four-valued logic, which is a classical method for
dealing with inconsistencies in knowledge bases. Its transfer to OWL DL, how-
ever, necessitates the making of fundamental design choices in dealing with class
inclusion, which has resulted in differing proposals for paraconsistent descrip-
tion logics in the literature. In this paper, we build on one of the more general
approaches which due to its flexibility appears to be most promising for further
investigations. We present two algorithms suitable for implementation, one based
on a preprocessing before invoking a classical OWL reasoner, the other based on
a modification of the KAON2 transformation algorithms. We also report on our
implementation, called ParOWL.

1 Introduction

Real knowledge bases and data for Semantic Web applications will rarely be perfect.
They will be distributed and multi-authored. They will be assembled from different
sources and reused. It is unreasonable to expect such realistic knowledge bases to be
always logically consistent, and it is therefore important to study ways of dealing with
inconsistent knowledge. This is particularly important if the full power of logic-based
approaches like the Web Ontology Language OWL [1] shall be employed, as classical
logic breaks down in the presence of inconsistent knowledge.

The study of inconsistency handling in Artificial Intelligence has a long tradition,
and corresponding results are recently being transferred to description logics, which
underly OWL. Two fundamentally different approaches can be distinguished. The first
is based on the assumption that inconsistencies indicate erroneous data which is to be
repaired in order to obtain a consistent knowledge base, e.g. by selecting consistent

? We acknowledge support by the German Federal Ministry of Education and Research (BMBF)
under the SmartWeb project (grant 01 IMD01 B), by the EU under the IST project NeOn (IST-
2006-027595, http://www.neon-project.org/), the IST-FP6-026978 X-Media project, by the
Deutsche Forschungsgemeinschaft (DFG) in the ReaSem project, and by China Scholarship
Council, and partially by NSFC (grant numbers 60373002 and 60496322) and by NKBRPC
(2004CB318000).

subsets for the reasoning process [2, 3]. The other approach yields to the insight that
inconsistencies are a natural phenomenon in realistic data which are to be handled by
a logic which tolerates it [4–6]. Such logics are called paraconsistent, and the most
prominent of them are based on the use of additional truth values standing for undefined
(i.e. neither true nor false) and overdefined (or contradictory, i.e. both true and false).
Such logics are appropriately called four-valued logics [7]. We believe that either of the
approaches is useful, depending on the application scenario.

In this paper, we contribute to the paraconsistency approach. We indeed extend on
the preliminary work in [6], which has the following features.

– It is grounded in prominent research results from Artificial Intelligence [8].
– It is very flexible in terms of design choices which can be made when developing a

paraconsistent description logic. This concerns the issues arising from the fact that
there are different ways of defining the notion of logical implication in four-valued
logics. The approach which we follow allows the full and simultaneous use of the
different notions of implication.

– It does not increase worst-case computational complexity of reasoning if compared
to standard reasoning methods for consistent knowledge bases.

In this paper, we present two algorithms for practical paraconsistent reasoning based
on this approach. The first one is based on a transformation from a paraconsistent ontol-
ogy O to a classical two-valued ontology O in such a way that paraconsistent reasoning
on O can be simulated by classical reasoning on O. The second algorithm is based on
an adaptation of the algorithms underlying the KAON2 OWL Reasoner1 [9] by realiz-
ing a resolution-based decision procedure for paraconsistent reasoning. We spell out the
details for the description logic ALC, which is considered to be the most foundational
one and comprises a large fragment of OWL DL.

The paper is structured as follows. We first review briefly preliminaries in Section
2. In Section 3 we then describe the syntax and semantics of the paraconsistent descrip-
tion logic which we will use. Sections 4 and 5 describe the two reasoning procedures,
respectively based on a transformation for preprocessing and on an adaptation of the
KAON2 algorithms. In Section 6, we describe the prototype of our paraconsistent ap-
proach to reasoning with a possible inconsistent ontology, and discuss future work and
conclude in Section 7.

This paper is a substantial continuation of work presented as preliminary results in
[6]. Due to space limitations, proofs are omitted. They can be found in a technical report
available from http://www.aifb.uni-karlsruhe.de/WBS/phi/pub/parowltr.pdf.

2 Preliminaries

2.1 The Description Logic ALC

We briefly review notation and terminology of the description logic ALC, but we ba-
sically assume that the reader is familiar with description logics. For comprehensive
background reading, please refer to [10].

1 http://kaon2.semanticweb.org

Table 1. Syntax and semantics of ALC

Constructor Name Syntax Semantics
atomic concept A A AI ⊆ ∆I

abstract role RA R RI ⊆ ∆I ×∆I

individuals I o oI ∈ ∆I

top concept > ∆I

bottom concept ⊥ ∅
conjunction C1 u C2 CI ∩DI

disjunction C1 t C2 CI ∪DI

negation ¬C ∆I \ CI

exists restriction ∃R.C {x | ∃y, (x, y) ∈ RI and y ∈ CI}
value restriction ∀R.C {x | ∀y, (x, y) ∈ RI implies y ∈ CI}

Axiom Name Syntax Semantics
concept inclusion C1 v C2 CI

1 ⊆ CI
2

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

We assume that we are given a set of atomic concepts (or concept names), a set of
roles (or role names), and a set of individuals. With the symbols > and ⊥ we further-
more denote the top concept and the bottom concept, respectively.

