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Preface

Logic programming employs logic as a programming language	 Thus a logic program
consists of a set of clauses of a certain form� most often a subset of the clauses of 
rst
order logic� viewed as axioms	 Computation in this paradigm is deduction from these
axioms via some interpreter	
Logic programming semantics is concerned with background theory for logic pro�

gramming	 It tries to provide models for logic programs to give them their �intended
meaning� and to connect them with practically implementable interpreters	

In this thesis� we are concerned with the semantics of normal logic programs� as
intoduced in Section �	 Prolog� for example� surely the best known interpreter for logic
programs� is basically designed to deal with normal logic programs �though there are
usually some additional features implemented�	 The discussion of interpreters and their
connection with the models we obtain will only be of minor importance for us� and so
we focus on 
nding suitable models for normal logic programs	
The main tool used in logic programming semantics is the immediate consequence

operator� introduced in De
nition �	�� which can be derived from any normal logic
program	 Its importance comes from the fact that the models for some given normal
logic program are exactly the pre�
xed points of the immediate consequence operator	
As will be seen in Section �� models which are also 
xed points of this operator are of
even greater importance	
So� roughly speaking� our task is to 
nd 
xed points of the immediate consequence

operator	 Since some of the most common 
xed point theorems� such as the Banach
Contraction Mapping Theorem �	� or the Knaster�Tarski Theorem 
	�� are basically
topological in nature� we are immediately in the realm of set�theoretic topology� and
this thesis is concerned with displaying how topology can be employed in the area of
logic programming semantics	

We suppose that the reader is familiar with basic concepts from topology and logic as
given� for example� in �Wil��� and �EFT���	 We will shortly review the most important
notions from logic programming which are used in the sequel in Section �� basically
showing the importance of the immediate consequence operator	 Some familiarity with
logic programming is presupposed� and our main reference to this area is �Llo���	
Section 
 is devoted to the classical theory of normal logic programs without negation�

called de
nite logic programs	 In Section 
	�� we introduce the Scott topology on domains
and discuss some of their properties� including the Knaster�Tarski Theorem	 In Section

	
� we apply the results to de
nite logic programs and settle the issue of semantics for
these	 Additionally� we characterize the Scott topology on the space IP of all Herbrand
interpretations of a given logic program P � usually given by pure order�theoretic notions�
by using logical notions only	 Our main reference for the 
rst part is �SLG��� and for
the second part �Llo��� and �Sed���	
In Section �� we de
ne the atomic topology Q on IP � which will be shown to coincide

with the Cantor topology on IP 	 Topological properties of Q are discussed in Section �	��
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whereas in Section �	
� it will be seen that there is a strong connection between models
of a normal logic program P and convergence in Q� and between supported models and
continuity of the immediate consequence operator in Q	 Our main reference for this part
is �Sed���� although Theorems �	� and �	� are new	
In Section �� we will use the Banach Contraction Mapping Theorem and a closely

related theorem by Priess�Crampe and Ribenboim to derive 
xed points of the imme�
diate consequence operator	 In Section �	�� we will provide an extended ultrametric on
every domain� hence on IP � and in Section �	
� we will settle the semantics of strictly
level�decreasing programs� as de
ned there	 The main references are �PR��� and for the
new results �SH��c�	
Since� for arbitrary normal logic programs� the immediate consequence operator in

general has more than one 
xed point� the Banach Contraction Mapping Theorem is only
of limited use	 We therefore employ quasi�metric spaces in Section �	 The Rutten�Smyth
Theorem �	� generalizes both the Knaster�Tarski Theorem and the Banach Contraction
Mapping Theorem and is used in Section �	� to recover the classical theory from Section

	 In Section �	
� we will use level mappings to de
ne a quasi�metric on IP � and show that
this quasi�metric is strongly connected with the atomic topology Q	 Our main reference
is �Rut��� for Theorem �	� and �Sed��� for the results on logic programs	
Section � deals with compactness properties of generalized metric spaces� and is

only indirectly connected with Section �� providing some background theory	 Some well�
known results from metric spaces are generalized	 In Section �	�� it is shown that total
boundedness and sequential completeness imply sequential compactness and� in Section
�	
� that total boundedness and net completeness imply compactness	 It should be noted
here that quasi�metric spaces are� in general� not second countable	 The results of this
section are new	
In Section �� we use a slightly di�erent approach	 It will be seen that it is useful

to partition a given logic program into subprograms and to apply the immediate con�
sequence operators of the subprograms subsequently	 Section �	� deals with strati
ed
logic programs and a new characterization of their standard model is given� as well as
an alternative way of 
nding models for a subclass of these	 A subclass of the class of
all locally strati
ed programs is examined in section �	
� and a new way of obtaining
their standard model is presented	 Our main reference for the 
rst part is �ABW���� and
�SH��c� for the new results and the second part	
A comparison of the di�erent approaches employed in the sequel is made in Section

�	
All the example programs studied throughout the thesis have been moved to Ap�

pendix A� so that the di�erent approaches can easily be compared	 Some additonal
interesting programs are also provided	
At the end of each section� some open problems which are raised by the results are

given� and they are collected in Appendix B	

The present thesis was written during a stay at University College Cork� Ireland�
while working with A	K	 Seda on �SH��c�	 Thus� most of the new results can be found
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there as indicated above	 The problems leading to these results were suggested by A	K	
Seda and worked out under his guidance during the above mentioned stay at University
College Cork	
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� Introduction

We shortly review the most important concepts from the theory of logic programming
needed in this paper� focussing on the importance of the immediate consequence oper�
ator	
A �normal� logic program consists of a 
nite set of program clauses� for convenience

simply called clauses� which are clauses from 
rst order logic of the form

��A� L� � � � � � Ln�� written as A� L�� � � � � Ln�

where n � N is allowed to be zero �such a clause is called a unit clause or simply a fact��
and Li �i � �� 
� � � � � n� are literals� that is� positive or negative atoms within some given

rst order language� and A an atom in this language	 A logic program is called de�nite
if all literals in every clause of the program are positive	 Thus� a logic program is de
nite
if no negation symbol occurs in it	 In the above clause� A is called the head of the clause
and L�� � � � � Ln is called the body of the clause� where the commas stand for conjunction	
Consequently� each Li is called a body literal of the clause	
Given a logic program P � there is always a �minimal� underlying 
rst order language�

denoted by LP � whose constant� function� variable� and predicate symbols are the con�
stant� function� variable� and predicate symbols occuring in P � respectively	 If P does
not contain a constant symbol� we add one� so that LP always contains at least one
constant symbol	 The Herbrand universe UP of P is the set of all ground terms over LP �
i	e	 all terms obtained from the constant and function symbols in LP 	 The Herbrand base
BP of P is the set of all ground atoms over LP � i	e	 the set of all expressions obtained
by taking �ground� terms from UP as arguments for predicate symbols in LP 	 Given a
clause C in P � a ground instance of C is obtained by assigning an element of UP to
every variable symbol occuring in C	
The Herbrand preinterpretation for P assigns all constant and function symbols

to themselves� thus taking UP as the domain of the preinterpretation	 Every sub�
set I of BP can thus be identi
ed with a Herbrand interpretation in the following
way	 Given I � BP � assign the truth value �true� to all ground atoms in I and
�false� to all ground atoms not in I	 Given an interpretation� let I �� fA � BP j
A evaluates to �true� in that interpretationg� So the set IP �� fI j I � BPg � f� j � �
BP � �g � �BP �

Q
A�BP

�� where � � f�� �g� can be identi
ed with the set of all
intepretations for P 	 Obviously� IP � ordered by set inclusion� is a complete lattice	
A �Herbrand� model for P is an interpretation I � IP such that every clause in

ground�P � evaluates to �true� with respect to I	 Here� ground�P � denotes the set of all
ground instances of clauses in P 	 A modelM for P is calledminimal if there is no model
for P strictly contained in M 	 An interpretation �a model� I for P is called supported
if� for every A � I� there exists a clause A� A�� � � � � Ak���B�� � � � ��Bl� in ground�P �
such that Ak � I and Bl 	� I for k � �� � � � � k� and l � �� � � � � l�	 From a programmer�s
point of view� supported models are closer to the �intended meaning� of a program than
models which are not supported	
We de
ne the main tool employed in the sequel�
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��� De�nition For any given logic program P � the single step operator or immediate
consequence operator is de
ned as a function TP � IP � IP by

TP �I� �� fA � BP j there is a clause A� A�� � � � � Ak���B�� � � � ��Bl�

in ground�P � with Ak � I and Bl 	� I for k � �� � � � � k�� l � �� � � � � l�g�

The following observations connect the single step operator to �supported� models�
and are therefore crucial to the theory of logic programming semantics	

��� Theorem �see �Llo���� Let P be a logic program and let M � IP 	 Then M is a
model for P if and only if TP �M� �M 	

Proof
 Suppose M is a model for P and A � TP �M�	 Then there is a clause
A � A�� � � � � Ak���B�� � � � ��Bl� in ground�P � such that Ak � M and Bl 	� M for
k � �� � � � � k�� l � �� � � � � l�	 Since the above clause evaluates to �true� with respect to
M � A �M 	
Conversely� suppose TP �M� � M and let A � A�� � � � � Ak���B�� � � � ��Bl� be a

clause in ground�P � with Ak �M and Bl 	�M for k � �� � � � � k�� l � �� � � � � l�	 Then by
de
nition of TP � A � TP �M� �M as required	 �

Thus models of P are exactly the pre��xed points of the immediate consequence
operator TP 	 The following proposition shows that supported interpretations are exactly
the post��xed points of TP 	

��� Proposition �see �ABW���� Let P be a logic program and I � IP 	 Then I is
supported if and only if I � TP �I�	

Proof
 Suppose I � IP is a supported interpretation of P and A � I	 Then there is a
clause A � A�� � � � � Ak���B�� � � � ��Bl� in ground�P � such that Ak � I and Bl 	� I for
k � �� � � � � k�� l � �� � � � � l�� and therefore A � TP �I�	
Conversely� let I � IP with I � TP �I� and let A � I	 Since A � TP �I�� there must be

a clause in ground�P � with head A such that its body evaluates to �true� with respect
to I	 Therefore I is supported	 �

Together� these results give us the following theorem	

��� Theorem �see �ABW���� Let P be a logic program and let M � IP 	 Then M is a
supported model for P if and only if M is a 
xed point of TP 	

Our main tool for 
nding models for a given logic program employs sequences con�
structed by iterating the single step operator	 For convenience� we de
ne recursively for
a given set X� point x � X and function f � X � X�

f��x� � x and

fn���x� � f�fn�x�� for all n 
 ��
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Occasionally� we will refer to the sequence �fn�x��n�N as the orbit of x under f 	
Now suppose we have a topology T on IP such that limits of sequences are unique�

TP is continuous with respect to T � and the orbit �T n
P �I�� of some I � IP under TP

converges in T to some M � IP 	 Then M is a supported model for P since TP �M� �
TP �limT n

P �I�� � limTP �T n
P �I�� � limT n��

P �I� � limT n
P �I� �M 	

This observation will lead our thoughts throughout the sequel	 Both the Knaster�
Tarski Theorem studied in Section 
 and the Banach Contraction Mapping Theorem
studied in Section � employ this or a similar principle	We will study a variety of di�erent
topologies or topology�like structures on IP in order to obtain models for normal logic
programs	

We introduce some notions used in the sequel	
Given a sequence �xn�n�N with some index set N � we often write this sequence as

�xn�n� �xn�� or even xn if it is clear from the context what the index set is	 For a sequence
�xn�� we say that a property holds eventually for �xn� if there is a k� � N such that the
property holds for the sequence �xk�k�k� 	 The notion of limit of a sequence �or a net�
�I��� i	e	 limI� � I or I� � I� always refers to the topology or the structure �in Section
�� currently discussed	 If it refers to another structure� this is explicitly stated	
For a given set X� we denote the power set of X by �X � it can be identi
ed with the

set of all functions from X to �� as usual	
We let � denote the 
rst in
nite ordinal� we note that it can be identi
ed with the

set N of natural numbers �here always including ��	 As usual� we set � � � to be the
successor of the ordinal �� � � 
 as the successor of � � � and so on� thus obtaining
�
 �

S
n�N� � n	 Iterating this� we obtain �n� �� �

S
n�N�n� �

� and so on	 For
convenience�� we will denote the set of all ordinals obtained thus by �	 Note that all
of its members are countable ordinals	 As is well known� every ordinal �� � � can be
identi
ed with the set f� j � � ��g in the usual ordering	
Given any partially ordered set �X��� and a subset A � X� we denote the least upper

bound and the greatest lower bound� when these exist� by supA and infA� respectively	
A chain in X is a subset A � X such that� for all a� b � A� either a � b or b � a	 An
��chain in X is a sequence �xn�n�N in X such that xn � xn�� for every n � N	
We will use the notation a �� b or b �� a for emphasizing that we de
ne a to be b	

�Note� that this is not standard notation�
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� De�nite Programs

We introduce domains and the Scott topology and discuss some of their features� includ�
ing the Knaster�Tarski Theorem� in Section 
	�� and we apply these results to de
nite
logic programs in 
	
	 Finally� we give an alternative characterization of the Scott topol�
ogy on IP using logical notions only	

��� The Scott Topology on Domains

The Knaster�Tarski Theorem is a well�known 
xed point theorem for partially ordered
sets with some additional properties� as studied below	 It is usually stated for Scott�
domains or complete lattices	 We give it in a much weaker form	 The results in this
section are taken from �SLG���	

��� De�nition ��	cpo� A partially ordered set �D��� is called an ��complete partial
order ���cpo� if

��� there exists 
 � D such that for all a � D we have 
 � a �
 is called the bottom
element of D� and

�
� if a� � a� � � � � is an ��chain in D� then supi�Nai exists in D	

��� De�nition ��	continuity� Let D and E be ��cpos and f � D � E a function	

��� f is called monotonic if a � b implies f�a� � f�b� for all a� b � D	

�
� f is called ��continuous if f is monotonic and for every ��chain a� � a� � � � � we
have f�supi�Nai� � supi�Nf�ai�

��� Theorem �Knaster	Tarski� Let D be an ��cpo and let f � D � D be an ��
continuous function	 Then f has a least 
xed point a	 Furthermore� a � supn�Nf

n�
�	

The general idea of the proof is to iterate f on 
� obtaining the orbit 
 under f �
which is an ��chain by monotonicity of f 	 Its supremum is the least 
xed point of f � by
using ��continuity of f 	 Theorem �	� will generalize this result and a detailed proof will
be given there	
The spaces under consideration when Theorem 
	� is applied are usally stronger

then ��cpos	 We continue with introducing these	 Recall that a partially ordered set A
is called consistent if it has an upper bound� and is called directed if every 
nite subset
of A has an upper bound in A	

��� De�nition �Scott	Ershov	domain� A partial ordered set �D��� is called a com�
plete partial order �cpo� if

��� there exists 
 � D such that for all a � D we have 
 � a �
 is called the bottom
element of D� and



� � DEFINITE PROGRAMS

�
� if A � D is a directed set� then supA exists in D	

An element c of a cpo is called compact �or �nite� if� for every directed set A � D with
c � supA� there is some a � A with c � a	 We denote the set of all compact elements
of D by Dc	
A cpo D is called a �Scott�Ershov�� domain if

��� for every a � D the set approx�a� �� fc � Dc j c � ag is directed� a �
sup approx�a� �D is algebraic� and

�
� for every fa� bg � Dc which is consistent� supfa� bg exists in D	

Note that every cpo is already an ��cpo	
Intuitively� x � y in a domain can be interpreteted as �x approximates y�	 Compact

elements can be considered as practically implementable objects in a computer system�
so that every object of interest can be arbitrarily closely approximated by those	
In Section �� we will need the following proposition� which again can be found in

�SLG���	

��� Proposition Every domain D is consistently complete� i	e	 every consistent set in
D has a supremum	

Proof
 Note 
rst� that if fa� bg � Dc is consistent� then supfa� bg � Dc	 Indeed� let
A � D be directed with supfa� bg � supA	 Then there are x� y � A such that a � x and
b � y	 Since A is directed� there is z � A with x� y � z and therefore supfa� bg � z � A

as required	 From this it is a straightforward proof by induction that� for every 
nite
C � Dc which is consistent� supC exists in Dc	
Now let A � D be consistent	 IfA � �� then supA � 
 � D� so suppose A 	� �	 Let x

be an upper bound of A and B ��
S

y�A approx�y� � Dc	 Then B is consistent with x as
upper bound	 Now B� �� fsupC j C � B�C 
niteg � Dc by the preceeding observation	
Since supfsupC�� supC�g � supC� � C�� B� is directed and therefore supB� exists in
D	 It remains to show that supB� � supA	 For y � A� we have approx�y� � B�� hence
y � sup approx�y� � supB�� so supB� is an upper bound of A	 Let z be another upper
bound of A and C � B� be 
nite	 Then z is an upper bound of B� and therefore of C	
So we get supC � z for every choice of C and hence supB� � z	 �

It follows immediate from the previous proposition that domains are exactly the
consistently complete algebraic cpos	
We proceed with studying the appropriate notion of continuity for domains	

��
 De�nition �Scott	continuity� Let D� E be domains and f � D� E a function	
We call f Scott�continuous if� for every directed set A � D� f�A� is directed and
f�supA� � sup f�A�	

Note that every Scott�continuous function is ��continuous	 Indeed� if x � y in D�
then A � fx� yg is directed and therefore f�A� � ff�x�� f�y�g is directed	 Furthermore�
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f�y� � f�supA� � sup f�A� � supff�x�� f�y�g and hence f�x� � f�y�� which shows
monotonicity	
The topology underlying the notion of Scott�continuity is introduced next	

��� De�nition �Scott topology� Let D be a domain	 A set O � D is open with
respect to the Scott topology S on D if and only if

��� if a � O and a � b then b � O and

�
� if a � O then there exists c � approx�a� with c � O	

Note that the collection of all sets f�c j c � Dcg where �c � fa � D j c � ag is a
basis for S on D	 Thus� S is second countable whenever Dc is countable	
To show that continuity with respect to S is exactly Scott�continuity� the following

characterization will be useful	

��� Proposition Let D� E be domains and let f � D � E be a function	 Then f is
Scott�continuous if and only if f is monotonic and for each x � D and b � approx�f�x���
there is a � approx�x� such that b � f�a�	

