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Abstract
Graphs of the single-step operator for first-order logic programs — displayed

in the real plane — exhibit self-similar structures known from topological dy-
namics, i.e. they appear to be fractals, or more precisely, attractors of iterated
function systems. We show that this observation can be made mathemati-
cally precise. In particular, we give conditions which ensure that those graphs
coincide with attractors of suitably chosen iterated function systems, and con-
ditions which allow the approximation of such graphs by iterated function
systems or by fractal interpolation. Since iterated function systems can easily
be encoded using recurrent radial basis function networks, we eventually ob-
tain connectionist systems which approximate logic programs in the presence
of function symbols.
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1 Introduction

Intelligent systems based on logic programming on the one hand, and on artificial neural
networks (sometimes called connectionist sytems) on the other, differ substantially. Logic
programs are highly recursive and well understood from the perspective of knowledge
representation: The underlying language is that of first-order logic, which is symbolic
in nature and makes it easy to encode problem specifications directly as programs. The
success of artificial neural networks lies in the fact that they can be trained using raw
data, and in some problem domains the generalization from the raw data made during
the learning process turns out to be highly adequate for the problem at hand, even if the
training data contains some noise. Successful architectures, however, often do not use re-
cursive (or recurrent) structures. Furthermore, the knowledge encoded by a trained neural
network is only very implicitly represented, and no satisfactory methods for extracting
this knowledge in symbolic form are currently known.

It would be very desirable to combine the robust neural networking machinery with
symbolic knowledge representation and reasoning paradigms like logic programming in
such a way that the strenghts of either paradigm will be retained. Current state-of-the-art
research, however, fails by far to achieve this ultimate goal. As one of the main obstacles
to be overcome we perceive the question how symbolic knowledge can be encoded by
artificial neural networks: Satisfactory answers to this will naturally lead the way to
knowledge extraction algorithms and to hybrid neural-symbolic systems.

Earlier attempts to integrate logic and connectionist systems have mainly been re-
stricted to propositional logic, or to first-order logic without function symbols. They go
back to the pioneering work by McCulloch and Pitts [35], and have led to a number of sys-
tems developed in the 80s and 90s, including Towell and Shavlik’s KBANN [44], Shastri’s
SHRUTI [43], the work by Pinkas [37], Hölldobler [27], and d’Avila Garcez et al. [12, 14],
to mention a few, and we refer to [10, 13, 17] for comprehensive literature overviews.

Without the restriction to the finite case (including propositional logic and first-order
logic without function symbols), the task becomes much harder due to the fact that the
underlying language is infinite but shall be encoded using networks with a finite number
of nodes. The sole approach known to us for overcoming this problem (apart from work on
recursive autoassociative memory, RAAM, initiated by Pollack [38], which concerns the
learning of recursive terms over a first-order language) is based on a proposal by Hölldobler
et al. [30], spelled out first for the propositional case in [29], and reported also in [21]. It
is based on the idea that logic programs can be represented — at least up to subsumption
equivalence [33] — by their associated single-step or immediate consequence operators.
Such an operator can then be mapped to a function on the real numbers, which can under
certain conditions in turn be encoded or approximated e.g. by feedforward networks with
sigmoidal activation functions using an approximation theorem due to Funahashi [16].

While contemplating this approach, we plotted graphs of resulting real-valued functions
and found that in all cases these plots showed self-similar structures as known from topo-
logical dynamics. To be more precise, they looked like fractals in the sense of attractors
of iterated function systems [3], see Figure 1 and Figure 7 on page 10 for examples. While
the general observation that logic programming is linked to topological dynamics and
chaos theory is not new (see the work by Blair et al. [8, 9]), the strikingly self-similar
representation in the Euclidean plane offers a setting for developing real-valued iterated
function systems for representing logic programs, with the concrete goal of in turn con-
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verting these into recurrent neural networks, thus obtaining connectionist representations
of logic programs.

In this paper we substantiate formally the fact that these plots can indeed be obtained
as attractors of iterated function systems, and give concrete representations of such sys-
tems. More generally, we give necessary and sufficient conditions under which graphs of
single-step operators in the Euclidean plane arise as attractors of certain iterated function
systems. We will give algorithms for constructing iterated function systems and fractal in-
terpolation systems for approximating graphs of single-step operators. We will finally use
our results for constructing recurrent radial basis function networks which approximate
graphs of single-step operators.

The paper is structured as follows. In Section 2, we will introduce basic notions con-
cerning logic programs and iterated function systems which we will need throughout the
paper.

In Section 3, we show that graphs of logic programs can be obtained as attractors
of iterated function systems. In particular, in Theorem 3.2 we will give necessary and
sufficient conditions under which this is possible. Building on this, in Theorem 3.4 we
will show that these conditions are satisfied whenever the embedded single-step operator
is Lipschitz continuous with respect to the natural metric on the real numbers. The
section closes with a concrete construction of an iterated function system and two detailed
examples.

In Section 4 we shift our attention to the task of approximating logic programs —
via their single-step operators — by means of fractal interpolation. More precisely, in
Theorem 4.6 we show that programs with Lipschitz continuous single-step operator can
be approximated uniformly by this method.

In Section 5 we will use our insights in order to show how logic programs can be
represented or approximated by recurrent radial basis function networks.

The paper closes with a discussion of related and further work.

Most of the new results in this paper are discussed in more detail in [2].

Acknowledgement. We benefitted substantially from discussions with Steffen Hölldobler
and his support of the project. The comments of three anonymous referees were highly
appreciated and led to improvements of the presentation of our results. We are very
grateful that Howard Blair spotted a mistake in an earlier version of this paper, which we
were now able to remove.

n(0).

n(s(X)) :- n(X).

Figure 1: The graph of a real valued single-step operator.
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2 Preliminaries

We will now shortly review and introduce terminology and notation from logic program-
ming and iterated function systems, which we will use throughout. It will be helpful if the
reader is familiar with these areas, but we will make an attempt to keep the paper self-
contained in this respect, with terminology essentially following [32] respectively [3]. In
some places we will have to assume basic knowledge of set-theoretic topology, our general
reference being [45]. For Section 5, some familiarity with radial basis function networks
(e.g. [7, Chapter 5]) will be helpful.

2.1 Logic Programs

A (normal) logic program is a finite set of universally quantified clauses of the form

∀(A← L1 ∧ · · · ∧ Ln),

where n ∈ N may differ for each clause, A is an atom in a first order language L and
L1, . . . , Ln are literals, that is, atoms or negated atoms, in L. As is customary in logic
programming, we will write such a clause in the form

A← L1, . . . , Ln,

in which the universal quantifier is understood, or even as

A:-L1, . . . , Ln

following Prolog notation. Then A is called the head of the clause, each Li is called a body
literal of the clause and their conjunction L1, . . . , Ln is called the body of the clause. We
allow n = 0, by an abuse of notation, which indicates that the body is empty; in this case
the clause is called a unit clause or a fact. The Herbrand base underlying a given program
P is defined as the set of all ground instances of atoms over L and will be denoted by
BP . Figure 2 shows an example of a logic program and the corresponding Herbrand base.
Subsets of the Herbrand base are called (Herbrand) interpretations of P, and we can think
of such a set as containing those atoms which are “true” under the interpretation. The
set IP of all interpretations of a program P can be identified with the power set of BP .

In this paper, we will not make use of any procedural aspects concerning logic programs.
Indeed, logic programs are being used for many different purposes in computer science,
e.g. as the language underlying Prolog [32], as languages for non-monotonic reasoning
[31, 34], for machine learning [36], etc, and the respective computational mechanisms
differ substantially. Common to all these paradigms, however, is that logic programs are
accepted as a convenient tool for knowledge representation in logical form. The knowledge
represented by a logic program P can essentially be captured by the immediate conse-
quence or single-step operator TP , which is defined as a mapping on IP where for any
I ∈ IP we have that TP(I) is the set of all A ∈ BP for which there exists a ground in-
stance A← A1, . . . , Am,¬B1, . . . ,¬Bn of a clause in P such that for all i we have Ai ∈ I
and for all j we have Bj �∈ I.