Complex concepts in ALC can be formed from these inductively as follows.

1. >, ⊥, and each atomic concept are concepts;
2. If C,D are concepts, then C tD, C uD, and ¬C are concepts;
3. If C is a concept and R is a role, then ∀R.C and ∃R.C are concepts.

An ALC ontology consists of a set of assertions, called the ABox of the ontology,
and a set of inclusion axioms, calld the TBox of the ontology. Assertions are of the
form C(a) or R(a, b), where a, b are individuals and C and R are concepts and roles,
respectively. Inclusion axioms are of the form C v D, where C and D are concepts.
Informally, an assertion C(a) means that the individual a is an instance of concept
C, and an assertion R(a, b) means that individual a is related with individual b via
the property R. The inclusion axiom C v D means that each individual of C is an
individual of D.

The formal definition of the (model-theoretic) semantics of ALC is given by means
of interpretations I = (∆I , ·I) consisting of a non-empty domain ∆I and a mapping ·I
satisfying the conditions in Table 1, interpreting concepts as subsets of the domain and
roles as binary relations on the domain. An interpretation satisfies an ALC ontology
(i.e. is a model of the ontology) iff it satisfies each axiom in both the ABox and the
TBox. An ontology is called satisfiable (unsatisfiable) iff there exists (does not exist)
such a model. In ALC, reasoning tasks, i.e. the derivation of logical consequences, can
be reduced to satisfiability checking of ontologies [10, 11].

Table 2. Truth table for 4-valued connectives

α f f f f t t t t >̈ >̈ >̈ >̈ ⊥̈ ⊥̈ ⊥̈ ⊥̈
β f t >̈ ⊥̈ f t >̈ ⊥̈ f t >̈ ⊥̈ f t >̈ ⊥̈
¬α t t t t f f f f >̈ >̈ >̈ >̈ ⊥̈ ⊥̈ ⊥̈ ⊥̈

α ∧ β f f f f f t >̈ ⊥̈ f >̈ >̈ f f ⊥̈ f ⊥̈
α ∨ β f t >̈ ⊥̈ t t t t >̈ t >̈ t ⊥̈ t t ⊥̈
α 7→ β t t t t f t >̈ ⊥̈ >̈ t >̈ t ⊥̈ t t ⊥̈
α ⊃ β t t t t f t >̈ ⊥̈ f t >̈ ⊥̈ t t t t

α → β t t t t f t f ⊥̈ f t >̈ ⊥̈ ⊥̈ t ⊥̈ t

2.2 Four-valued Logic

The major studies of four-valued logics have been carried out in the setting of propo-
sitional logic. We will very briefly review the preliminaries which set the state for the
four-valued version of ALC which we will present later in Section 3.

The idea of four-valued logic is based on the idea of having four truth values, instead
of the classical two. The four truth values stand for true, false, unknown (or undefined)
and both (or overdefined, contradictory). We use the symbols t, f, ⊥̈, >̈, respectively,
for these truth values, and the set of these four truth values is denoted by FOUR. The
truth value >̈ stands for contradictory information, hence four-valued logic lends itself
to dealing with inconsistent knowledge. The value >̈ thus can be understood to stand
for true and false, while ⊥̈ stands for neither true nor false, i.e. for the absence of any
information about truth or falsity.

Syntactically, four-valued logic is very similar to classical logic. Care has to be
taken, however, in defining meaningful notions of implication, as there are several ways
to do this. Indeed, there are three major notions of implication in the literature, all
of which we will employ in our approach. The logical connectives we allow are thus
negation ¬, disjunction ∨, conjunction ∧, material implication 7→, internal implication
⊃, and strong implication →. We will discuss them in detail later on as the presence of
all three implications is crucial for our approach.

Four-valued interpretations for formulae (i.e. 4-interpretations) are obviously map-
pings from formulae to (the set of four) truth values, respecting the truth tables for the
logical connectives, as detailed in Table 2. Four-valued models (4-models) are defined
in the obvious way, as follows, where t and >̈ are the designated truth values.

Definition 1 Let I be a 4-interpretation, let Σ be a theory (i.e. set of formulae)
and let ϕ be a formula in four-valued logic. Then I is a 4-model of ϕ if and only if
I(ϕ) ∈ {t, >̈}. I is a 4-model of Σ if and only if I is a 4-model of each formula in
Σ. Σ four-valued entails ϕ, written Σ |=4 ϕ, if and only if every 4-model of Σ is a
4-model of ϕ.