Proof
 Let f be Scott�continuous and let b � approx�f�x��	 Then b � f�x� �
sup f�approx�x��	 By monotonicity� f�approx�x�� is directed� and by compactness of
b� there is some f�a� � f�approx�x�� with b � f�a� as required	
Conversely� let x � D	 By monotonicity of f � f�approx�x�� is directed� so
sup f�approx�x�� exists	 Now let b � approx�f�x��	 Then there is a � approx�x� with
b � f�a� by hypothesis� and therefore f�x� � sup approx�f�x�� � sup f�approx�x�� and
by monotonicity f�x� � sup f�approx�x��	 �

��� Theorem �see �SLG���� Let C� D be domains and let f � D � E be a function	
Then f is Scott�continuous if and only if f is continuous with respect to the Scott
topology S	

Proof
 Let f � D � E be Scott�continuous and choose a basic open set �c for some
c � Ec	 We have to show that f

����c� is open with respect to S	 Let x � f����c� and
choose y 
 x	 Then c � f�x� � f�y� by monotonicity of f � hence y � f����c�	 By
Proposition 
	�� there exists some a � approx�x� � Dc such that c � f�a� and therefore
a � f����c� as required	
Conversely� let f be continuous with respect to S� suppose x � y and let c �
approx�f�x��	 Then x � f����c� and hence y � f����c� since f����c� is open in S	
It follows that c � approx�f�y��� so we have approx�f�x�� � approx�f�y�� and there�
fore f�x� � f�y�� which shows monotonicity of f 	 Now let c � approx�f�x��	 Then
x � f����c� and by de
nition of S� there is a � approx�x� with a � f����c�	 Conse�
quently f�a� ��c and c � f�a� as required by Proposition 
	�	 �
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��� Application to De�nite Logic Programs

In order to order to apply the Knaster�Tarski Theorem to logic programming� we need
to show that IP is a domain	 We will derive this using the following more general result	

���� Theorem �see �ACo���� Let X be a set and let � � f�� �g	

��� �X is a domain with respect to set�inclusion	 Its compact elements are exactly the

nite subsets of X	

�
� Let � be endowed with the ordering � � � and the Scott topology�	 Then the
product topology on �X coincides with the Scott topology S on �X	

Proof
 Statement ��� is immediate by de
nition	 To see �
�� we identify �X with f� j
� � X � �g by identifying A � X with the function �� which takes the value � exactly
on all elements in A	 Let �c� c compact� be an arbitrary basic open set in ��X�S�	 Now
c can be identi
ed with the function �c taking the value � exactly on the elements of c	
The set �c can then be identi
ed with the set of functions taking the value � at least at
the points where �c does	 By de
nition of the product topology on �X � a basis is given
by putting f�g on 
nitely many coordinates� and f�� �g � � on the remaining ones	 As
we have just seen� these basic open sets are exactly the sets of the form �c	 So the two
topologies have the same basis and must therefore coincide	 �

���� Corollary The set IP � ordered by set�inclusion� is a domain� where the compact
elements are exactly the 
nite subsets of BP 	 Moreover� the Scott topology on IP coin�
cides with the product topology of �BP � if � is endowed with the Scott topology	

Proof
 As noted in the introduction� IP can be identi
ed with the product spaceQ
A�BP

� � �BP 	 The rest follows immediately from the previous theorem	 �

In order to apply the Knaster�Tarski Theorem it remains to show that the immediate
consequence operator is Scott�continuous	 It should be noted here that this is true
only for de
nite logic programs	 For normal logic programs� the immediate consequence
operator is in general not monotonic� hence not Scott�continuous	 For an example� check
Program �	
The following theorem is a main result for semantics of de
nite programs	

���� Theorem �Llo��� For any given de
nite logic program P � TP is Scott�continuous	

Proof
 Clearly� TP is monotonic� so the image of every directed set in IP is directed	
Furthermore� we have for every directed subset X of IP

A � TP �supX��� ��A� A�� � � � � Ak� � ground�P � and fA�� � � � � Akg � supX

�� ��A� A�� � � � � Ak� � ground�P � and �I � X � fA�� � � � � Akg � I

�� A � TP �I� for some I � X

�� A � sup TP �X�

�This space is known as the Sierpinski�space�
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which proves the theorem	 �

Thus� the Knaster�Tarski Theorem yields a procedure for 
nding the least 
xed
point M of TP � which therefore is the least supported model for P 	 For an example� see
Program �	
It should be noted that in the case of a de
nite logic program P � M � as constructed

above� coincides with the set of all logical consequences of P � which in turn coincides
with the set of all ground atoms in LP which are derivable from P via SLD�resolution
�see �Llo����	 This result is well�known as the Kowalski�van Emden Theorem	
In the remaining section� we show that the Scott�topology on IP can be recovered in

a more natural way� using logical notions�	

���� De�nition �Positive atomic topology� �see �Sed���� Let P be a logic pro�
gram	 The set fG�A� j A � BPg with G�A� � fI � IP j A � Ig is subbase of a
topology� the positive atomic topology Q� on IP 	

Note that a basic open set in Q� is of the form G�A�� � � � � � G�An�� which we
will write as G�A�� � � � � An�	 Since BP is countable� it is immediate that Q� is second
countable	
We have the following useful characterization of convergence in Q� which� as the

remaining results of this section� can be found in �Sed���	

���� Proposition A sequence �In� converges in Q� to I � IP if and only if every
element of I is eventually an element of In�	

Proof
 Let In � I in Q� and A � I	 Since G�A� is a neighbourhood of I we have
In � G�A� eventually	 So there exists n� � N such that In � G�A� for all n 
 n�� which
implies A � In for all n 
 n�	
For the converse� suppose that the condition holds for �In� and I	 Now choose a
neighbourhood of I which� without loss of generality� is a basic neighbourhood� say
G�A�� � � � � Ak�	 So we have A�� � � � � Ak � I	 By hypothesis� there is n� � N such that
A�� � � � � Ak � In for all n 
 n�� thus In � G�A�� � � � � Ak� for all n 
 n�� which shows
In � I in Q�	 �

���� Proposition The positive atomic topology Q� on IP coincides with the Scott
topology S on IP 	

Proof
 Obviously� G�A�� � � � � Ak� ��fA�� � � � � Akg	 So every basic open set in S is a basic
open set in Q� and vice versa	 �

�In fact� the results can be extended to a more general setting� using arbitrary preinterpretations� In
the case of Herbrand preinterpretations� the positive atomic topology coincides with the positive query
topology given in �BS����

�For the more general setting� using arbitrary preinterpretations� the result still holds if 	sequence
In
 is replaced by 	net I�
�
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The following observation will be used in Section �	

���
 Proposition Let �In� be a sequence in IP 	 Then the following hold	

��� �In� has a greatest limit in Q�� denoted by gl�In�	

�
� gl�In� � fA � BP j A � In eventuallyg	

��� If �In� is eventually monotonic increasing� say �Ik�k�k� is monotonic increasing�
then gl�In� �

S
k�k�

Ik	

Proof
 By Proposition 
	��� � � fI � IP j In � Ig	 Let gl�In� ��
S
fI � IP j In � Ig	

By Proposition 
	��� In � gl�In�� and by construction of gl�In�� it is the greatest limit
of In	 For the second statement� gl�In� � fA � BP j A � In eventuallyg is immediate�
since gl�In� is a limit of In	 For the converse� let A � In eventually	 By Proposition 
	���
In � fAg in Q�� and therefore A � gl�In� by de
nition of gl�In�	 The third statement
follows immediately from the second	 �

Summary

We have seen that every de
nite logic program has a least model� which is supported	
This model can be interpreted as the intended meaning� or simply the semantics of
P 	 The Kowalski�van Emden Theorem supports this view	 So the issue of semantics of
de
nite programs can be considered as resolved	 The Knaster�Tarski Theorem yields a
computational procedure for 
nding the semantics for P 	
Although all computable functions can be implemented using de
nite programs� the

syntax is very limited	 Incorporating the use of negation in the syntax of logic programs�
yielding normal logic programs� destroys monotonicity of the immediate consequence
operator� thus making it impossible to use the Knaster�Tarski Theorem for 
nding sup�
ported models	 So di�erent approaches have to be found� and some of these will be
studied in the following	



��

� The Atomic Topology

In the previous section� we studied the Scott topology on IP and applied it to logic
programming semantics of de
nite programs	 We have seen that the Scott topology is
not appropriate for normal logic programs	 In this section� we make use of the Cantor
topology on IP � introducing it via logical notions in Section �	� and applying it in Section
�	
	

��� The Atomic Topology Q

We de
ne a natural topology on IP and show that it conicides with the Cantor topology
on the Cantor set in the unit�interval within the real line	

��� De�nition �Atomic topology� �see �Sed���� Let P be a logic program	 The set
fG�A� j A � BPg � fG��A� j A � BPg� where G�A� � fI � IP j A � Ig and
G��A� � fI � IP j A 	� Ig� is subbase of a topology� the atomic topology� Q on IP 	

Note that the basic open sets of Q are of the form G�A�� � � � � � G�Ak� � G��B�� �
� � � � G��Bl�� which we will write as G�A�� � � � � Ak��B�� � � � ��Bl�	 Clearly� Q is second
countable�	
We give a characterization of convergence in Q	

��� Proposition �see �Sed���� A sequence �In� converges in Q to I � IP if and only if
every element in I is eventually in In and every element not in I is eventually not in
In

		