A level mapping for a program P is a mapping | · | : BP → N, and with a slight abuse
of notation we set |¬A| = |A| for each A ∈ BP . Figure 2 shows a simple logic program,
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the corresponding Herbrand base BP , and a possible level mapping. Level mappings can
be used for describing dependencies between atoms in a program, and they have been
studied in logic programming for many different purposes, e.g. for termination analysis
under Prolog [1, 6], or for giving uniform descriptions of different non-monotonic semantics
[20, 25, 26]. For our investigations, we can restrict our attention to injective level map-
pings, which can simply be understood as enumerations of the Herbrand base. The latter
perspective was employed e.g. in [8]. It makes no essential difference, and we choose to
stick with the more general notion of level mapping, and will explicitly require injectivity
when needed.

Fitting [15] has used level mappings in order to define metrics on spaces of interpreta-
tions, an approach which was further extended in [19, 24]. Recall that a metric over a set
X is a mapping d : X ×X → R satisfying (i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x),
and (iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X. The pair (X, d) is then called
a metric space. A metric is called an ultrametric if it satisfies the stronger requirement
(iii’) d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X. On the real numbers, the function
d(x, y) = |x− y| is a metric and is called the natural metric on R. A sequence (xn)n∈N in
some metric space (X, d) converges to (or has limit) x, written lim xn = x, if for all ε > 0
there is some n0 ∈ N such that d(xn, x) < ε for all n ≥ n0. A Cauchy sequence in a metric
space (X, d) is a sequence (xn) such that for each ε > 0 there exists n0 ∈ N such that for
all m, n ≥ n0 we have d(xm, xn) < ε. Converging sequences are always Cauchy sequences.
A metric space in which every Cauchy sequence converges is called complete.

The following definition is a slight generalization of one given in [15].

2.1 Definition Let P be a logic program, 2 ≤ B ∈ N, and let | · | be a level mapping for
P. For I, J ∈ IP define

dB(I, J) =

⎧⎪⎨
⎪⎩

0 if I = J,

B−n if I and J differ on some atom A with |A| = n,

but agree on all atoms with a level smaller than n.

It is easily verified that (IP , dB) is a complete metric space, indeed an ultrametric space.
If | · | is injective — or more generally, if for each n ∈ N the set of all atoms with level
n is finite — then the metric dB, for any B, induces a topology on IP which is known
as the query [5] or atomic [41] topology Q. If furthermore the language underlying P
contains at least one function symbol of arity at least 1, then (IP , Q) is homeomorphic,
i.e. topologically equivalent, to the Cantor space in the unit interval on the real line [41],
which we will discuss further in Example 2.5.

A logic program P is acyclic [6, 11] if there exists a level mapping | · | for P such that
for each ground instance A← L1, . . . , Ln of a clause in P we have that |A| > |Li| for all
i = 1, . . . , n. In this case the operator TP is a contraction on (IP , dB) with contractivity
factor B−1, i.e. it satisfies dB(TP(I), TP(J)) ≤ B−1dB(I, J) for all I, J ∈ IP [15, 24].

2.2 Iterated Function Systems

Iterated function systems originate from the study of chaos theory and self-similar struc-
tures and they have found applications e.g. in image compression. An excellent introduc-
tion to the field is [3], and we follow its notation, as already mentioned. We will later
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P: BP : | · |:
n(0).

n(s(X)) :- n(X).

n(0), n(s(0)), n(s(s(0))),
n(s(s(s(0)))), . . .

|n(sx(0))| = x + 1

Figure 2: A logic program, the corresponding Herbrand base, and a level mapping

make use of the fact that real-valued iterated function systems can easily be encoded
using recurrent neural networks, a point to which we will return in Section 5.

Recall that a function f : X → X on a metric space (X, d) is continuous if for all ε > 0
there exists δ > 0 such that d(f(x), f(y)) < ε whenever d(x, y) < δ. A Lipschitz continuous
function is a mapping f : X → X for which there exists a real number λ ≥ 0, called a
Lipschitz constant for f , such that d(f(x), f(y)) ≤ λd(x, y) for all x, y ∈ X. Contraction
mappings are exactly those Lipschitz continuous functions which have a Lipschitz constant
(called contractivity factor) less than 1. Every contraction is Lipschitz continuous, and
every Lipschitz continuous function is continuous. The importance of contractions lies in
the fact that every contraction f on a complete metric space (X, d) has a unique fixed
point x, which can be obtained as lim fn(y), for all y ∈ X, where fn(y) denotes the
n-th iteration of the function f on the point y. This fact is well-known as the Banach
contraction mapping theorem.

2.2 Definition A (hyperbolic) iterated function system (IFS) ((X, d), Ω) is a pair con-
sisting of a complete metric space (X, d) and a finite set Ω = {ω1, . . . , ωn} of contraction
mappings ωi : X → X.

The idea behind iterated function systems is to lift the set Ω to be a contraction
mapping on a space of certain subsets of X. More precisely, we consider compact subsets
of X, which can be characterized as follows: A ⊆ X is compact if for every (possibly
infinite) collection of sets Bεi

(xi) = {y | d(xi, y) < εi} with A ⊆ ⋃i∈I Bεi
(xi) there exists

a finite selection {i1, . . . , in} ⊆ I with A ⊆ ⋃n
k=1 Bεik

(xik).

Given (X, d), we define H(X) to be the set of all non-empty compact subsets of X, and
define the Hausdorff distance on H(X) as follows.

2.3 Definition Let (X, d) be a complete metric space, x ∈ X and A, B ∈ H(X). Then
d(x, B) = min{d(x, y) | y ∈ B} is called the distance between the point x and the set B.
The distance from A to B is then defined as d(A, B) = max{d(a, B) | a ∈ A}. Finally, the
Hausdorff distance hd between A and B is defined as hd(A, B) = max{d(A, B), d(B, A)}.

The resulting Hausdorff space (H(X), hd) is a complete metric space. A continuous
mapping f : X → X can be extended to a function on H(X) in the usual way, i.e. by
setting f(A) = {f(a) | a ∈ A} (recalling that any continuous image of a compact set is
compact). Given an IFS consisting of a metric space (X, d) and a set Ω of contractions,
we identify Ω with a function on H(X) defined by Ω(A) =

⋃
i wi(A). The function Ω

thus defined is a contractive mapping on H(X), and by the Banach contraction mapping
theorem we can conclude that Ω has a unique fixed point A ∈ H(X), which hence obeys
A = Ω(A) and can be obtained from any B ∈ H(X) as A = limn→∞ Ωn(B), the limit
being taken with respect to hd. The fixed point A ∈ H(X) is called the attractor of the
IFS ((X, d), Ω).
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Figure 3: The first iterations for the production of the Sierpinski triangle.

Figure 4: The first iterations for the production of the Cantor set.

2.4 Example Figure 3 depicts part of the iterative process leading to an attractor (start-
ing from a square), in this case the so-called Sierpinski triangle. It is produced by an IFS
consisting of the following three mappings on the space (R2, d2), where d2 denotes the
Euclidean metric on R

2.

ω1(
x
y ) = ( .5 0

0 .5 ) ( x
y ) + ( 0

0 ) ω2(
x
y ) = ( .5 0

0 .5 ) ( x
y ) + ( .5

0 ) ω3(
x
y ) = ( .5 0

0 .5 ) ( x
y ) + ( 0

.5 )

2.5 Example As a second example we give representations of Cantor space as compact
subsets of the real numbers. The underlying space thus consists of the real numbers with
the natural metric. As contractions, we choose

ω1 : R→ R : x 
→ 1

B
x

ω2 : R→ R : x 
→ 1

B
x + a,

where B > 2 is a positive integer and a is chosen such that the images of the unit interval
under ω1 and ω2 do not have more than a single point in common, but are both contained
in the unit interval. The corresponding iterates of the unit interval are depicted in Figure
4 for the values B = 3 and a = 2

3
. The subsets of the unit interval which can occur as

attractors for different parameters are all homeomorphic, i.e. topologically equivalent, and
also homeomorphic to the Cantor space and to (IP , Q), if the Herbrand base BP of the
program P is countably infinite.

Some further examples of attractors of iterated function systems are depicted in Fig-
ure 5, defined on the real plane. The projections of the attractors to the x-coordinate are
homeomorphic to the Cantor space.