Proposition 1. We note the following general properties.

– The language L = {¬,∨,∧,⊃, ⊥̈, >̈} is functional complete for the set FOUR of
truth values, i.e. every function from FOURn to FOUR is representable by some
formula in L [8, Theorem 12].

– Any formula containing only connectives from {¬,∨,∧,⊃} always has a four-
valued model.

Some general remarks about the different notions of implication are in order. They
are the major notions of implication used in the literature, and are discussed in detail in
[8, 12]. The basic rationales behind them are the following: Material implication can be
defined by means of negation and disjunction as known from classical logic. However,
it does not satisfy Modus Ponens or the deduction theorem, and is thus of limited use as
an implication in the intuitive sense. Internal implication satisfies Modus Ponens and the
deduction theorem, but cannot be defined by means of other connectives. Furthermore,
internal implication does not satisfy contraposition. Strong implication is stronger than
internal implication, in that it additionally satisfies contraposition. Indeed, an alternative
view on the truth tables for the implication connectives is as follows.

ϕ 7→ ψ is definable as ¬ϕ ∨ ψ. (Material Implication)

ϕ ⊃ ψ evaluates to
{
ψ if ϕ ∈ {t, >̈}
t if ϕ ∈ {f, ⊥̈} (Internal Implication)

ϕ→ ψ is definable as (ϕ ⊃ ψ) ∧ (¬ψ ⊃ ¬ϕ) (Strong Implication)

Further properties of the implication connectives are summarized in the following propo-
sition (as shown in [8, Corollary 9] and [12]).

Proposition 1 The following claims hold, where Γ is a theory and ψ, φ are formu-
lae.

– Internal implication is not definable in terms of the connectives ¬,∨,∧.
– Γ, ψ |=4 φ iff Γ |=4 ψ ⊃ φ.
– If Γ |=4 ψ and Γ |=4 ψ ⊃ φ then Γ |=4 φ.
– ψ → φ implies that ¬φ→ ¬ψ.

Apart from the formal properties of the different notions of implication, it is obvi-
ously important to consider their intuitive meaning and their usefulness for knowledge
base modelling. We will discuss this in detail in the next section.

3 The Four-valued Description Logic ALC4

We describe the syntax and semantics of our four-valued description logic ALC4. The
approach is fairly standard apart from the fact that we allow the simultaneous use of all
three notions of implication introduced in Section 2.2. We will thus devote significant
space to a detailed discussion of the intuitions behind these different implications.

Syntactically,ALC4 hardly differs fromALC. Complex concepts and assertions are
defined in exactly the same way. For class inclusion, however, the question arises how to
interpret the underlying implication connective in the four-valued setting. We thus allow

Table 3. Semantics of ALC4 Concepts

Constructor Syntax Semantics
A AI = 〈P, N〉, where P, N ⊆ ∆I

R RI = 〈RP , RN 〉, where RP , RN ⊆ ∆I ×∆I

o oI ∈ ∆I

> 〈∆I , ∅〉
⊥ 〈∅, ∆I〉

C1 u C2 〈P1 ∩ P2, N1 ∪N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

C1 t C2 〈P1 ∪ P2, N1 ∩N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

¬C (¬C)I = 〈N, P 〉, if CI = 〈P, N〉
∃R.C 〈{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj−(CI)}〉

three kinds of class inclusions, corresponding to the three implication connectives we
have discussed. They are as follows, C 7→ D, C @ D, and C → D, called material
inclusion axiom, internal inclusion axiom, and strong inclusion axiom, respectively.

Semantically, interpretations map individuals to elements of the domain of the inter-
pretation, as usual. For concepts, however, we need to make modifications to the notion
of interpretation in order to allow for reasoning with inconsistencies.

Intuitively, in four-valued logic we need to consider four situations which can occur
in terms of containment of an individual in a concept: (1) we know it is contained, (2)
we know it is not contained, (3) we have no knowledge whether or not the individual
is contained, (4) we have contradictory information, namely that the individual is both
contained in the concept and not contained in the concept. There are several equivalent
ways how this intuition can be formalised, one of which is described in the following.

For a given domain ∆I and a concept C, an interpretation over ∆I assigns to C
a pair 〈P,N〉 of (not necessarily disjoint) subsets of ∆I . Intuitively, P is the set of
elements known to belong to the extension of C, while N is the set of elements known
to be not contained in the extension ofC. For simplicity of notation, we define functions
proj+(·) and proj−(·) by proj+〈P,N〉 = P and proj−〈P,N〉 = N.