Proof
 Let In � I in Q and A � I	 Now G�A� is a neighbourhood of I and so In � G�A�
eventually	 So there exists n� � N such that In � G�A� for all n 
 n�� which implies
A � In for all n 
 n�	 For A 	� I choose G��A� as a neighbourhood of I	 Since In � I

in Q� we have n� � N with In � G��A� for all n 
 n�	 Hence A 	� In for all n 
 n� as
required	
For the converse� suppose that the condition holds for �In� and I	 Now choose a

neighbourhood of I which� without loss of generality� is a basic neighbourhood� say
G�A�� � � � � Ak��B�� � � � ��Bl�	 So we have A�� � � � � Ak � I and B�� � � � � Bl 	� I	 By hypoth�
esis� there is n� � N such that A�� � � � � Ak � In and B�� � � � � Bl 	� In for all n 
 n�� thus
In � G�A�� � � � � Ak��B�� � � � ��Bl� for all n 
 n�� which shows In � I in Q	 �

We proceed with studying properties of the atomic topology	 The following theorem
will be useful	

�The topology can be extended to a more general setting� using arbitrary preinterpretations� In the
case of Herbrand preinterpretations� the atomic topology coincides with the query topology given in
�BS����

�which is not true for arbitrary preinterpretations whose domain is not countable�
�For the more general setting� using arbitrary preinterpretations� the result still holds if 	sequence

In
 is replaced by 	net I�
�
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��� Theorem �see �Wil���� LetX be a 
nite or countable set� let � � f�� �g be endowed
with the discrete topology and let T denote the product topology on �X	

��� ��X �T � is a totally disconnected compact Hausdor� space	

�
� T is second countable and metrizable	

��� ��X �T � is homeomorphic to the Cantor set in the closed unit interval within the
real line if X is in
nite� i	e	 if the 
rst order language underlying P contains at
least one function symbol	

Proof
 Note that the discrete topology on � is totally disconnected� compact� Hausdor��
second countable and metrizable	 Since X is countable� all these properties carry over
to the product topology by well�known topological results	 It is equally well�known that
��X �T � is homeomorphic to the Cantor set if X is in
nite	 For details� check �Wil����
Theorems 
�	�� ��	�� ��	�� ��	
� 

	�� and Corollary ��	�� respectively	 �

��� Proposition �see �Sed���� The atomic topology on IP coincides with the product
topology on �BP � where � � f�� �g is endowed with the discrete topology	

Proof
 As noted in the introduction� �BP can be identi
ed with f� j � � BP � �g by
identifying each I � IP with the function �I � mapping all A � I to � and all A 	� I to �
and vice versa	
Now let In be a sequence in IP which converges in Q to some I � IP 	 If A � I� then
�I�A� � � and by Proposition �	
� A is eventually in In� i	e	 �In�A� � � eventually	 If
A 	� I� then �I�A� � �� and by Proposition �	
� A 	� In eventually� hence �In�A� � �
eventually	 So �In converges pointwise to �I 	 The above argument reverses� and we see�
that Q is in fact the topology of pointwise convergence in �BP 	 By well�known topological
results� this topology coincides with the above product topology �see �Wil��� De
nition
�
	� and Theorem �
	
��	 �

Together� we get the following�

��� Theorem �see �Sed���� �IP � Q� is a totally disconnected compact Hausdor� space
which is second countable
 and metrizable
	 It is homeomorphic to the Cantor set on
the real line� if BP is in
nite	

��� Models and the Atomic Topology

In this section� we study the connections between �supported� models and convergence
and continuity in Q� which will support the view that the atomic topology is a very
suitable topology for the purposes of the semantics of normal logic programs	

�In the more general setting� these are true if and only if the domain of the preinterpretation is
countable�
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The following theorem states that if an orbit of the immediate consequence operator
of some normal logic program P converges in Q� its limit is already a model for P 	 The
result is new and will successfully be applied in Section �	

��
 Theorem Let P be a normal logic program	

��� If for some I � IP the sequence T n
P �I� converges in Q to some M � then M is a

model for P 	

�
� If the sequence �T n
P �I�� does not converge in Q for any I � IP � then P has no

supported model	

Proof
 Suppose T n
P �I� � M in Q for some I � IP 	 We have to show that

TP �M� � M 	 Let A � TP �M�	 By de
nition of TP � there exists a ground instance
A � A�� � � � � Ak���B�� � � � ��Bl� of a clause in P with Ak � M and Bl 	� M for
k � �� � � � � k�� l � �� � � � � l�	 By Proposition �	
� there is an n� � N� such that for
all n 
 n�� Ak � T n

P �I� and Bl 	� T n
P �I� for all k� l	 By de
nition of TP and the above

clause we have that A � Tm
P �I� for all m 
 n� � �	 Hence� A � T n

P �I� eventually and
therefore� by Proposition �	
 again� A �M � which proves the 
rst statement	
Now� if M is a supported model for P � then �T n

P �M�� is constant with value M � so
the second statement is trivially true	 �

��� Remark In the situation of Theorem �	�� M is in general not supported	 See Pro�
gram � as an example	

Let P be a normal logic program and let I � IP be such that the sequence
�T n

P �I�� converges in Q to some M � IP 	 Then by Theorem �	�� M is a model
for P 	 If� furthermore� TP is continuous in Q� or at least continuous at M � then
M � limT n��

P �I� � limTP �T n
P �I�� � TP �limT n

P �I�� � TP �M�	 So M is a supported
model in this case	
Continuity of the immediate consequence operator is studied in detail in �Sed���	

We will not discuss this here� since supported models can be obtained by much weaker
assumptions	 The following results give some semi�syntactic conditions on logic programs
to ensure that the limit of a converging orbit under TP is a supported model	
The following theorem is new	 Recall that a variable symbol in a program clause is

called local if it only appears in the body of that clause	

��� Theorem Let P be a normal logic program and let I� � IP be such that the
sequence �In�� with In � T n

P �I��� converges in Q to some M � IP 	 If� for every A � M �
no clause whose head matches A contains a local variable� thenM is a supported model	

Proof
 We have to show that M � TP �M�	 So let A � M 	 By convergence in Q and
Proposition �	
� there exists n� � N such that A � T n

P �I�� for all n 
 n�	 By hypothesis�
there are only 
nitely many clauses in ground�P � with head A	 Let C� be the �
nite�
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set of all atoms occuring in positive body literals and D� the �
nite� set of all atoms
occuring in negative body literals of those clauses	 Let C� � C� �M and D� � D� nM 	
Since In � M in Q� there is an n� � N such that C� � In and D� � BP n In for all
n 
 n�	 Since A � TP �Imaxfn� �n�g�� there is a clause A � A�� � � � � Ak���B�� � � � ��Bl� in
ground�P � with Ak � C� � M and Bl 	� D� � BP nM for k � �� � � � � k�� l � �� � � � � l�	
Hence A � TP �M� as required	 �

��� Remark In the situation of the previous theorem�M need not be minimal	 For an
example� see Program �	

The remaining results of this section can be found in �Sed���� although we use the
new result Theorem �	� to prove them	

���� Corollary Let P be a normal logic program and let I� � IP be such that the
sequence T n

P �I�� converges in Q to some M � IP 	 If P contains no local variables� then
M is a supported model for P �	

Proof
 Immediately by the previous theorem	 �

���� Theorem Let P be a normal logic program and let I� � IP be such that the
sequence T n

P �I�� converges in Q to some M � IP 	 If for every A 	� TP �M� no clause
whose head matches A contains a local variable� then M is a supported model��	

Proof
 We have to show that M � TP �M�	 Suppose there is some A � M n TP �M�	
Then by the same argument as in the proof of Theorem �	� we get A � TP �M�� a
contradiction	 �

Summary

We have seen that the Cantor topology Q on IP can be de
ned by using logical notions	
Converging orbits in Q always yield models as their limits� and some semi�syntactical
conditions for ensuring that the model in question is supported were given	

Problems

Problem � Find neccessary and su cent syntactic conditions for convergence in Q of
orbits of the immediate consequence operator	

Problem � In the situation of Theorem �	�� 
nd neccessary and su cient conditions
to ensure that M is a minimal model for P 	

	In fact� TP is continuous in this case� see �Sed��� Corollary ��
�
In fact� TP is continuous at M in this case� see �Sed��� Theorem 
��
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Problem � Let I � IP 	 Consider the sequence �Ik� de
ned by I� �� I and Ik�� ��
limT n

P �Ik�	 When is this construction possible! Does �Ik� converge in Q! Does it become
stable after 
nitely many steps! Is the limit a �supported� model!
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� Metric and Extended Metric Spaces

In this section� we will apply the Banach Contraction Mapping Theorem and the closely
related theorem of Priess�Crampe and Ribenboim to logic programming semantics	 We
will show that every domain can be viewed as an extended ultrametric space� and that
every strictly level�decreasing program has a unique supported model	

��� Domains as Extended Ultrametric Spaces

Recall the Banach Contraction Mapping Theorem	

��� Theorem �Banach� Let �X� d� be a complete metric space and let f � X � X be
a contraction	 Then f has a unique 
xed point x	 Furthermore� x � limfn�y� for every
y � X	