3 Logic Programs as Iterated Function Systems

In this section we show how logic programs can be represented by iterated function sys-
tems. We will review an embedding introduced by Hölldobler et al. in [30], which can be
used to embed the graph of the single-step operator into the real plane. Plots of these
graphs exhibit self-similar structures, i.e. they look like attractors of iterated function sys-
tems. We will provide a way to transform logic programs into iterated function systems
such that the graph of the program coincides with the attractor of the IFS, or can at least
be approximated by it.
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Figure 5: Some attractors of iterated function systems.

I ∈ IP
TP−→ I ′ ∈ IP

R
⏐⏐�	⏐⏐R−1 R

⏐⏐�	⏐⏐R−1

i ∈ Df
fP−→ i′ ∈ Df

Figure 6: The relation between TP and fP .

3.1 Definition Let P be a logic program, | · | : BP → N be an injective level mapping
and let B ∈ N, with B > 2. Then the mapping R assigns a unique real number R(I) to
every interpretation I ∈ IP by

R : IP → R : I 
→
∑
A∈I

B−|A|.

The range {R(I) | I ∈ BP} ⊆ R of the mapping R will be denoted by Df and the maximal
value, which always exists, by Rm = R(BP) = limn→∞

∑n
i=1(B

−i) = 1
B−1

. Without loss of
generality we will treat R as a (bijective) function from IP to Df.

The probably most obvious base B = 2 does not create a valid embedding: Let B = 2,
and P and | · | be defined as in Figure 2. Let I = {n(0)} and J = BP \ {n(0)}. It follows
that R(I) = B−1 = 1

2
and R(J) = Rm−B−1 = 1

B−1
−B−1 = 1

2
, so the resulting function R

is not injective. This is due to the fact that the numbers 0.111 . . . and 0.0111 . . . coincide
in the number system with base 2. But for all B > 2 the mapping R is injective, if the
level-mapping is injective. Furthermore, it can be shown that R is a homeomorphism (a
bijective mapping which preserves topological structure in both directions) from (IP , Q)
to Df and that Df is compact.

By means of the mapping R we can now embed TP into R as shown in Figure 6, i.e. for
a given logic program P the function R(TP) = fP is defined by

fP : Df → Df : r 
→ R(TP(R−1(r))),

and its graph FP is

FP = {(R(I), R(TP(I))) | I ∈ IP} = {(x, fP(x)) | x ∈ Df}.
Figure 7 shows some (embedded) graphs of logic programs. Note the similarity to the

plots shown in Figure 5. Indeed we have noticed that all plots of graphs obtained by the
method described above showed self-similar structures, thus appearing to be attractors of
iterated function systems on the real plane.
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n(0).

n(s(X)):-n(X).

e(0).

e(s(X)):-not e(X).

o(X):-not e(X).

p(0).

p(s(X)):-p(X).

p(X):-not p(X).

Figure 7: Some graphs of logic programs.

3.1 Representation of Logic Programs by Iterated Function Systems

We have just discussed that logic programs and iterated function systems create similar
graphs. In this section we will link both by giving necessary and sufficient conditions
under which the graph of a logic program is the attractor of a hyperbolic iterated function
system. Since the iterated function systems shall approximate graphs in R

2, they must be
defined on that space. Therefore, we will focus on the space (R2, d2), where d2 denotes the
usual 2-dimensional Euclidean metric, i.e. d2((x1, y1), (x2, y2)) =

√|x1 − x2|2 + |y1 − y2|2,
which is complete. For any function f on R

2 we denote its coordinate functions by f x and
f y, i.e. we have f(a) = (f x(a), f y(a)) for all a ∈ R

2. Furthermore, let πx(·) denote the
projection to the x-axis. The natural metric on R is denoted by d1, i.e. d1(x, y) = |x− y|
for all x, y ∈ R.

The following theorem gives necessary and sufficient conditions for exact representabil-
ity by an iterated function system.

3.2 Theorem (First Representation Theorem) Let P be a logic program, let fP be the
embedded TP-operator with graph FP , and let Df be the range of the mapping R, as
introduced earlier. Let ((R2, d2), Ω) be a (hyperbolic) iterated function system and let A
be its uniquely determined attractor. Then the graph FP coincides with the attractor A,
i.e. FP = A, if and only if πx(A) = Df and fP(ωx

i (a)) = ωy
i (a) hold for all a ∈ FP and all

ωi ∈ Ω.

Proof The proof is divided into two parts. First, we will show that FP = A if fP(ωx
i (a)) =

ωy
i (a) and πx(A) = Df, and then the converse.

(i) To show the equivalence of FP and A, we need to show that FP ⊆ A and A ⊆ FP .
(i.a) From Ω(A) = A and πx(A) = πx(FP) = Df we know that for each a ∈ FP there
must be an a′ ∈ A and an ωi ∈ Ω such that πx(a) = ωx

i (a
′). Using fP(ωx

i (a
′)) = ωy

i (a
′)

and the definition of fP we know that ωy
i (a

′) = fP(πx(a)) = πy(a). So we can conclude
that (πx(a), πy(a)) = (ωx

i (a
′), ωy

i (a
′)), i.e. a = ωi(a

′). Since a′ ∈ A, hence ωi(a
′) ∈ A, it

follows that a ∈ A and finally FP ⊆ A. (i.b) From fP(ωx
i (a)) = ωy

i (a) we can conclude
that (ωx

i (a), ωy
i (a)) ∈ FP , i.e. ωi(a) ∈ FP . Knowing that this equation holds for all a ∈ FP

and all ωi ∈ Ω we obtain ωi(FP) ⊆ FP and finally Ω(FP) ⊆ FP . Hence FP = A.
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(ii) Since FP = A and πx(FP) = Df we immediately obtain πx(A) = Df. Furthermore, we
know that FP = Ω(FP) and hence that Ω(a) ⊆ FP holds for all a ∈ FP . So we can conclude
that for all a ∈ FP and all ωi ∈ Ω there is an a′ ∈ FP such that (ωx

i (a), ωy
i (a)) = a′

holds. By the definition of FPwe know that a′ = (x′, fP(x′)), hence ωx
i (a) = x′ and

ωy
i (a) = fP(x′). If follows that fP(ωx

i (a)) = ωy
i (a) holds for all a ∈ FP and all ωi ∈ Ω if

FP = A. �

The proof of Theorem 3.2 does not make use of the fact that the function fP (the graph
of which is represented by an IFS) comes from the single-step operator of a logic program.
Indeed it holds for all functions defined on Df and is easily generalized to functions on
other compact subsets of the reals. In particular, we note that it does not restrict the class
of programs covered. We will use Theorem 3.2 for establishing a stronger result for logic
programs whose embedded single-step operator R(TP ) is Lipschitz continuous. Before we
do so, however, we need to have a closer look at the set Df. So assume that a base B is
fixed, thus the mapping R is determined and in turn also Df as the range of R. It is our
desire to characterize Df as the attractor of an IFS. Now define

Ωx
1 =

{
x 
→ 1

B
x + 0; x 
→ 1

B
x +

1

B

}
.

For all n > 1 we define recursively

Ωx
n =

{
f ◦ g | f ∈ Ωx

1 and g ∈ Ωx
n−1

}
=

{
x 
→ 1

B
ω(x) + 0 | ω ∈ Ωx

n−1

}
∪
{

x 
→ 1

B
ω(x) +

1

B
| ω ∈ Ωx

n−1

}
.

Note that every mapping ωx
i ∈ Ωx

P is of the form ωx
i = 1

BP x + dx
i , where dx

i depends
on the application of either the first or second mapping from Ωx

1 during the construction,
i.e. dx

i can be written as
∑P

j=1 aj · B−j, where aj ∈ {0, 1}. In particular we have that for
each dx

i there exists an interpretation Ii with R(Ii) = dx
i . More precisely, Ii consists of all

those atoms A with |A| ≤ P such that dx
i =

∑
A∈Ii

B−|A|, and by injectivity of | · | the
interpretation Ii is indeed uniquely determined by this equation.

The proof of the following lemma is straightforward.

3.3 Lemma For any P ≥ 1 we have that Df is the attractor of the IFS ((R, d), Ωx
P ).

We are now ready to establish the promised second representation result. Even though
it does not define a convenient way to construct an IFS, it explains why the plotted graphs
of the programs are self-similar.