Formally, a four-valued interpretation is a pair I = (∆I , ·I) with ∆I as domain,
where ·I is a function assigning elements of ∆I to individuals, and subsets of (∆I)2

to concepts, such that the conditions in Table 3 are satisfied. Note that the conditions
in Table 3 for role restrictions are designed in such a way that the logical equivalences
¬(∀R.C) = ∃R.(¬C) and ¬(∃R.C) = ∀R.(¬C) are retained – this is the most con-
venient way for us for handling role restrictions, as it will allows for a straightforward
translation from ALC4 to classical ALC. Note also that for roles we actually require
only the positive part of the extension – we nevertheless require interpretations to as-
sign pairs of sets to roles, which is a technical formality to retain consistency of notation
with possible extensions to more expressive description logics (see [6]).

Obviously, under the constraints P ∩N = ∅ and P ∪N = ∆, four-valued interpre-
tations become just standard two-valued interpretations.

Table 4. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics
material inclusion C1 7→ C2 ∆I \ proj−(CI

1) ⊆ proj+(CI
2)

internal inclusion C1 @ C2 proj+(CI
1) ⊆ proj+(CI

2)
strong inclusion C1 → C2 proj+(CI

1) ⊆ proj+(CI
2) and

proj−(CI
2) ⊆ proj−(CI

1)

concept assertion C(a) aI ∈ proj+(CI)
role assertion R(a, b) (aI , bI) ∈ proj+(RI)

The correspondence between truth values from FOUR and concept assertions is the
obvious one: For instances a ∈ ∆I and concept name C we have

– CI(a) = t(>̈), iff aI ∈ proj+(CI) and aI 6∈ (∈)proj−(CI),
– CI(a) = f(⊥̈), iff aI 6∈ proj+(CI) and aI ∈ (6∈)proj−(CI),

When defining the semantics as we just did, we ensure that a number of useful
equivalences from classical logic hold, as follows.

Proposition 2 For any four-valued interpretation I and concepts C,D, the follow-
ing claims hold.

(C u >)I = CI , (C t >)I = >I , (C u ⊥)I = ⊥I , (C t ⊥)I = CI ,

(¬¬C)I = CI , (¬>)I = ⊥I , (¬⊥)I = >I , (¬(C tD))I = (¬C u ¬D)I ,

(¬(C uD))I = (¬C t ¬D)I , (¬(∀R.C))I = (∃R.¬C)I , (¬(∃R.C))I = (∀R.¬C)I .

We now come to the semantics of the three different types of inclusion axioms. It
is formally defined in Table 4 (together with the semantics of concept assertions). We
say that a four-valued interpretation I satisfies a four-valued ontology O (i.e. is a model
of it) iff it satisfies each assertion and each inclusion axiom in O. An ontology O is
4-valued satisfiable (unsatisfiable) iff there exists (does not exist) such a model.

With the formal definitions out of the way, it remains to address the intuitions un-
derlying the different inclusion axioms. These intuitions are evidenced by the formal
properties of the underlying implications as discussed in Section 2.2 as well as the be-
haviour of the implications in practice. We actually foresee a possible workflow for
handling inconsistent ontologies, as follows. In a first step, inclusion axioms are clas-
sified into the three types of four-valued inclusion axioms available. Then four-valued
reasoning is performed based on the classification, in order to arrive at a meaningful
4-valued conclusion. The question, how such a classification can be performed, will not
be addressed in this paper. It constitutes a seperate substantial piece of work which is
under investigation by the authors. A combination of automated detection and a user-
interaction process may be the most workable solution, where the user-interaction pro-
cess may be guided by the intuitive explanations which we will now give for the three
types of inclusion. An example which displays the effects of the different inclusions is
given in Section 6.

Strong inclusion respects the deduction theorem and contraposition reasoning. In a
paraconsistent context, it is thus the inclusion to be used for universal truth, such as
Square → FourEdged.

Internal inclusion propagates contradictory information forward, but not backward as
it does not allow for contraposition reasoning. It can thus be characterized as a brave
way of handling inconsistency. It should be used whenever it is important to infer the
consequent even if the antecedent may be contradictory. To give an example, consider a
robot fault diagnosis system and an axiom stating that oil leakage is indicative of a robot
malfunction. Obviously, it is important to check on a possible malfunction even in case
there is contradictory information about an oil leakage. In a paraconsistent context,
the axiom is thus best modeled by means of internal inclusion, i.e. as OilLeakage @
RobotMalfunction.