The main idea of the proof is that the orbit of an arbitrary point under f is a Cauchy
sequence and therefore converges to some point� which turns out to be the only 
xed
point of f 	 A generalization� Theorem �	�� will be proven later in detail	
Trying to apply the Banach Contraction Mapping Theorem in the area of program�

ming semantics� the general problem arises that the spaces considered there are in general
not Hausdor�	 Furthermore� the TP �operator considered in logic programming usually
does not have a unique 
xed point	 So the theorem is only of limited use for our setting	
We will see later that the theorem can be generalized to quasi�metrics� which are in
general not Hausdor� and are much better suited for our purpose	
Nevertheless� as we show next� some results can be gained by applying a variant

of the Banach Contraction Mapping Theorem� due to Priess�Crampe and Ribenboim�
where we allow the image set of the distance function to be di�erent from the real
numbers� but require other stronger conditions on the space in question	 We introduce
these spaces next	

��� De�nition �extended ultrametric space� Let X be a set and let " be a partial
order with least element �	 We call �X� d� an extended ultrametric space�� if d � X�X �
" is a function such that for all x� y� z � X

��� d�x� y� � � if and only if x � y�

�
� d�x� y� � d�y� x�� and

��� if d�x� y�� d�y� z� � � then d�x� z� � �	

For � 	� � � " and x � X� the set B��x� �� fy � X j d�x� y� � �g is called a ����ball in
X	 An extended ultrametric space is called spherically complete if for any chain �C���
of balls in X�

T
C 	� �	

A function f � X � X is called

��In �PR�
�� these spaces are called generalized ultrametric spaces� but we need this notion in Sections
� and � for a di�erent class of spaces�
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��� non�expanding�� if d�f�x�� f�y�� � d�x� y� for all x� y � X�

�
� strictly contracting on orbits if d�f��x�� f�x�� � d�f�x�� x� for every x � X with
x 	� f�x�� and

��� strictly contracting if d�f�x�� f�y�� � d�x� y� for all x� y � X with x 	� y	

We will need the following observations� which are well�known for ultrametric spaces	

��� Lemma Let �X� d�"� be an extended ultrametric space	 For �� 	 � " and x� y � X

the following statements hold	

��� If � � 	 and B��x� �B��y� 	� �� then B��x� � B��y�	

�
� If B��x� �B��y� 	� �� then B��x� � B��y�	

��� Bd�x�y
�x� � Bd�x�y
�y�	

Proof
 Let a � B��x� and b � B��x� � B��y�	 Then d�a� x� � � and d�b� x� � �� hence
d�a� b� � � � 		 Since d�b� y� � 	� we have d�a� y� � 	� hence a � B��y�� which proves
the 
rst statement	 The second follows by symmetry and the third by replacing � by
d�x� y�	 �

The following theorem was given in �PR��� in a more general form	

��� Theorem �Priess	Crampe and Ribenboim� Let �X� d� be a spherically com�
plete extended ultrametric space and let f � X � X be non�expanding and strictly
contracting on orbits	 Then f has a 
xed point	 Moreover� if f is strictly contracting on
X� then f has a unique 
xed point	

Proof
 Assume that f has no 
xed point	 Then d�x� f�x�� 	� � for all x � X	 We
de
ne the set B �� fBd�x�f�x

�x� j x � Xg	 Now let C be a maximal chain in B	 Since
X is spherically complete� there exists z �

T
C	 We show� that Bd�z�f�z

 �

T
C	 Let

Bd�x�f�x

�x� � C	 Since z � Bd�x�f�x

�x�� we get d�z� x� � d�x� f�x�� and d�z� f�x�� �
d�x� f�x��	 By non�expansiveness of f � we get d�f�z�� f�x�� � d�z� x� � d�x� f�x��	 It
follows� that d�z� f�z�� � d�x� f�x�� and therefore Bd�z�f�z

�z� � Bd�x�f�x

�x� by Lemma
�	�	 Since x was chosen arbitrarily� Bd�z�f�z

�z� �

T
C	

Now since f is strictly contracting on orbits� d�f�z�� f��z�� � d�z� f�z��� and there�
fore z 	� Bd�f�z
�f��z

�f�z�� � Bd�z�f�z

�f�z��	 By Lemma �	�� this is equivalent to
Bd�f�z
�f��z

�f�z�� � Bd�z�f�z

�z�� which is a contradiction to the maximality of C	 So f
has a 
xed point	
Now let f be strictly contracting on X and assume that x� y are two distinct 
xed

points of f 	 Then we get d�x� y� � d�f�x�� f�y�� � d�x� y� which is impossible	 So the

xed point of f is unique in this case	 �

��In �PR�
�� these functions were called contractive�
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Note that the above given proof is not constructive� so it does not indicate a means
by which one can actually 
nd a 
xed point	
In order to apply this result� we show 
rst how every domain can be viewed as a

spherically complete extended ultrametric space	 For some � � � �as de
ned in Section
��� let "� be the set f
�� j � � �g of symbols 
�� with ordering 
�� � 
�� if and only
if 	 � �	

��� De�nition �see �SH��c�� Let D be a domain and r � Dc � � a function� called a
rank function� and denote 
�� by �	 De
ne dr � D �D � "��� by

dr�x� y� �� inff

�� j c � x if and only if c � y for every c � Dc with r�c� � �g�

Then �D� dr� is called the extended ultrametric space induced by r	

It is straightforward to see� that �D� dr� is indeed an extended ultrametric space	
We proceed to show� that �D� dr� is spherically complete	 For every extended ultra�

metric with image in "�� we will denote the ball B����x� in the following by B��x�	

��
 Lemma �see �SH��c�� Let B��x� � B��y� �so 	 � ��	 Then the following state�
ments hold	

��� fc � approx�x� j r�c� � 	g � fc � approx�y� j r�c� � 	g	

�
� B� �� supfc � approx�x� j r�c� � �g and B� �� supfc � approx�y� j r�c� � 	g
both exist	

��� B� � B�	

Proof
 Since dr�x� y� � 
��� the 
rst statement follows immediately from the de
nition
of dr	 The second statement follows from the fact that every domain is consistently
complete by Proposition 
	�	 The third statement follows from the observation that
B� � supfc � approx�y� j r�c� � 	g � supfc � approx�x� j r�c� � 	g � supfc �
approx�x� j r�c� � �g � B�	 �

��� Theorem �see �SH��c�� �D� dr� is spherically complete	

Proof
 By the previous lemma� every chain �B��x��� of balls in D gives rise to a chain
�B�� in D in reverse order	 Let B �� supB�	 Now let B��x� be an arbitrary ball in the
chain	 It su ces to show that B � B��x�	 Since B� � B��x�� we have dr�B�� x� � 
���
and since dr is an ultrametric� it remains to show that dr�B�B�� � 
��	 For every
c � B�� we have c � B by construction of B	 Now let c � B with c � Dc and r�c� � �	
We have to show that c � B�	 Since D is a domain� hence an algebraic cpo� there exists
B� in the chain with c � B�	 Now suppose B� 
 B� �otherwise c � B� immediately�	
Then by the above lemma and the fact that the collection �B��x��� is a chain� we have
B��x�� � B��x�� and therefore c � fc � approx�x�� j r�c� � �g � fc � approx�x�� j
r�c� � �g	 Since B� is the supremum of the right�hand set� c � B�	 �
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It should be noted that we needed both algebraicity and consistent completeness of
domains to prove the previous theorem	
We apply this result to logic programming	 We next introduce level mappings on IP �

which will be used for de
ning rank functions	 Level mappings are one of the central
notions in the sequel and will often be used later on	 For the following� we denote the
set of all 
nite subsets of IP � which is the set of all compact elements in IP � by Ic	

��� De�nition �level mapping� Let P be a normal logic program and let � � �	 A
mapping l � BP � � is called a level mapping	 We call l an ��level mapping if � � �	
We set L� �� fA � BP j l�A� � �g for � � � and L� � �	 An ��level mapping is called
a �nite level mapping if Ln is 
nite for every n � N	
We de
ne the rank function induced by the level mapping l by r�I� �� maxfl�A� j

A � Ig for every I � Ic	 An extended ultrametric obtained by such a rank function will
further be denoted by dl	

The following proposition makes calculation of distances easier	

��� Proposition Let P be a normal logic program� let l be a level mapping for P and
let I� J � IP 	 Then dl�I� J� � inff
�� j I � L� � J � L�g	

Proof
 Immediate by the observation that for every I � IP � I � supffAg j A � Ig	 �

��� Application to Strictly Level�decreasing Programs

In order to apply the above observations� we introduce a class of programs� called strictly
level�decreasing programs� and the closely related class of semi�strictly level�decreasing
programs	 A subclass of the second will further be studied in Section �	
	

���� De�nition �see �SH��c�� Let P be a normal logic program	 We call P

��� level�decreasing �with respect to l� if there exists a level mapping l such that for
every clause H � B�� � � � � Bn� ��C�� � � � ��Cn� in ground�P � l�Bi� � l�H� and
l�Cj� � l�H� hold for every i � �� � � � � n� and j � �� � � � � n�	

�
� strictly level�decreasing �with respect to l� if there exists a level mapping l such
that for every clause H � B�� � � � � Bn� ��C�� � � � ��Cn� in ground�P � l�Bi� � l�H�
and l�Cj� � l�H� hold for every i � �� � � � � n� and j � �� � � � � n�	

��� semi�strictly level�decreasing �with respect to l� if there exists a levelmapping l such
that for every clause H � B�� � � � � Bn� ��C�� � � � ��Cn� in ground�P � l�Bi� � l�H�
and l�Cj� � l�H� hold for every i � �� � � � � n� and j � �� � � � � n�	