3.4 Theorem (Second Representation Theorem) Let P be a logic program. Let fP be
the embedded TP-operator using base B > 2, and let FP be its graph. Furthermore assume
that fP is Lipschitz continuous. Then there exists an IFS on (R2, d2) with attractor FP .

Proof We prove this theorem by applying Theorem 3.2, i.e. we will show that under
the stated hypotheses there is a hyperbolic IFS ((R2, d2), Ω) such that πx(A) = Df and
fP(ωx

i (a)) = ωy
i (a) hold for all a ∈ FP and all ωi ∈ Ω.

By Lemma 3.3 we know that for each P ≥ 1 there is a set Ωx
P consisting of contractive

mappings ωx
i : R → R with contractivity factor 1

BP and such that Df is the attractor of

11



the IFS ((R, d1), Ω
x
P ). For every ωx

i ∈ Ωx
P we now define a mapping ωy

i : R→ R by ωy
i (x) =

fP(ωx
i (x)). It remains to show that ((R2, d2), Ω) with Ω = {(ωx

i ◦ πx, ω
y
i ◦ πx) | ωx

i ∈ Ωx
P }

is a hyperbolic IFS for some suitably chosen P ≥ 1, and for this it suffices to show that
every ωi = (ωx

i , ω
y
i ) ∈ Ω is a contraction on (R2, d2).

Since fP is Lipschitz continuous, there is a constant L with d1(fP(x), fP(y)) ≤ L·d1(x, y)
for all x, y ∈ Df. Taking this and the contractivity of ωx

i into account we obtain for all
a, b ∈ R

2

d2(ωi(a), ωi(b))
2 = d1(ω

x
i (πx(a)), ωx

i (πx(b)))
2 + d1(ω

y
i (πx(a)), ωy

i (πx(b)))
2

≤ B−2P · |πx(a)− πx(b)|2 + L2B−2P |πx(a)− πx(b)|2

≤ L2 + 1

B2P
· ∣∣πx(a)− πx(b)

∣∣2.
Since πx is continuous with Lipschitz constant 1 we obtain

d2(ωi(a), ωi(b)) ≤
√

L2 + 1

B2P
· d2(a, b).

We see now that it is possible to choose P such that ωi is a contraction, and Theorem
3.2 is applicable. �

Before we move on, let us dwell a bit on the implications of Theorem 3.4 and also on
some questions it raises. We require fP to be Lipschitz continuous, which implies that
fP is continuous on the Cantor set as a subspace of R, and hence that TP is continuous
with respect to the Cantor topology Q on IP . The latter notion is well-understood (see
[21, 41]). For example, it turns out that programs without local variables (called covered
programs in [8]) have continuous single-step operators, where a local variable is a variable
which occurs in some body literal of a program clause but not in its corresponding head.

The exact relationships between covered programs, continuity of the single-step operator
in Q, Lipschitz continuity with respect to a metric generating Q, and Lipschitz continuity
of the embeded single-step operator with respect to the natural metric on R remain to
be studied, and these matters appear to be not straightforward. What we can say at this
stage is that if TP is continuous in Q then fP is continuous on the Cantor space (because
the latter is homeomorphic to (IP , Q)), and since the Cantor space is compact, we obtain
that fP must be uniformly continuous, which is stronger than continuity, but strictly
weaker than Lipschitz continuity. The interested reader will also be able to verify that the
single-step operator of the covered program

p(X) :- p(f(X,X))

is not Lipschitz continuous with respect to any metric based on an injective level mapping
as in Definition 2.1. We owe this example to Howard Blair.

Programs which are acyclic with respect to an injective level mapping also have contin-
uous single-step operators, which is easily seen by observing that such programs cannot
contain any local variables — or by considering the remark made earlier that for such pro-
grams the single-step operator is a contraction with respect to a metric which generates
Q. Furthermore, it was shown in [30] that for base B = 4 (and hence for all larger bases)
for the embedding R, the resulting embedded function fP = R(TP) is a contraction on a

12



subset of R, hence is Lipschitz continuous. If P is a program for which ground(P) is finite
(and hence BP is finite), then Df is a finite subset of R, and hence fP is trivially Lipschitz
continuous as a function on a subset of R. We can thus state the following corollary.

3.5 Corollary For programs which are acyclic with respect to an injective level mapping,
and for programs for which ground(P) is finite, there exists an IFS in the form given in
the proof of Theorem 3.4 with attractor FP .

Corollary 3.5 gives a formal, albeit not satisfactory, explanation for the observation
which started our investigations: In order to obtain approximate plots of the graph of
some fP , we restricted ourselves to plotting the graph corresponding to a finite, though
large, subprogram of ground(P).

As yet, we know of no general method for obtaining Lipschitz constants of fP , or even
for showing whether it is Lipschitz continuous at all. In the light of Theorem 3.4 and
other results which we will discuss in the sequel, and also by considering our remarks
made earlier on the unclear relations between different notions of continuity for single-
step operators, we feel that investigations into these matter will have to be made in order
to obtain satisfactory constructions of iterated function systems — or of connectionist
systems — for representing logic programs in our approach.

3.2 Worked Examples

Although Theorem 3.4 covers a wide range of programs, it is unsatisfactory since it does
not provide a convenient way of constructing the iterated function system. Indeed, the
IFS obtained in the proof of the theorem does involve the single-step operator for the
calculation of the functions ωy

i . In this section, we provide a simple but reasonable form
of iterated function system which avoids this drawback, and show in detail that it covers
some example programs. The same form of IFS will also be used in later parts of the
paper.

3.6 Definition Let the natural numbers B > 2 (hence also the mapping R) and P ≥ 1
be fixed, and let P be a program. Then we associate with P the IFS ((R2, d2), Ω), where
the ωi ∈ Ω are defined as ωi : R

2 → R
2 : (x, y) 
→ (ωx

i (x), ωy
i (y)) with ωx

i and ωy
i being

ωx
i :R→ R : x 
→ 1

BP
x + dx

i , and

ωy
i :R→ R : y 
→ 1

BP
y + fP(dx

i )−
fP(0)

BP
.

The parameter i, in this case, ranges from 1 to 2P , and the ωx
i and dx

i ∈ Df are exactly
as in the IFS ((R, d), Ωx

P ) from Lemma 3.3. For convenience, we call such a resulting IFS
linear and use the notation IFSl

P when we are referring to it. Note that whenever B, P ,
and P are fixed, then the corresponding IFSl

P is uniquely determined, so that our notation
is sound.

We consider the base B fixed in the sequel. The parameter P , which we call periodicity,
will usually depend on the program P. How to construct an IFSl

P from a fixed B is also
depicted in Figure 8.
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Algorithm 3.7 (Construction of IFSl
P for a given program P)

Let P be a logic program and fP be its embedded TP-operator.

1. Choose a natural number (the periodicity) P > 0.
2. Compute Ωx

P as explained in Section 3.1.

3. Construct for each ωx
i ∈ Ωx

P the corresponding ωy
i : y 
→ 1

BP y + fP(dx
i )− fP (0)

BP .

4. Return the set Ω = {ωi = (ωx
i , ω

y
i )} as mappings for the IFSl

P = {(R2, d2), Ω}.

Figure 8: Constructing linear iterated function systems.

Before we explain the intuition behind Definition 3.6 we need to introduce a new oper-
ator denoted ·→· , which takes as arguments an interpretation and a natural number, and
returns an interpretation. This operator defines a kind of shift operation on interpreta-
tions.

3.8 Definition Let P be a logic program, I ∈ IP , P ∈ N, and | · | be an injective level
mapping for P. Then define

I→
P

= {A | there exists A′ ∈ I with |A′|+ P = |A|}.
We call ·→· the right-shift operator.

3.9 Proposition I→
P

= R−1
(

R(I)
BP

)
holds for all I ∈ IP and all P ∈ N.

Proof The equation follows immediately from the definition of R since

I→
P

= R−1

(∑
A∈I

B−(|A|+P )

)
= R−1

(∑
A∈I B−|A|

BP

)
= R−1

(
R(I)

BP

)
.

�

We have already observed in Section 3.1 that for each dx
i occuring in Definition 3.6 there

exists some Ii ∈ IP with R(Ii) = dx
i . Using Proposition 3.9 we can therefore carry over

the functions ωx
i to IP , as follows.