Material inclusion is cautious in the sense that contradictory information is not prop-
agated. The intuition behind material inclusion becomes apparent by studying the truth
table for material implication: a 7→ b indicates that the only way for b to be not true
(i.e. to be f or ⊥̈) is if there is information of falsity of a (i.e. it is f or >̈). This kind
of modeling becomes important if an inclusion has to be second-guessed e.g. after a
merging of knowledge bases. Consider, for example, an ontology about marathon runs
containing the axiom Healthy v MarathonParticipant which is supposed to say that
somebody (i.e. a person who has signed up for a run) participates in a marathon if he
checks out to be healthy. The axiom is reasonable if the domain is for the manage-
ment of marathon participants’ data only. Now imagine that this ontology is merged
with other sports knowledge bases, e.g. a boxing domain. It is wrong to infer that every
healthy boxer will participate in the marathon, so the original axiom will likely lead to
contradictions. We propose to handle this kind of information by modelling the axiom
as material inclusion, i.e. as Healthy 7→ MarathonParticipant, which will indeed not
infer participation from a positive health status. However, the weak form of contrapo-
sition reasoning featured by material inclusion results in the following situation: If an
individual is not known to be contained in MarathonParticipant, then it is known to be
not Healthy, resulting in a possible contradiction on health status while avoiding con-
tradiction in terms of marathon participation, which may be preferred in the domain.
Material inclusion may thus propagate contradictory information backwards (to the an-
tecedent), while internal inclusion may propagate contradictory information forward (to
the consequent).

We remark here that different inclusion axioms provide ontology engineers with a
flexible way to define different ontologies according to the intuition explained above.
In case only one kind of inclusion shall be used, we recommend to use strong inclu-
sion, as it should serve the ontology engineer’s original intention most closely. To give
an example, consider the inconsistent subontology of BuggyPolicy2 (with additional
assertions) which says ”GeneralReliabilityUsernamePolicy (G for short) is a subset of
Reliable, G and Messaging are disjoint, Reliable is a subset of Messaging, p1 is an
individual of G and p2 is an individual of Reliable”. Using strong inclusion results

2 http://www.mindswap.org/2005/debugging/ontologies/

in the ontology {R → M,G → R,M → ¬G, G → ¬M,G(p1), R(p2)}, where we
use obvious abbreviations for the class names. Under the semantics of strong inclu-
sion,M(p1), R(p1),M(p2), ¬G(p1), and ¬M(p1) hold, butG(p2) does not hold. This
example shows that our four-valued semantics can give meaningful answers when an
ontology is inconsistent, while classical semantics fails to do so.

4 Transforming ALC4 to ALC

It is a pleasing property of ALC4, that it can be translated easily into classical ALC,
such that paraconsistent reasoning can be simulated using standard ALC reasoning al-
gorithms. We briefly present the translation, a preliminary report has appeared in [6].3

For any given concept C, its transformation C is the concept obtained from C by
the following inductively defined transformation.

– If C = A for A an atomic concept, then C = A+, where A+ is a new concept;
– If C = ¬A for A an atomic concept, then C = A−, where A− is a new concept;
– If C = >, then C = >;
– If C = ⊥, then C = ⊥;
– If C = E uD for concepts D,E, then C = E uD;
– If C = E tD for concepts D,E, then C = E tD;
– If C = ∃R.D for D a concept and R is a role, then C = ∃R.D;
– If C = ∀R.D for D a concept and R is a role, then C = ∀R.D;
– If C = ¬¬D for a concept D, then C = D;
– If C = ¬(E uD) for concepts D,E, then C = ¬E t ¬D;
– If C = ¬(E tD) for concepts D,E, then C = ¬E u ¬D;
– If C = ¬(∃R.D) for D a concept and R is a role, then C = ∀R.¬D;
– If C = ¬(∀R.D) for D a concept and R is a role, then C = ∃R.¬D;

Based on this, axioms are transformed as follows, where C1, C2 are concepts.

– C1 7→ C2 = ¬¬C1 v C2

– C1 @ C2 = C1 v C2;
– C1 → C2 = {C1 v C2,¬C2 v ¬C1}.
– C(a) = C(a), R(a, b) = R(a, b), where a, b are individuals, C a concept,R a role.

The following theorem shows that paraconsistent reasoning can indeed be simulated
on standard reasoners by means of the transformation just given.

Theorem 3 For any ontology O we have O |=4 α if and only if O |=2 α, where |=2

is the entailment in classical ALC.

We note that the transformation algorithm is linear in the size of the ontology. This
implies that paraconsistent reasoning in our paradigm is not more expensive than clas-
sical reasoning.

3 In [6], it was actually spelled out for SHOIN .

5 Resolution-based Reasoning with ALC4

There exist two fundamentally different approaches to reasoning with description log-
ics. The first, historic approach is based on an adaptation of the tableaux method from
first-order predicate logic (see [10]), and is implemented in most current reasoners. The
second approach is based on resolution and has been realised in the KAON2 reasoner
[9]. While the first method invokes a classical reasoner as a black-box by a preprocess-
ing spelled out in Section 4, the paraconsistent resolution given in this section views
the classical reasoner KAON2 as a glass-box, thus avoiding the preprocessing step. We
basically follow [9, Chapter 4], and indeed we have to assume that the reader is fa-
miliar with the KAON2-approach because space restrictions do not allow us to spell
everything out in detail.