The de
nition of level decreasing programs is too general to be of any use� even if
l is an ��level mapping	 See Program 
 as an example	 In order to apply Theorem �	��
TP must be strictly contracting	
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���� Theorem �see �SH��c�� Let P be a strictly level�decreasing program with respect
to a level mapping l	 Then TP is strictly contracting on �IP � dl�	

Proof
 Let I�� I� � IP with d�I�� I�� � 
��	
��� Let � � �� so I� and I� di�er on some element of BP with level �	 Let A � TP �I��

with l�A� � �	 Since P is strictly level�decreasing� A must be the head of a clause in
ground�P � and so A � TP �I��	 By the same argument� if A � TP �I�� with l�A� � ��
then A � TP �I��	 So TP �I�� � L� � TP �I�� � L�� and it follows that

d�TP �I��� TP �I��� � 

�� � 
�� � d�I�� I��

as required	
�
� Let � 
 �� so I� and I� di�er on some element of BP with level � but agree

on all ground atoms of lower level	 Let A � TP �I�� with l�A� � �	 Then there is a
clause A � A�� � � � � Ak���B�� � � � ��Bl� � ground�P �� where k�� l� 
 �� with Ak � I�
and Bl 	� I� for all k � �� � � � � k�� l � �� � � � � l�	 Since P is strictly level�decreasing and
I� � L� � I� � L�� it follows that Ak � I� and Bl 	� I� for k � �� � � � � k�� l � �� � � � � l�	
Therefore� A � TP �I��	 By the same argument� if A � TP �I�� with l�A� � �� then
A � TP �I��	 So TP �I�� � L��� � TP �I�� � L���� and it follows that

d�TP �I��� TP �I��� � 

�����
 � 
�� � d�I�� I��

as required	 �

���� Theorem �see �SH��c�� Let P be a strictly level�decreasing logic program	 Then
TP has a unique 
xed point and hence P has a unique supported model	

Proof
 Immediate by Theorem �	� and the previous theorems	 �

For an application of the above result� see Program �	 Note that Theorem �	� only
yields the existence of a unique model for strictly level�decreasing programs	 Its proof
does not provide a method for actually 
nding it	

���� Remark The above result does not hold for semi�strictly level�decreasing
progams	 See Program �� as an example	 But this class will be further studied in Section
�	
� as mentioned already	

It is interesting to further study the above observations in the special case when l is
an ��level mapping	 This ultrametric was studied in �Fit���� and we repeat the de
nition
for this case	

���� De�nition Let P be a normal logic program and l � BP � � an ��level mapping	
Then l induces an ultrametric � on IP by

��I�� I�� �� inff

�n j Ln � I� � Ln � I�g�





 � METRIC AND EXTENDED METRIC SPACES

The following proposition exhibits the strong connection between � and Q	

���� Proposition �see �Sed���� If a sequence �In� in �IP � �� is a Cauchy sequence� then
every A � BP is either eventually in In or eventually not in In	 Furthermore� �IP � �� is
complete	 If the level mapping underlying � is 
nite� then � induces the atomic topology
on IP 	

Proof
 Let �In� be a Cauchy sequence with respect to � and let A � BP with level
l�A� � k	 By de
nition of Cauchy sequence� there is k� � N such that d�Il� Im� � 
�k

for all l�m 
 k�	 So all members of the sequence �In�n�k� agree on all atoms of level k�
Hence A � In for all n 
 k� or A 	� In for all n 
 k�	 It follows that �In� converges to
fA � BP j A � In eventuallyg and hence the metric is complete	 Now suppose the level
mapping l is 
nite	 For the third statement� it remains to show that if �In� converges
in Q� then it is a Cauchy sequence	 Choose k � N	 By Proposition �	
� and since the
level mapping is 
nite� there is a k� � N such that all members of the sequence �In�n�k�
agree on Lk	 So for all l�m 
 k�� d�Il� Im� � 


�k as required	 �

Only one more step is missing before we can apply the Banach Contraction Mapping
Theorem�

���
 Theorem �see �SH��c�� For every program P which is strictly level�decreasing
with respect to an ��level mapping� TP is a contraction with contractivity factor

�
�
	

Hence� P has a unique supported model� obtained as the limit in Q of the orbit of �
under TP 	

Proof
 The proof that TP is a contraction with contractivity factor
�
�
is almost exactly

the proof of Proposition �	��� and we therefore omit the details	 By the previous propo�
sition� Q is 
ner than the topology underlying �� so by Theorem �	� the unique 
xed
point of TP is obtained as stated	 �

For an application of this result see Program �	 Note that the proof of the Banach
Contraction Mapping Theorem �even the proof of the Rutten�Smyth Theorem� provides
a construction of the above 
xed point	
Programs which are strictly level decreasing logic programs with respect to an ��level

mapping are acceptable� as de
ned in �Fit��� De
nition �	��	 In the cited paper� a unique

xed point for acceptable programs is derived by iterating the single�step operator� using
a di�erent metric from ours	

Summary

We have seen that both the Banach Contraction Mapping Theorem and the theorem of
Priess�Crampe and Ribenboim can be applied to logic programming semantics	 In fact�
it was possible to show that strictly level�decreasing programs have a unique supported
model	 Therefore� all the standard approaches to logic programming semantics coincide
for these programs	 Furthermore� we have seen that there is a relationship between
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domains and extended ultrametric spaces comparable with the relationship between
domains and quasi�metrics as studied in �Smy���	

Problems

Problem � To what extent can the construction of extended ultrametric spaces out of
domains� as done in Section �	�� be reversed!

Problem � Examine the relationships between domains and extended ultrametric
spaces	

Problem 
 To what extent can Theorem �	�
 be reversed!

Problem � Try to 
nd a contructive proof of Theorem �	� in order to 
nd a 
xed point
of the function given there in the hypothesis	




� � METRIC AND EXTENDED METRIC SPACES




�

� Quasi�metric Spaces

We have seen in the previous sections� that both the Knaster�Tarski Theorem 
	� and
the Banach Contraction Mapping Theorem �	� can be applied in the area of logic pro�
gramming semantics	We give a generalization of both of these results� the Rutten�Smyth
Theorem �	�� as stated in �Rut��� and show how this theorem can be applied to our
setting	 A slightly more general version of Theorem �	� is given in �Smy���	

��� Domains as Quasi�ultrametric Spaces

We 
rst introduce generalized metric spaces	 A discussion of the following notions can
be found in �Rut��� and �Smy���	

��� De�nition �gms� A set X together with a function d � X � X � R � f�g is
called a generalized metric space �gms� if for all x� y� z � X

��� d�x� x� � � and

�
� d�x� z� � d�x� y� � d�y� z��

If� furthermore� d�x� y� � d�y� x� � � implies x � y� then �X� d� is called a
quasi�metric space �qms�	 A gms in which the strong triangle inequality d�x� y� �
maxfd�x� z�� d�z� y�g holds for all x� y� z � X� is called a generalized ultrametric space	
Consequently� a generalized ultrametric space which is a quasi�metric space is called a
quasi�ultrametric space	 A sequence �xn� in X is a �forward�� Cauchy�sequence �CS � if�
for all � 
 �� there exists n� � N such that for all n 
 m 
 n�� d�xm� xn� � �� A CS
�xn� converges to x � X �xn � x� limxn � x� if� for all y � X� d�x� y� � limd�xn� y��
Finally� X is called CS�complete if every CS in X converges	

Note that limits of CSs need not be unique	 If X is a qms� however� uniqueness
of limits does hold	 Indeed� for xn � x and xn � y� we get d�x� y� � limd�xn� y� �
d�y� y� � � and d�y� x� � limd�xn� x� � d�x� x� � �� which shows x � y	

��� Example Let �X��� be a partial order	 De
ne a function d� � X �X � R by

d��x� y� ��

�
� if x � y

� otherwise	

Then it is easily checked that �X� d�� is a quasi�ultrametric space� and d� is called the
discrete quasimetric on X	

��� Remark If �X� d� is a gms� then �X� d�� is a metric space� where d��x� y� ��
maxfd�x� y�� d�y� x�g	

��� De�nition �CS	continuous� contractive� non	expanding� Let X be a gms	 A
function f � X � X is called
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��� CS�continuous if� for all CSs �xn� in X with limxn � x� �f�xn�� is a CS and
limf�xn� � f�x��

�
� non�expanding if d�f�x�� f�y�� � d�x� y� for all x� y � X� and

��� contractive if there exists some � � c � � such that d�f�x�� f�y�� � c � d�x� y� for
all x� y � X	

Given a qms �X� d�� d induces a partial order �d on X by setting x �d y if and
only if d�x� y� � �	 Note that �d� and � coincide� so the above construction reverses
Example �	
	

��� Theorem �Rutten	Smyth� �see �Rut���� Let X 	� � be a complete qms and let
f � X � X be non�expanding	

��� If f is CS�continuous and there exists x � X with x �d f�x�� then f has a 
xed
point� and this 
xed point is least above x with respect to �d	

�
� If f is CS�continuous and contractive� then f has a unique 
xed point	

Moreover� in both cases the 
xed point can be obtained as the limit of the CS �fn�x���
where in ��� x is the given point� and in �
� x can be chosen arbitrarily	