ωx
i : R→ R : x 
→ x

BP
+ dx

i

R−1(ωx
i ) = wx

i :IP → IP :I 
→ I→
P
∪ Ii

For the mappings ωy
i the resulting function is a bit more involved, and can be represented

as

ωy
i : R→ R : y 
→ y

BP
− fP(0)

BP
+ fP(dx

i )

R−1(ωy
i ) = wy

i :IP → IP :I 
→ ( I→
P
\ I−

i

) ∪ I+
i

where I+
i = R−1(fP(dx

i )) = TP(Ii) and I−
i = R−1

(
fP (0)
BP

)
= TP (∅)−−−→

P
.
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P: n(0).

n(s(X)) :- n(X).

| · |: |n(sx(0))| = x + 1

graph FP :

Figure 9: The natural numbers program and their embedded TP-operator.

Figure 10: The first three iterations of the mappings.

Let us now explain the intuition behind the definitions of the mappings ωx
i and ωy

i .
The choice of the ωx

i is obvious for the same reasons as in Section 3.1 and in the proof
of Theorem 3.4: It appears to be the most natural way to obtain Df as projection of the
resulting attractor to the x-axis, as required by Theorem 3.2. The corresponding mapping
wx

i unmasks this as a right-shift with addition of a base point Ii. A first approximate
candidate for wy

i (I) would therefore be I→
P
∪ TP(Ii) — note that I in this case should

be understood as being some image under TP . The occurrence of I−
i is necessary as a

correction in case of an overlap (i.e. a non-empty intersection) between I→
P

and TP(Ii).
This would not be necessary, strictly speaking, for wy

i , where such an overlap would
have no effect since it is ignored by the set-union operation. When carried over to the
reals, however, this correction becomes necessary in order to avoid the situation that the
resulting number would not correspond to an interpretation.

Linear iterated function systems are constructed such that πx(A) = Df, which is one of
the conditions imposed by Theorem 3.2. The other condition, fP(ωx

i (a)) = ωy
i (a) for all

a, will be shown on a case base in the following examples. We fix B = 4 for the examples,
in order to have a concrete setting. This choice was also made in [30], and the reason for
this was to guarantee that fP is a contraction for acyclic programs with injective level
mappings, as already mentioned.

Consider first the program from Figure 1. Figure 9 shows an associated graph with
corresponding level mapping — we use the notation sx(0) to denote the term s(. . . (0) . . . )
in which the symbol s occurs x times. We now use Algorithm 3.7 for constructing an IFSl

P
for the program. We choose periodicity P = 1 and obtain

Ω =

{(
1
4

0
0 1

4

)(
x
y

)
+

(
0
3
16

)
,

(
1
4

0
0 1

4

)(
x
y

)
+

(
1
4
1
4

)}
.

The first three iterations of this IFSl
P are depicted in Figure 10.
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ωx
1(x) = x

4
+ 0 ωy

1(x) = x
4

+ 3
16

wx
1(I) = I→

1 wy
1(I) =

(
I→
1 \ {n(s(0))}) ∪ {n(0)}

TP(wx
1(I)) = TP

(
I→
1

)
=
(

TP (I)−−−→
1
\ {n(s(0))}) ∪ {n(0)} = wy

1(TP(I))

ωx
2(x) = x

4
+ 1

4
ωy

2(x) = x
4

+ 1
4

wx
2(I) = I→

1
∪ {n(0)} wy

2(I) = I→
1
∪ {n(0)}

TP(wx
2(I)) = TP

(
I→
1 ∪ {n(0)}) = TP (I)−−−→

1
∪ {n(0)} = wy

2(TP(I))

Table 1: TP(wx
i (I)) = wy

i (TP(I)) holds for the natural numbers program.

P: e(0).

e(s(X)) :- not e(X).

o(X) :- not e(X).

| · |: |e(sx(0))| = 2 · x + 1
|o(sx(0))| = 2 · x + 2

graph FP :

Figure 11: The even and odd numbers program.

In order to show that the resulting attractor coincides with FP , we need to verify the
hypotheses of Theorem 3.2, i.e. in particular, we need to show that fP(ωx

i (a)) = ωy
i (a)

for all a ∈ FP . By the discussion following Proposition 3.9 it therefore suffices to show
that TP(wx

i (I)) = wy
i (TP(I)) holds for all I ∈ IP . The necessary calculations are shown in

Table 1, some details are straightforward and have been omitted.
As another example we discuss the program from Figure 11. We work with periodicity

P = 2 and obtain the following IFSl
P by Algorithm 3.7.

Ω =

{(
1
16

0
0 1

16

)(
x
y

)
+

(
0
5
16

)
,

(
1
16

0
0 1

16

)(
x
y

)
+

(
1
16
5
16

)
,

(
1
16

0
0 1

16

)(
x
y

)
+

(
1
4
15
64

)
,

(
1
16

0
0 1

16

)(
x
y

)
+

(
5
16
15
64

)}

The first few iterations of the resulting IFSl
P are depicted in Figure 12. Verification

of correctness is performed similarly as for the natural numbers program and details are
given in Table 2.

4 Logic Programs by Fractal Interpolation

In Section 3 we have focused on the problem of exact representation of logic programs by
iterated function systems. In this section we will provide a result for approximating logic
programs by iterated function systems. Our approach is motivated by fractal interpolation
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Figure 12: The first three iterations of the mappings.

ωx
1(x) = x

16
+ 0 ωy

1(x) = x
16

+ 5
16

wx
1(I) = I→

2 wy
1(I) = I→

2 ∪ {e(0), o(0)}
TP(wx

1(I)) = TP
(

I→
2

)
= TP (I)−−−→

2
∪ {e(0), o(0)} = wy

1(TP(I))

ωx
2(x) = x

16
+ 1

16
ωy

2(x) = x
16

+ 5
16

wx
2(I) = I→

2 ∪ {o(0)} wy
2(I) = I→

2 ∪ {e(0), o(0)}
TP(wx

2(I)) = TP
(

I→
2 ∪ {o(0)}) = TP (I)−−−→

2
∪ {e(0), o(0)} = wy

2(TP(I))

ωx
3(x) = x

16
+ 1

4
ωy

3(x) = x
16

+ 15
64

wx
3(I) = I→

2 ∪ {e(0)} wy
3(I) =

(
I→
2 \ {e(s(0))}) ∪ {e(0)}

TP(wx
3(I)) = TP

(
I→
2 ∪ {e(0)}) =

(
TP (I)−−−→

2
\ {e(s(0))}) ∪ {e(0)} = wy

3(TP(I))

ωx
4(x) = x

16
+ 5

16
ωy

4(x) = x
16

+ 15
64

wx
4(I) = I→

2 ∪ {e(0), o(0)} wy
4(I) =

(
I→
2 \ {e(s(0))}) ∪ {e(0)}

TP(wx
4(I)) = TP

(
I→
2 ∪ {e(0), o(0)}) =

(
TP (I)−−−→

2
\ {e(s(0))}) ∪ {e(0)} = wy

4(TP(I))

Table 2: TP(wx
i (I)) = wy

i (TP(I)) holds for the even and odd numbers program.

as described in [3, Chapter 6], but our setting differs in that we reuse the linear iterated
function systems introduced in Definition 3.6.

We will again assume the parameter B > 2 and some injective level mapping to be fixed.
The parameter P is going to be reinterpreted as accuracy. Given a logic program P, for
which fP is Lipschitz continuous, and given some accuracy P , we consider the associated
iterated function system as given by Definition 3.6. It will be shown that the attractor of
each of these systems is the graph of a continuous function defined on Df, and that the
sequence of attractors associated with an increasing sequence of accuracies converges to
the graph of fP , with respect to the maximum metric on the space of continuous functions.

We begin by describing in detail the fractal interpolation systems which we will be
using. Given a program P we need to extract a set of interpolation data which we can
use for the interpolation process. This procedure — for each accuracy P — is described
in Figure 13. Note that the data pairs (R(Xi), R(Yi)) obtained in this way coincide with
the values (dx

i , fP(dx
i )) used in Section 3.1.

4.2 Definition (IIFSP) Let {(dx
i , d

y
i ) | 1 ≤ i ≤ 2P} be a sequence of interpolation data
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Algorithm 4.1 (Interpolation Data)
This algorithm computes a set of interpolation data for a given program P.