We first note that resolution relies heavily on the tertium non datur, and thus does
not lend itself easily to a paraconsistent setting. In particular, resolution cannot be based
on the negation present in paraconsistent logics, as in this case A∨B and ¬A∨C does
not imply B ∨ C. We thus start by introducing a second kind of negation, called the
total negation, denoted by ∼. In order to avoid confusion, we will refer to the standard
negation as paraconsist negation.

Definition 2 The total negation ∼ on {〈P,N〉 | P,N ⊆ ∆} is defined by

∼〈P,N〉 = 〈∆ \ P,∆ \N〉.

The intuition behind total negation is to reverse both the information of being true
and of being false. Notice that we do not extend our four-valued DLs to have the total
negation as a concept constructor. We rather use it only to provide a resolution-based
decision procedure for four-valued DLs.

Proposition 4 For total negation, the following hold for all conceptsC,D and roles
R. For any four-valued interpretation I ,

(∼∼C)I = CI , (∼>)I = ⊥I , (∼⊥)I = >I , (¬∼C)I = (∼¬C)I

(∼(C tD))I = (∼C u ∼D)I , (∼(C uD))I = (∼C t ∼D)I ,

(∼(∀R.C))I = (∃R.∼C)I , (∼(∃R.C))I = (∀R.∼C)I .

A second issue which we have to address when adjusting resolution to the para-
consistent setting, is to obtain a representation of internal implication (i.e. of internal
inclusion) in terms of clauses. We have already remarked in Section 2.2 that internal
implication cannot be represented by means of the connectives conjunction, disjunction
and paraconsistent negation. However, with total negation a representation of C @ D
as ∼C tD is possible. The representation is actually not logically equivalent, but it is
equisatisfiable, which suffices for setting up a resolution procedure. We indeed have the
following theorem.

Theorem 5 Let O be a four-valued ALC4 ontology, C,D be concepts, I be an
interpretation and ι be a new individual not occurring in O. Then the following hold.

1. (C @ D)I ∈ {t, >̈} if and only if (∼C tD)I ∈ {t, >̈}.
2. O |=4 C(a) if and only if O ∪ {∼C(a)} is four-valued unsatisfiable.
3. O |=4 C 7→ D if and only if O ∪ {∼(¬C tD)(ι)} is four-valued unsatisfiable.
4. O |=4 C @ D if and only if O ∪ {(C u ∼D)(ι)} is four-valued unsatisfiable.
5. O |=4 C → D if and only if O ∪ {(C u ∼D)(ι), (¬D u ∼¬C)(ι)} is four-valued

unsatisfiable.

5.1 Translating ALC4 into Clauses

Resolution-based calculi operates on sets of clauses in normal form, so we introduce
next clausal forms for ALC4 expressions. We were inspired by [13]. We first define a
negation normal form for ALC4 concepts, which we call quasi-NNF.

Definition 3 A concept C is a quasi-atom, if it is an atomic concept, or in form ¬A
where A is an atomic concept. A concept C is a quasi-literal, if it is a quasi-atomic
concept, or in form ∼L where L is a quasi-atomic concept. A concept C is in quasi-
NNF, if the total negation ∼ occurs only in front of quasi-literals.

To give an example, let A,B, and C be atomic concepts. Then (A∨∼¬B)t∀R.(∼C)
is in quasi-NNF. By propositions 2 and 4, the following is obvious.

Theorem 6 All ALC4 concepts can be transformed into equivalent expressions in
quasi-NNF.

We next define the Definitorial form of ALC4 concepts, which is a technicality to
control the size of clauses (see to [9] for details). If C is a concept, then we set

Def(C) =
{

{C} if C is a literal concept,
{∼Q t C|p} ∪ Def(C[Q]|p) if p is eligible for replacement in C.

where C|p is the position p in concept C, as defined in [14, 9].
As an example, we have Def(A u ∃R.(A u B)) = {A u ∃R.Q,∼Q t (A u B)}.

Note that ∼Q t (A u B) can be interpreted as internal inclusion Q @ (A u B), which
allows us to use Q as a new name for (A uB) in ∃R.(A uB)).

The following proposition is as expected.

Proposition 7 For an ALC4 concept C in quasi-NNF, C(x) has information to be
true for all individuals x if and only if all concepts Di(x) with Di ∈ Def(C) have the
information to be true. Formally, {> @ C} is four-valued satisfiable iff {> @ Def(Di) |
Di ∈ Def(C)} is.

We next translate the concepts into predicate logic. This is done by the standard
translation as e.g. spelled out in [9] in terms of the function πy – we just have to pro-
vide for the total negation. This is done by allowing the total negation to occur in the
predicate logic formulae as well, and by translating total negation in the same way as
paraconsistent negation. We make one exception, namely for unversal restriction, where
we set πy(∀R.C, x) = ∀y.(∼R(x, y) t C(y)).