Proof
 ���� We have d�fn�x�� fn���x�� � d�x� f�x�� � � and d�fn�x�� fn�k�x�� �Pk��
i�� d�f

n�i�x�� fn�i���x�� � �	 Hence �fn�x�� is a CS and has a unique limit y	 Since
f�y� � f�limfn�x�� � limf�fn�x�� � limfn�x� � y� y is a 
xed point of f 	 Now let
z � f�z� be a 
xed point of f with x �d z	 Then d�y� z� � limd�fn�x�� z� � �� since
d�fn�x�� fn�z�� � d�x� z� � �	 Hence y �d z	
�
�� Let x � X be chosen arbitrarily	 We have d�fn�x�� fn�k�x�� �

d�fn�x�� fn�fk�x��� � cnd�x� fk�x�� � cn
Pk��

i�� d�f
i�x�� f i���x�� �

cn
Pk��

i�� c
id�x� f�x�� � cn

��c
d�x� f�x��� which converges to � as n � �	 So �fn�x�� is a

CS and has a unique limit y � limfn���x� � limf�fn�x�� � f�limfn�x�� � f�y�	 Now
if z � f�z�� we have d�y� z� � d�f�y�� f�z�� � c � d�y� z�� hence d�y� z� � �	 Similarly�
d�z� y� � �� and hence y � z	 �

Part ��� of Theorem �	� generalizes the Knaster�Tarski Theorem 
	� by virtue of
Example �	
	 Part �
� generalizes the Banach Contraction Mapping Theorem �	�	
In order to apply this theorem� we have to cast the space IP into a quasi�metric

space	 One possible way was already shown in Example �	
� and this approach will
enable us to recover the standard semantics of de
nite logic programs via the Rutten�
Smyth Theorem� as was done in �Sed���	

��
 Proposition �see �Sed���� Let d � d� be the discrete quasimetric on IP 	 Then the
following statements hold	

��� �In� is a CS if and only if In is eventually monotonic increasing	
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�
� �IP � d� is complete	

��� For every CS In� limIn � gl�In�	

Proof
 The 
rst statement follows immediately from the de
nition of d	 Now let �In� be
a CS in IP 	 Then �In� is eventually monotonic increasing with greatest limit gl�In� in Q�	
It remains to show that gl�In� is the limit of the CS �In� with respect to d	 Now let k� � N
such that �Ik�k�k� is monotonic increasing	 Then we have to show that for all J � IP �
d�gl�In�� J� � limd�In� J�	 Suppose gl�In� � J 	 Then by Proposition 
	��� Ik � gl�In� for
all k 
 k� and hence In � J eventually	 Therefore� d�gl�In�� J� � � � limd�In� J� in this
case	 Suppose gl�In� 	� J 	 Then there is A � J with A 	� In eventually by Proposition

	�� and the fact that In is eventually monotonic increasing	 It follows that d�In� J� � �
eventually as required	 �

We need one more step to apply the Rutten�Smyth Theorem	

��� Theorem �see �Sed���� Let P be a de
nite logic program and d � d� be the
discrete quasimetric on IP 	 Then the following statements hold	

��� �IP � d� is a complete quasi�ultrametric space	

�
� TP � IP �� IP is CS�continuous and non�expanding	

��� � � IP and d��� TP ���� � �	

Proof
 Point ��� is trivially true� and so by Proposition �	� it only remains to prove
point �
�	 Non�expansiveness of TP follows immediately from monotonicity of TP 	 We
now show CS�continuity� Let �In� be a CS in IP with limIn � gl�In�	 Since �In� is
eventually increasing� there is k� � N such that �Ik�k�k� is monotonic increasing	 Since TP
is monotonic� the sequence �TP �Ik��k�k� is monotonic increasing� so �TP �In�� is a CS and
has a limit gl�TP �In�� by Proposition �	�	 We have to show that gl�TP �In�� � TP �gl�In��	
By Propositon 
	��� gl�In� �

S
k�k�

Ik and gl�TP �In�� �
S

k�k�
TP �Ik�	 So it remains to

show that
S

k�k�
TP �Ik� � TP �

S
k�k�

Ik�� which is true since TP is Scott�continuous	 �

Applying part ��� of the Rutten�Smyth Theorem yields

��� Corollary For any de
nite program P � TP has a least 
xed point limT n
P ���	

Now we will discuss another way of casting a domain into a quasi�ultrametric space�
using similar techniques to those employed in Section �	�	 We follow the approach in
�Smy��� and �Sed���	

��� De�nition Let D be a domain and r � Dc � N a rank function such that r���n�
is a 
nite set for each n � N	 De
ne dr � D �D � R by

dr�x� y� �� inff

�n j �c � x �� c � y��c � Dc with r�c� � ng�

Then �D� dr� is called the quasi�ultrametric space induced by r	
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It is straightforward to see that �D� dr� is indeed a quasi�ultrametric space	 Note
that d�r � �� where � is the ultrametric from De
nition �	��	
The following notion will be further discussed in Section �	

���� De�nition �totally bounded� A gms �X� d� is called totally bounded if� for ev�
ery � 
 �� there exists a 
nite set E � X such that for every y � X there exists an
e � E with d��e� y� � �	

In order to discuss the relationships between quasi�metrics and the atomic topology�
we need the following observation�

���� Proposition �see �Smy���� Let �X� d� be a totally bounded gms and �xn� a CS
in X	 Then� for all � 
 �� there exists k � N such that for all l�m 
 k� d��xl� xm� � ���	

Proof
 Choose � 
 � and a 
nite subset E � X together with a map h � N � E such
that d��xn� h�n�� �

	

�
� which is possible by total boundedness	 Since �xn� is a CS� there

exists k� � N such that for all m 
 l 
 k�� d�xl� xm� �
	

�
	 Now choose k� 
 k� such that

for every e � E� the set h���e� � fn j n 
 k�g is either in
nite or empty	 Choose now
l�m 
 k� and let p 
 l be minimal such that h�p� � h�m�	 Then

d�xl� xm� � d�xl� xp� � d�xp� h�p�� � d�h�p�� xm� � � �
�

�
� ��

and by symmetry d��xl� xm� � �	 �

��� Quasi�metrics and the Atomic Topology

We de
ne totally bounded quasi�ultrametrics on IP by using level mappings and show
that these strongly connect with the atomic topology	

���� De�nition Let P be a normal logic program and l a 
nite level mapping for P 	
As in De
nition �	�� l induces a rank function

r � Ic � N � r�I� � max
A�I

fl�A�g�

where we set Ic �� �IP �c to be the set of all 
nite subsets of BP 	 By De
nition �	�� r
induces a quasi�ultrametric dr on IP � which we will further denote by d	

���� Proposition �IP � d� is a totally bounded quasi�ultrametric space	

Proof
 Choose � � 
�n and let E �� 
Ln�� � which is 
nite since l is 
nite	 For every
I � IP � choose e � I � Ln�� � E	 Then d��e� I� � � as is easily veri
ed	 �

We have the following characterization of CSs in IP 	

��A sequence with this property is usually called a bi�Cauchy sequence�
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���� Proposition �see �Sed���� A sequence �In� in �IP � d� is a CS if and only if for
every n � N there exists kn � N such that for all l�m 
 kn� Il � Ln � Im � Ln	

Proof
 Let �In� be a CS in IP 	 Choose n � N and let � � 
�n	 Since IP is totally
bounded� there exists kn � N such that for all l�m 
 kn� d��Il� Im� � 
�n	 By de
nition
of d� Il � Ln � Im � Ln for all l�m 
 kn as required	 The converse follows� since the
above argument reverses	 �

���� Corollary �see �Sed���� Let �In� be a sequence in �IP � d�	 Then �In� is a CS if and
only if �In� converges in Q to some I	 Moreover� limIn � I� so �IP � d� is complete	

Proof
 By Proposition �	
 and the previous proposition� �In� is a CS if and only if
�In� converges in Q to some I	 It is easily veri
ed that limIn � I by noting that
I � fA � BP j A � In eventuallyg	 It follows that �IP � d� is complete	 �

The previous results allow us to characterize CS�continuity in terms of Q	

���
 Proposition �see �Sed���� TP is CS�continuous �for any 
nite level mapping� if
and ony if TP is continuous in Q	

Proof
 Suppose that TP is CS�continuous and that �In� is an arbitrary sequence in
IP which converges in Q to some I � IP 	 Then �In� is a CS and by Corollary �	���
limIn � I	 By CS�coninuity of TP � we have limTP �In� � TP �I� and again by Corollary
�	��� we have TP �In�� TP �I� in Q as required	
Conversely� suppose TP is continuous in Q and that �In� is a CS with limIn � I� say	

By Corollary �	��� In � I in Q and by continuity of TP in Q� we get TP �In� � TP �I��
which yields limTP �In� � TP �I�� again by Corollary �	��	 �

We close with the observation that non�expansiveness already implies CS�continuity�

���� Proposition �see �Sed���� If TP is non�expanding �for any level mapping�� then
TP is continuous in Q and hence is CS�continuous��	

Proof
 Let TP be non�expanding and let �In� be a CS with limIn � I	 Since TP is
non�expansive� we get

� � d�TP �In�� TP �I�� � d�In� I�� � and � � d�TP �I�� TP �In�� � d�I� In�� �

by total boundedness of IP 	 By de
nition of d and Proposition �	��� it follows that
TP �In� is a CS and by Proposition �	
 and the above equations� it converges in Q to
TP �I�	 Hence limTP �In� � TP �I�� again by Corollary �	��	 �

��For an arbitrary gms� it is possible that a function is not CS�continuous but non�expanding� see
�Rut����
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Summary

The Rutten�SmythTheorem is a generalization of both the Banach Contraction Mapping
Theorem and the Knaster�Tarski Theorem	 We have seen that quasi�metrics provide an
alternative approach to the semantics of de
nite programs� using the Rutten�Smyth
Theorem	 By employing level mappings� similar to the considerations in section �� we
were able to de
ne quasi�metrics on IP 	 It was shown that CS�continuity in these spaces
is exactly continuity with respect to the atomic topology� and convergence of CS is
exactly convergence in Q	

Problems

Problem � Is it possible to weaken the assumption of the Rutten�Smyth Theorem that
f is non�expansive!