1. Choose a natural number (the accuracy) P > 0.
2. Compute the set D = {A | |A| ≤ P and A ∈ BP} and its powerset D = P(D).
3. For any set Xi ∈ D compute Yi = TP(Xi) with respect to the program P.
4. Return the sequence of pairs (R(Xi), R(Yi)), with R(Xi) < R(Xj) for all i < j.

Figure 13: Construction of Interpolation Data.

P:
p(0).

p(s(X)) :- p(X).

p(X) :- not p(X).

| · |:
|p(sx(0))| = x + 1

IIFSP for P = 1 IIFSP for P = 2

Figure 14: A logic program and two corresponding IIFSPs.

constructed via Algorithm 4.1 from the program P using accuracy P . Let fP be the
embedded TP-operator associated with the program P using the mapping R with base
B. Then ((R2, d2), Ω) is called an interpolating iterated function system (IIFSP), with
Ω =

{
ωi | 1 ≤ i ≤ 2P

}
and ωi : R

2 → R
2 : (x, y) 
→ (ωx

i (x), ωy
i (y)), where ωx

i and ωy
i are

defined by

ωx
i (x) =

1

BP
x + dx

i , and

ωy
i (y) =

1

BP
y + fP(dx

i )−
fP(0)

BP
.

Figure 14 shows a logic program and schematically two corresponding interpolating
iterated function systems for B = 4.

Each IIFSP constructed for the program P and accuracy P corresponds to a linear
iterated function system constructed for the periodicity P as in Algorithm 3.7. Therefore
it is obvious that the resulting mappings indeed constitute hyperbolic iterated function
systems which satisfy πx(A) = Df for their attractors A.

For the remainder of this section we denote by F the set of all continuous functions
from Df to R, and by df the maximum metric df(f, g) = maxx∈Df

{|f(x)− g(x)|} on this
set. Thus (F , df) is a complete metric space, and convergence with respect to it is uniform
convergence.
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4.3 Lemma The function TP : F → F defined by TP (f)(x) = ωy
i ◦ f ◦ωx−1

i (x), where i is
chosen appropriately depending on x, is a contraction on (F , df) with contractivity factor
1

BP .

Proof The function TP f can be characterized by cases depending on the input x, by
setting

TP f(x) = TP,if(x) for x ∈
[
dx

i , d
x
i +

Rm

BP

]
∩Df

with each TP,if defined as

(TP,if)(x) = ωy
i

(
f
(
ωx−1

i (x)
))

=
1

BP
· f ((x− dx

i ) · BP
)

+ fP(dx
i )−

fP(0)

BP
.

In the sequel we will simply write TPf : Df → R : x 
→ ωy
i

(
f
(
ωx−1

i (x)
))

since TP f is a

well-defined function from Df to R.
To show that TP maps F to itself, we need to show that TPf : Df → R is a continuous

function for all f ∈ F . The continuity of each TP,if is obvious, since it is a composition
of continuous functions. Since dx

i + Rm

BP < dx
i+1 for each i < 2P this observation suffices.

Contractivity of TP follows immediately from the definition since

df(TPf, TP g) = max{|TP f(x)− TP g(x)| | x ∈ Df}
=

1

BP
·max

{∣∣f ((x− dx
i ) · BP

)− g
(
(x− dx

i ) ·BP
) ∣∣ | x ∈ Df

}
≤ 1

BP
· df(f, g),

and we can conclude that TP is a contraction with contractivity factor 1
BP . �

4.4 Lemma Let D = {(dx
i , d

y
i )} be a sequence of interpolation data and ((R2, d2), Ω) be an

interpolating iterated function system with attractor A, as constructed in Definition 4.2
from the program P using accuracy P . Let fP be the embedded TP -operator associated
with the program P using the mapping R. Then there is a unique continuous function
f : Df → R with TP f = f . Furthermore, f interpolates the data and its graph coincides
with the attractor A.

Proof The proof is divided in two steps. First, we will show that the function f is
uniquely determined and interpolates the data. Afterwards, we will show that the graph
of this function coincides with the attractor A.

(i) From Lemma 4.3 we know that the contraction TP maps F to itself. By the Banach
contraction mapping theorem we can conclude that there is exactly one function f with
TP f = f . This function is continuous since it is an element of F . To show that f inter-
polates the data we need to show that f(dx

i ) = dy
i = fP(dx

i ) for all (dx
i , d

y
i ) ∈ D. Since we

know that TP f = f we obtain

f(dx
i ) =

1

BP
· f ((dx

i − dx
i ) · BP

)
+ fP(dx

i )−
fP(0)

BP

= fP(dx
i ) +

f(0)

BP
− fP(0)

BP
.
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As there is a dx
i which is equal to 0 we get f(0)− f(0)

BP = fP(0)− fP (0)
BP , which gives us the

equality f(0) = fP(0) and hence f(dx
i ) = fP(dx

i ) holds for all dx
i .

(ii) In order to show that the graph F = {(x, f(x)) | x ∈ Df} of the function f coincides
with the attractor, it suffices to show that F = Ω(F ) — since there is only one fixed
point of Ω, it then follows that F = A. So it suffices to show that (ii.a) Ω(F ) ⊆ F
and (ii.b) F ⊆ Ω(F ). In order to prove (ii.a) we show that ωi((x, f(x))) ∈ F for all
(x, f(x)) ∈ F and all ωi ∈ Ω, i.e. (ωx

i (x), ωy
i (f(x))) ∈ F . This follows immediately from

f = TP f = ωy
i ◦f ◦ωx−1

i , since this implies f ◦ωx
i = ωy

i ◦f and hence (ωx
i (x), ωy

i (f(x))) ∈ F .
Consequently, Ω(F ) ⊆ F . Since πx(A) = Df it follows that for all x ∈ Df there is an x′ ∈ Df

and an ωi ∈ Ω such that x = ωx
i (x

′). From (x′, f(x′)) ∈ F and f ◦ ωx
i = ωy

i ◦ f we can
conclude that f(x) = ωy

i (f(x′)) and hence
(
x, f(x)

)
=
(
ωx

i (x
′), ωy

i (f(x′))
)
. So (ii.b) holds

which completes the proof. �

We call the function f from Lemma 4.4 a fractal interpolation function for the program P
with respect to accuracy P : it is an interpolation function for a set of points which belong
to the graph of the embedded TP-operator fP . Both fP and the fractal interpolation
function coincide at least on the given data points, the number of which depends on
the chosen accuracy P . In the remainder of this section we will study the sequence of
fractal interpolation functions obtained by increasing the accuracy. We show first that
this sequence is a Cauchy sequence, and then that its limit converges to fP for programs
with Lipschitz continuous fP .

We next need to obtain upper and lower bounds on the values of fractal interpolation
functions. Fixing an accuracy P , recall that the corresponding fractal interpolation func-
tion f is the unique fixed point of the function TP , i.e. f = TP (f) = ωy

i ◦ f ◦ ωi
x−1

. Since

ωy
i (y) = y

BP + fP(dx
i )− fP (0)

BP it is easily verified that a lower bound for f is given by

fmin = −
∞∑
i=1

Rm

(BP )i
= − Rm

BP − 1
.

Analogously, an upper bound fmax can be obtained as

fmax = Rm +
Rm

BP − 1
.

4.5 Lemma Let P be a program with Lipschitz continuous fP . For each accuracy i let fi

be the corresponding fractal interpolation function. Then the sequence (fi)i∈N is a Cauchy
sequence in (F , df).

Proof The proof is divided into two steps. We first compute the distance between fi and
fi+1, and then use this to show that the sequence is Cauchy.

(i) Let i be fixed. We compute the distance between the two fractal interpolation functions
fi and fi+1. For convenience we use f for fi and f̂ for fi+1. For both functions we know
that Tf = f and T̂ f̂ = f̂ hold, where T and T̂ denote the operators introduced in
Lemma 4.3, constructed for the accuracies P = i and P̂ = i + 1 respectively. We use the
notation dx

j for the interpolation values for f and d̂x
k for the interpolation values for f̂ .
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From Tf = f and T̂ f̂ = f̂ we can conclude that

f(x) =
f
(
(x− dx

j) ·Bi
)

Bi
+ fP(dx

j)−
fP(0)

Bi
for x ∈

[
dx

j, d
x
j +

Rm

Bi

]
∩Df,

f̂(x) =
f̂
((

x− d̂x
k

)
·Bi+1

)
Bi+1

+ fP
(
d̂x

k

)
− fP(0)

Bi+1
for x ∈

[
d̂x

k, d̂
x
k +

Rm

Bi+1

]
∩Df.