Table 5. Clause Types

1
W

(∼)(¬)Ci(x) ∨R(x, f(x))
2

W
(∼)(¬)Ci(x) ∨ (∼)(¬)D(f(x))

3
W

(∼)(¬)Ci(x)
4

W
(∼)(¬)Ci(x) ∨R(x, y) ∨ (∼)(¬)D(y)

5 (∼)(¬)C(a)
6 (∼)(¬)R(a, b)

Following the above transformations step by step, any ALC4 concept can be trans-
lated into a set of first order predicate logic clauses (with total negation) in polynomial
size of the original concepts.

The obtained predicate logic formulae (with total negation) can now be translated
into clauses in the standard way, i.e. by first casting them into Skolem form, and then
into conjunctive normal form by exhaustive application of well-known logical equiva-
lences (see e.g. [14]), which are adjusted for total negation in the obvious straightfor-
ward way.

If C is a concept (where the additional use of total negation is allowed), then we
denote by Cls(C) the set of clauses which is obtained by the just mentioned transfor-
mation of C. These clauses are predicate logic formulae (with total negation).

We finally translate an ALC4 knowledge base KB into a set Ξ(KB) of predi-
cate logic clauses (with total negation), as follows. The knowledge base Ξ(KB) is the
smallest set satisfying the following conditions:

– For each ABox axiom α in ABox, Cls(α) ⊆ Ξ(KB)
– For each TBox axiom C 7→ D in TBox, Cls(¬C tD) ⊆ Ξ(KB)
– For each TBox axiom C @ D in TBox, Cls(∼C tD) ⊆ Ξ(KB)
– For each TBox axiom C → D in TBox, Cls(∼C tD,∼¬D t ¬C) ⊆ Ξ(KB)

Theorem 8 Let KB be an ALC4 ontology. Then, the following hold.

– KB is satisfiable iff Ξ(KB) is satisfiable.
– Ξ(KB) can be computed in time polynomial in |KB|.
– Each clause in Ξ(KB) is of one of the syntactic forms listed in Table 5. We refer

to these clauses as 4-valued clauses.

5.2 Ordered Resolution with Selection Function O4DL for ALC4

The KAON2 approach for ALC is based on a modification of the original resolution
calculus, known as ordered resolution (see [9] for the necessary preliminaries). We
will now define the corresponding notions of clause ordering and of selection function,
which we require for this. We assume in the sequel that all 4-valued clauses are of the
form described in theorem 8.

Given any fixed ordering� on ground quasi-atoms which is total and well-founded,
we can obtain an ordering on sets of clauses as follows.

1. Extend � to an ordering �L on ground literals by setting ∼A �L A for any A, and
[∼]A �L [∼]B, if A � B.

2. Extend �L to an ordering �C on ground clauses by setting �C= (�L)mul to be
the multi-set extension of �L (see [9] for formal definition). The intuition is that
C1 �C C2 iff the maximal quasi-literal in clause C1 is greater then that in clause
C2 w.r.t. �L.

By a slight abuse of notation, we use � also for �L and �C where the meaning is clear
from the context.

By a selection function we mean a mapping S that assigns to each clauseC a (possi-
bly empty) multiset S(C) of literals with the prefix ∼ in C. For example, both {∼¬A}
and {∼¬A,∼D} can be selected in clause ∼¬A ∨ ∼D ∨B ∨ ¬C.

An ordered resolution step with selection function can now be described by the
inference rule

C ∨A D ∨ ∼B
Cσ ∨Dσ

where

– σ = MGU(A,B) is the most general unifier of the quasi-atoms A,B, and C,D
are quasi-clauses.

– Aσ is strictly maximal in Cσ ∨Aσ, and no literal is selected in Cσ ∨Aσ;
– ∼Bσ is either selected in Dσ∨∼Bσ, or it is maximal in Dσ∨∼Bσ and no literal

is selected in Dσ ∨ ∼Bσ.

The corresponding ordered factorization rule is

C ∨A ∨B
(C ∨A)σ

where σ = MGU(A,B) and Aσ is maximal in Cσ ∨Aσ and nothing is selected in C.

Theorem 9 (Soundness and Completeness of O4DL) Let N be an ALC4 knowl-
edge base. Then Ξ(N) `O4DL

� iff N is four-valued unsatisfiable.

We can now select suitable parameters in order to arrive at a decision procedure based
on O4DL. This can be done as follows.

– The literal ordering � is defined such that R(x, f(x)) � ∼C(x) and D(f(x)) �
∼C(x), for all function symbols f , and predicates R, C, and D.

– The selection function selects every binary literal which is preceeded by ∼.

Theorem 10 (Decidability) For anALC4 knowledge baseKB, saturatingΞ(KB)
by O4DL decides satisfiability of KB and runs in time exponential in |KB|.

6 Implementation

ParOWL4 is a prototype implementation of our paraconsistent reasoning approach. It re-
alises the algorithm from Section 4 by means of a command line tool based on KAON2.

4 http://logic.aifb.uni-karlsruhe.de/wiki/Paraconsistent reasoning

Table 6. Paraconsistent reasoning examples

Ontology Bird FlyAnimal Penguin notBird notFlyAnimal notPenguin
O1 ∅ ∅ tweety ∅ ∅ ∅
O2 tweety tweety tweety ∅ tweety ∅
O3 tweety tweety tweety tweety tweety tweety
O4 tweety ∅ tweety ∅ tweety ∅

In order to allow the use of standard OWL syntax, the tool expects four input files as
parameters, all of which are standard OWL documents. In the first file, class inclusion
is interpreted as material inclusion, in the second as internal inclusion, and in the third
as strong inclusion. The fourth file is expected to contain an ABox. ParOWL outputs an
OWL file which contains the translation.

To display the usage of the different inclusion axioms in ParOWL, consider the
following example ontology O, which consists of the axioms Bird v FlyAnimal,
Penguin v Bird, Penguin v ¬FlyAnimal, and Penguin(tweety), which is obviously
inconsistent. We compare the following different four-valued ontologies which can be
derived from O: For O1 all inclusions are material, for O2 all inclusions are internal,
for O3 all inclusions are strong. For O4, the first inclusion is material, the second is
internal, and the third is strong. Table 6 shows the extensions of the concepts in these
ontologies as computed with ParOWL. The desired result may be O4, and indeed the
choice of inclusion axioms in this case follows the intuitions laid out in Section 3.

7 Conclusions and Further Work

We have motivated and formally described an approach for paraconsistent reasoning
with ontologies, which is based on the simultaneous use of different kinds of paracon-
sistent inclusion. We have provided guidelines for the use of these different inclusions.
We have provided algorithms for implementing our approach and presented a publicly
available tool which realizes it.

Concerning the two algorithms provided in Sections 4 and 5, it is rather apparent
that all the benefits from the KAON2 system – like the ability to handle large ABoxes –
can also be achieved by invoking KAON2 after employing the transformation algorithm
from Section 4 in a preprocessing manner using ParOWL. However, although the trans-
formation algorithm is polynomial, it may be time consuming for large ontologies. This
can possibly be improved by the direct algorithm from Section 5. Most of the technical
details of the KAON2 implementation can indeed be carried over to our algorithm from
Section 5.

In the literature, there are basically two other approaches to four-valued description
logics, namely [4] and [5]. Our approach differs from theirs in two important aspects.
The first is that we allow for simultaneous usage of different inclusions. The second is
that we propose a translation from our logic into standard description logic such that
established reasoners can be used. We thus benefit directly from the highly optimized
systems currently available. The logics in [4, 5] have neither of these features.

Obviously, much work remains to be done to make our approach fit for practice.
Besides the obvious task of providing a better implementation than just a prototype, we
also have to address in more detail the question, which kinds of paraconsistent inclu-
sion are to be chosen when translating paraconsistent ontologies to standard ontologies.
We envision a combination of system recommendations with user interactions. Alterna-
tively, inclusions could be weakened gradually from strong inclusion to weaker versions
– probably involving even further notions of inclusion – until a reasonable answer to a
query is found. These issues are currently under investigation by the authors.

References

1. Hayes, P., Horrocks, I., Patel-Schneider, P.F.: OWL Web Ontology Language Semantics and
Abstract Syntax. W3C Recommendation 10 February 2004 (2004)

2. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In Gottlob, G., Walsh, T., eds.: IJCAI, Morgan Kaufmann (2003) 355–
362

3. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for han-
dling inconsistency in changing ontologies. In Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A., eds.: International Semantic Web Conference. Volume 3729 of Lecture Notes in Com-
puter Science., Springer (2005) 353–367

4. Patel-Schneider, P.F.: A four-valued semantics for terminological logics. Artificial Intelli-
gence 38 (1989) 319–351

5. Straccia, U.: A sequent calculus for reasoning in four-valued description logics. In Galmiche,
D., ed.: TABLEAUX. Volume 1227 of Lecture Notes in Computer Science., Springer (1997)
343–357

6. Ma, Y., Lin, Z., Lin, Z.: Inferring with inconsistent OWL DL ontology: A multi-valued logic
approach. In Grust, T., et al., eds.: EDBT Workshops. Volume 4254 of Lecture Notes in
Computer Science., Springer (2006) 535–553

7. Belnap, N.D.: A useful four-valued logic. Modern uses of multiple-valued logics (1977)
7–73

8. Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102 (1998) 97–141
9. Motik, B.: Reasoning in description logics using resolution and deductive databases. PhD

theis, University Karlsruhe, Germany (2006)
10. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The Descrip-

tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003)

11. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfia-
bility. J. Web Sem. 1 (2004) 345–357

12. Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language and
Information 5 (1996) 25–63

13. Kamide, N.: Foundations of paraconsistent resolution. Fundamenta Informaticae 71 (2006)
419–441

14. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd Edition. Texts in
Computer Science. Springer (1996)