Therefore, we get for the distance df

(
f, f̂
)
:

df

(
f, f̂
)

= max
x

{∣∣∣∣∣
(

f
(
(x− dx

j) · Bi
)

Bi
+ fP

(
dx

j

)− fP(0)

Bi

)
−

⎛
⎝ f̂
((

x− d̂x
k

)
· Bi+1

)
Bi+1

+ fP
(
d̂x

k

)
− fP(0)

Bi+1

⎞
⎠
∣∣∣∣∣
}

≤ max
x

{∣∣∣∣∣∣
B · f ((x− dx

j

) · Bi
)− f̂

((
x− d̂x

k

)
· Bi+1

)
Bi+1

∣∣∣∣∣∣+
∣∣∣fP (dx

j

)− fP
(
d̂x

k

)∣∣∣+ ∣∣∣∣−B · fP(0) + fP(0)

Bi+1

∣∣∣∣
}

≤ max
x

{
B · (Rm + Rm

Bi−1

)
+ Rm

Bi+1−1

Bi+1
+ L ·

∣∣∣dx
j − d̂x

k

∣∣∣ + (B − 1) · Rm

Bi+1

}

The last step uses the fact that fP is continuous on (Df, d1) with some Lipschitz constant
L, and the results concerning minima and maxima of fi.

Since dx
j and d̂x

k are chosen with respect to the same x we know that the distance

between dx
j and d̂x

k is bounded by Rm

Bi . Hence

df

(
f, f̂
)
≤ B · (Rm + Rm

Bi−1

)
+ Rm

Bi+1−1

Bi+1
+ L · Rm

Bi
+

(B − 1) · Rm

Bi+1

≤ B · (Rm + Rm

Bi−1

)
+ Rm

Bi+1−1
+ L · Rm + (B − 1) ·Rm

Bi+1

≤ Rm ·
B · (1 + 1

Bi−1

)
+ 1

Bi+1−1
+ L + (B − 1)

Bi+1

<
Rm

Bi+1
· (4B + L) ≤ Rm(4 + L)

Bi
.

(ii) From part (i) we can conclude that for j ≤ k we have

df(fj, fk) <

k∑
i=j

Rm(4 + L)

Bi
=

Rm(4 + L)

B − 1

(
1

Bj
− 1

Bk

)
.

So for fixed j the value of df(fj , fk) is bounded by df(fj , fk) ≤ Rm(4+L)
B−1

· 1
Bj , and we obtain

that (fi)i∈N is a Cauchy sequence, since for any ε > 0 there is some n such that for all
j, k > n we have df(fj , fk) < ε. �
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4.6 Theorem (Approximation Theorem) Let P be a program with Lipschitz continuous
fP . Then the sequence (fi)i∈N of fractal interpolation functions with accuracies i converges
uniformly to fP in the complete metric space (F , df).

Proof First note that for each x ∈ Df there is a sequence of interpolation data points
(dx

i , d
y
i ) such that each (dx

i , d
y
i ) belongs to the interpolation data for accuracy i, each dx

i is
the offset of the appropriately chosen mapping ωx

i for x, and limi→∞ dx
i = x.

From the continuity of fi and the uniform convergence of fi to some f by Lemma 4.5
we can conclude that the sequence (fi(d

x
i ))i∈N converges to f(x). Knowing that the fi are

interpolation functions, hence fi(d
x
i ) = fP(dx

i ), we obtain that the sequence (fP(dx
i ))i∈N)

converges to f(x). But fP is continuous by assumption, so limi fP(dx
i ) = fP(limi d

x
i ) =

fP(x) and hence f(x) = fP(x) for all x ∈ Df. �

Theorem 4.6 shows that we can approximate the graph of any logic program for which fP
is Lipschitz continuous arbitrarily well. Unfortunately, the necessary number of mappings
grows exponentially with the accuracy. From df(fj , fk) < Rm(4+L)

B−1

(
1

Bj − 1
Bk

)
it follows that

df(fj , fP) ≤ Rm(4+L)
Bj(B−1)

, i.e. for any given ε > 0 we can construct an IIFSP, such that the
corresponding fractal interpolation function fP lies within an ε-neighbourhood of fP . This
IFS needs to be constructed using accuracy P such that Rm(4+L)

BP (B−1)
< ε, i.e.

P > lnB
Rm(4 + L)

ε(B − 1)
.

5 Logic Programs as Recurrent RBF-Networks

We will now proceed to the task which motivated our investigations, namely the approxi-
mation of logic programs by artificial neural networks. Such networks consist of a number
of simple computational units, which are connected in the sense that they can propagate
simple information — usually in the form of real numbers — along these connections. We
want to construct a network which computes an approximation of fP(x) for a given x. To
this end, we will employ the results of the previous sections. More precisely, we will show
how the fractal interpolation systems from Section 4 can be encoded.

The basic idea underlying our encoding is to exploit the self-similarity of the fractal in-
terpolation functions f , and the “recursive” nature of the corresponding iterated function
systems. In order to obtain the function value f(x) for some given x ∈ Df, we first need
to find the correct mapping ωi = (ωx

i , ω
y
i ), i.e. the one for which x ∈ ωx

i (Df), and compute
ωy

i (y) (where initially y = 0). Then we zoom in on the image of Rm × Rm under ωi and
repeat the process.

For our implementation of this idea we use radial basis function networks (RBF-
networks). These consist of simple units which perform “radial basis functions” as input-
output-mappings. These are functions f for which the values f(x) are distributed sym-
metrically around a center. Two examples and a very simple schematic RBF-network are
shown in figure 15.

RBF-networks are known to be universal approximators, i.e. with networks as shown
in Figure 15 it is possible to approximate any continuous function to any given accuracy,
provided sufficiently many units are being used in the middle layer.
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Figure 15: Two examples of radial basis functions and a simple RBF-network.

x′ =

{
(x− μ + σ) · BP if |μ− x| ≤ σ

0 otherwise

y′ =

{
s · h if |μ− x| ≤ σ

0 otherwise

s

x x′

y′

Figure 16: Dynamics and scheme of an RBFx,y
s,x-unit.

To simplify our exhibition and the construction of the network we introduce a new
type of unit, which we call an RBFx,y

s,x-unit. It computes two distinct output-values x′ and
y′. Furthermore, it computes a parametrised radial basis function, where an additional
scaling s is applied to y′. These units can be understood as abbreviations, since they
can be converted into a network consisting of simple units, i.e. although we are using
RBFx,y

s,x-units it is possible to encode the entire resulting network using standard RBF-
units. Figure 16 shows the dynamics and a schematic plot of an RBFx,y

s,x-unit. The static
parameters of each RBFx,y

s,x-unit are the center μ, the width σ and the height h.
Using RBFx,y

s,x-units we can construct the network as shown in Figure 18 using the
algorithm shown in Figure 17. The example program for the construction is taken from
Section 3.2, where the corresponding IFSl

P was already computed. The three initial inputs
s0, y0 and x0 need to be initialised with s0 = 1, y0 = 0, and x0 = x. The network computes
an approximation of fP for a given input x. Each iteration through the network performs
the following computations:

• The scaling factor s is multiplied with 1
BP .

• Each RBFx,y
s,x-unit computes the corresponding outputs x′ and y′, where for exactly

one unit x′, y′ �= 0. Since x0 was initialised with R(I), the output of the “active”
RBFx,y

s,x-units after the first iteration is x′ = (x − μ + σ) · BP , i.e. we have x′ =

(x−dx
i )·BP = R

(
R−1(x)\R−1(dx

i )
)·BP . This is the “zooming into the interpretation”

mentioned earlier, i.e. x′ is a left-shifted version of x.
• The current y′-output of the “active” unit is added to the previous y.

The output y of the network converges to the value of the fractal interpolation function
f defined by the IFS, which was used to construct the network. More precisely, we have

d1(y, f(x)) =
(

1
BP

)i
, where i denotes the number of iterations performed and P is the

accuracy used for the construction. Furthermore, we know that df(f, fP) ≤ Rm(4+L)
BP (B−1)

, which

23



Algorithm 5.1 (Construction of recurrent RBFNP)
Let P be a logic program and B the base of the embedding R.

1. Choose a periodicity P ≥ 1.
2. Create an empty 3-layered RBF-network. Add three input units (s, x, y) to the

first layer and three output units (s′, x′, y′) to the third. The input units compute
the identity function and the output units return a weighted sum of their inputs.

3. The hidden layer consists of 2P RBFx,y
s,x-units initialised as follows:

a) Compute the IFSl
P ((R2, d2), Ω) for P using the periodicity P , with

Ω =
{
(ωx

i , ω
y
i ) | 1 ≤ i ≤ 2P

}
, ωx

i (x) = 1
BP · x + dx

i and ωy
i (y) = 1

BP · y + dy
i , as

described in Algorithm 3.7.
b) For all i the RBFx,y

s,x,i-unit is initialised with σi = 1
2·BP , μi = dx

i + σi and
hi = dy

i .

4. Connect the units as shown in Figure 18, where all weights are set to 1, but the
connection from s to s′ is set to B−P .

Figure 17: Algorithm constructing RBF-network.

yields d1(y, fP(x)) ≤ Rm(4+L)
BP (B−1)

+
(

1
BP

)i
. We conclude that we can approximate the single-

step operator of any logic program for which the embedding is Lipschitz continuous up
to any desired degree of accuracy.

6 Related Work

One of the key ideas on which our work on neural-symbolic integration is based, is to
represent logic programs by representing their associated immediate consequence opera-
tors. This approach was put forward by Hölldobler and Kalinke [29], and reported also in
[21], in order to encode propositional logic programs by feedforward neural networks with
threshold activation functions. They also observe that these networks can be cast into a
recurrent architecture in order to mimic the iterative behaviour of the operator.

Two major lines of investigation were spawned by this work. D’Avila Garcez, Broda,
Gabbay, and Zaverucha [12, 14] extend the work by Hölldobler and Kalinke to cover
networks with sigmoidal activation functions, and study machine learning and knowledge
extraction aspects of the resulting frameworks.

The second line of investigation was initiated by Hölldobler, Kalinke, and Störr [30],
who study first-order logic programs and how to approximate their single-step operators
by feedforward neural networks. A general approximation theorem due to Funahashi [16]
is of central importance for their approach, which is restricted to the study of acyclic
programs with injective level mappings. They show that these programs can be approxi-
mated arbitrarily well by feedforward networks, but do not specify any means for actually
constructing them.

Generalizations of this approach to programs with continuous single-step operators, and
also to other semantic operators, are obtained by Hitzler and Seda [19, 22, 23], reported
also in [21]. At this stage, topological and metric studies of declarative semantics, originally
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e(0).

e(s(X)) :- not e(X).

o(X) :- not e(X).

|e(sx(0))| = 2 · x + 1
|o(sx(0))| = 2 · x + 2

Ω =

{(
1
16 0
0 1
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)(
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1/BP

Figure 18: A logic program, level mapping, interpolating IFS for P = 2 and corresponding
recurrent RBFx,y

s,x-network. The example program and its IFSl
P are taken from

page 16.

developed for entirely different purposes [4, 5, 15, 18, 24, 39, 40, 42], come into play. From
this perspective, our work is in the spirit of the general programme of research laid out
by Blair et al. [9].

Work by Blair et al. on continualizations of discrete systems [8] relates very closely to
the particular tool we have chosen for our approach, namely iterated function systems. In
their paper, Blair et al. study covered programs and show, amongst other things, that their
single-step operators can be obtained by means of attractors of affine hyperbolic finite
automata, which in turn can be understood as iterated function systems. Their work
also shows the intimate relationship between logic programming and dynamical systems
related to self-similarity and chaos theory, which we have been able to put to use in this
paper.

7 Conclusions and Further Work

We have presented results for exact and approximate representation of single-step oper-
ators associated with logic programs by iterated function systems, fractal interpolation
systems, and recurrent radial basis function networks. Our results cover first-order logic
programs with function symbols under the provision that the embedded associated single-
step operator is Lipschitz continuous. We have given algorithms for constructing approx-
imating iterated function systems and recurrent radial basis function networks for given
logic programs.

As to the relation with the work by Blair et al. [8], we note that the exact relationship
between the class of programs covered by their results, namely covered programs, and
ours, namely those whose embedded single-step operator is Lipschitz continuous, remains
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to be determined and will require further research, as already mentioned. While the gen-
eral observation in [8] that covered logic programs can be represented by iterated function
systems breaks the ground for deep investigations into these matters, our results provide
explicit approximations in the Euclidean plane, which can be converted to a standard
neural network architecture in a straightforward way. The concrete results and construc-
tions which we provide, however, come at the price of the stronger hypothesis of Lipschitz
continuity required for our results. We believe that this requirement can be weakened, but
different mathematical approaches than the one employed here may be needed in order
to obtain satisfactory results.

There is also one caveat: If one would like to construct an approximating system or
network which approximates a given logic program within some a priori given error bound,
then we can only guarantee this if a Lipschitz constant L of the function fP — which
is the embedding of the single-step operator TP in the reals — is not only existent but
also known. This can be seen from the calculations of upper error bounds at the ends
of Sections 4 and 5. We do not know of any general method for obtaining Lipschitz
constants, and ways of doing this will be subject to further research. For certain well-
behaved programs, Lipschitz constants are easily calculated. For acyclic programs with
injective level mappings as covered in [30], for example, a Lipschitz constant is 1

B−2
,

where B > 2 is the base used for the embedding R. In these cases our results yield exact
algorithms for obtaining approximating networks given an a priori error bound.

Our results surpass those of [30] in at least two ways. Firstly, for the programs covered
in [30], namely acyclic ones with injective level mappings, we are now able to give an
algorithm for constructing approximating networks. Secondly, we show that a larger class
of programs than covered in [30] can be approximated in principle, namely those with
Lipschitz continuous embedded single-step operator, and furthermore, we have shown that
for these we can provide explicit parameters for approximating recurrent neural networks,
provided a suitable Lipschitz constant can be determined. This latter point is related to the
results in [21, 22, 23], where a larger class of programs — those with continuous single-step
operator — were treated, but without providing explicit constructions of approximating
networks. So our conclusions are stronger, but so are our assumptions.

Let us also note that we use a different network architecture than in [21, 22, 23, 30],
namely recurrent RBF-networks instead of three-layer feedforward networks with sig-
moidal activation functions. Indeed, we believe that RBF-networks constitute a much
more natural choice for representing logic programs at least under the general approach
inspired by [29]. This is due to the intuition that points or interpretations which are
“close” to each other (topologically or metrically speaking) are supposed to represent
similar meaning. The specific shape of the activation functions in RBF-networks thus can
be understood in such a way that a unit becomes active only for a cluster of values, i.e.
interpretations, which have similar meaning. The binary nature of sigmoidal activation
functions seems to be much more difficult to explain from an intuitive perspective. Cer-
tainly, our recurrent network can be unfolded to a feedforward architecture with several
layers if this is desired, and on the mathematical level it should not make much of a
difference which architecture is being used. The question of how to obtain algorithms
for constructing approximating networks with sigmoidal activation functions, however, is
probably rather hard, but may be solvable by first understanding Lipschitz constants of
embedded single-step operators.

Investigating Lipschitz constants as mentioned provides a natural next step in our
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investigations. It has to be said, however, that it is not yet clear how our results can be used
for designing useful hybrid systems. Nevertheless, certain questions are natural to be asked
at this stage. Can we use our apporach for extracting symbolic knowledge from trained
neural networks? Can network learning then be understood from a symbolic perspective
by observing changes in the (extracted) symbolic knowledge during the learning process?
Even in the finite (propositional) case research has not yet led to satisfactory answers to
these questions, and the case of first-order logic which we address here is naturally much
more difficult to work with, but should be investigated. Entirely new methods may have
to be developed for this purpose, as argued by Hölldobler in [28].
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