Problem � Connect the Rutten�Smyth Theorem with Theorem �	�by Pries�Crampe
and Ribenboim	 Is there a common generalization!

Problem �� Examine the relationships between generalized metric spaces� P�metric
spaces and domains	

Problem �� Try to 
nd a normal logic program P together with a level mapping such
that TP is not monotonic �nor Scott�continuous� but is non�expanding in order to apply
the Rutten�Smyth Theorem in non�trivial cases	 Is this at all possible!
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	 Compactness of Generalized Metric Spaces

We recall some basic notions and results on metric spaces	


�� De�nition A metric space �X� d� is totally bounded� if for every � 
 � 
nitely many
��spheres cover X	


�� Proposition A metric space X is totally bounded if and only if each sequence in
X has a Cauchy�subsequence	


�� Theorem A metric space is compact if and only if it is complete and totally
bounded	

We try to generalize some of the above results to generalized metric spaces	 The
main problem one has to keep in mind is� that for generalized metric spaces� no notion
of a natural underlying topology exists	

	�� Sequential Compactness

Recall� that a topological space X is called sequentially compact if every sequence in X
has a convergent subsequence	


�� Proposition Let �X� d� be a totally bounded gms	 Then every sequence in X has
a Cauchy�subsequence	

Proof
 Let �xn� be a sequence in X and B�
	 �x� �� fy � X j d��x� y� � �g	 We de
ne

inductively a subsequence �yn� of �xn� as follows�
Let y� �� x� and A� � fxn j n � Ng	
Since X is totally bounded� there exists a ��sphere B�

� such that the set fxn j n �
Ng � B� � A� � B� is in
nite	 Let A� �� A� �B�	 Now choose y� � A�	
Inductively� let y�� � � � � ym� A� � A� � � � � Am be chosen	 Since X is totally bounded�
there exists a �

m�� �sphere B
�
m�� such that Am�Bm�� is in
nite	 Let Am�� �� Am�Bm��

and choose ym�� � Am��	
Obviously� �yn� is a Cauchy�subsequence of �xn�	 �


�� Remark The sequence �yn� as constructed in the last proof is a Cauchy�sequence
with respect to the metric d�	


�
 Proposition Let �X� d� be a totally bounded and CS�complete gms	 Then X is
sequentially compact	

Proof
 Every sequence in X has a Cauchy�subsequence �by total boundedness� which
converges �by CS�completeness�	 �
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Note� that for the above considerations� no topology on the gms X was 
xed	 A
natural restriction on a underlying topology would be� that limits of CSs are topolog�
ical limits	 Note� that in the case of Example �	
� CSs are closely related to ��chains
and limits of CSs to suprema of ��chains	 In the next section� we investigate su cient
conditions on X such that X is compact	

	�� Compactness

Recall� that an indexed subset �x����� of a topological space X is called a net� if #
is directed	 �x
�
�M is called a subnet of �x������ if M is directed and there exists a
function 
 �M � # such that

�	 �� � �� �� 
���� � 
���� and


	 �� � #�� �M � � � 
����

Let �x����� be a net and X a set	 We say� that x� � X frequently� if for every �� � #�
there exists � 
 ��� such that x� � X	


�� De�nition Let �X� d� be a gms	 A net �x
� in X is a �forward�� Cauchy�net �CN ��
if �� 
 ���� �M��� 
 �� 
 �� �M � d�x
�� x
�� � �	
We call X CN�complete if X inherits a topology� such that every CN converges	


�� Proposition Let �X� d� be a totally bounded gms	 Then every CN in X has a
Cauchy�subnet	

Proof
 Let �x����� be a net in X	 Note that by total boundedness� �� 
 ��x � X �
x� � B�

	 �x� frequently	
Choose a ��sphere B�

� such that x� � B�
� frequently and let A� �� B�

� 	
Inductively� let Ak be chosen such that x� � Ak frequently	 By total boundedness� there
exists a �

k�� �sphere B
�
�

k��

such that x� � Ak �B�
k�� frequently	 Let Ak�� �� Ak �B�

�
k��

	

By construction� Ai � Ai�� for all i � N	
Consider M �� f���Ak� j x� � Akg� ordered by ���Ak� � ���Al� ��� �� � � and
k � l�	 Let x���A
 �� x�	
We show that ��� �x���A
����A
�M is a subnet of �x������ and furthermore� that �
�
�x���A
����A
�M is a CN	 Then� the proof is complete	
��� Let 
 � M � # � ���A� �� �	 Obviously� 
 has the required properties	 So we
only have to show that M is directed	 To see this� let ���Ak�� ���Al� be in M � and
without any loss of generality� k � l	 From the construction of M it follows that there is
� � � with �� � � � and x� � Al �note that x� is frequently in Al�	 Therefore� we have
x���Ak
� x�
�Al
 � x���Al
	
�
� Let � 
 �� and choose n � N such that n 
 �

	
	 By construction� there ex�

ists x���An
 � An and for every x�
�B
 
 x���An
� we have x�
�B
 � An	 Note that




�� Compactness ��

An � B�
�
n

and therefore for all x� y � An� we have d�x� y� �
�
n
	 Let x� be the mid�

point of B�
�
n

� B�
�
n

�x��� Now let x�
��B�
 
 x�
��B�
 
 x���An
	 Then d�x�
��B�
� x�
��B�
� �

d�x�
��B�
� x�� � d�x�� x�
��B�
� � 
 �
�
n
� �	 �


�� Remark The CN constructed in the proof above is a Cauchy�net with respect to
�X� d��	


��� Theorem Let X be a totally bounded and CN�complete gms	 Then X is compact	

Proof
 Every net in X has a Cauchy�subnet �by total boundedness�� which converges
�by CN�completeness�	 �

Note� that for the above considerations no topology on the gms X was 
xed	 The
only requirement for the underlying topology was the existence of limits of CNs	

Summary

We have seen� that total boundedness and CS�completeness imply sequential compact�
ness� and that total boundedness and CN�completeness imply compactness	 The results
were obtained by methods very similar to those for metric spaces	

Problems

Problem �� Investigate the importance of CN�completeness in the context of the rela�
tionships between domains and generalized metric spaces� especially� how CNs connect
up with directed sets	

Problem �� Try to characterize the topologies underlying the notions of CN�
completeness	 Connect this to the topologies in �BBR���� if possible	

Problem �� Investigate the relationships between the notion of CN�completeness for
generalized metric spaces and spherical completeness for P�metric spaces� perhaps by
adopting a domain�theoretical point of view	
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 Partitioning Programs

As is easily seen by Program �� considering orbits of the immediate consequence operator
can not be su cient for 
nding models for normal logic programs in general	 We therefore
use another approach here� namely by partitioning the program or its Herbrand base�
and applying the respective operators subsequently	


�� Strati�ed Programs

We begin by brie�y reviewing strati
ed logic programs as discussed in �ABW���	

��� De�nition �strati�ed program� A program P is called strati�ed if there is a
partition P � P�

�
� � � �

�
� Pm of P into subprograms such that the following conditions

hold for i � �� � � � �m�

��� If a predicate symbol occurs in a positive literal in Pi� then it occurs only in heads
of clauses contained in

S
j�i Pj 	

�
� If a predicate symbol occurs in a negative literal in Pi� then it occurs only in heads
of clauses contained in

S
j�i

Pj 	

The set P� may be empty	 Each Pi is called a stratum of P 	

Note that P� can always be chosen to be de
nite
��	

We now de
ne an operator on strati
ed programs	

��� De�nition Let P � P�

�
� � � �

�
� Pm be a strati
ed program and I � IP 	 We de
ne

recursively

TP � ��I� �� I�

TP � �n� ���I� �� TP �TP � n�I�� � TP � n�I� for n 
 � and

TP � ��I� ��
��
n��

TP � n�I��

The following theorem is given in �ABW���	

��� Theorem Let P � P�

�
� � � �

�
� Pm be a strati
ed program and de
neMi recursively

by

M� �� �� and

Mi �� TPi � ��Mi����

for i � �� � � � �m	 Finally� setMP ��Mm	 Then MP is a minimal supported model for P 	

��We consider an empty program to be de�nite�
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We do not give the proof of this theorem here since the results of Section �	
 below
generalize it �see Theorem �	
��	 The main advantage of the approach described above
is that it gives control over negation in a way displayed by the following general lemma�
which is the heart of the proof of Theorem �	� �see �ABW��� Lemma ����	 We will also
need it later on	

��� Lemma �see �ABW��� Lemma ��� Let P � be an arbitrary normal logic program
and P a subprogram of P � in the sense that every clause in P is a clause in P �	 Denote
the subset of BP consisting of all the atoms which occur negated in clauses in ground�P �
by NP 	
If I � J � IP � and I � NP � J � NP � then TP �I� � TP �J�	 In particular� if

P � P�

�
� � � � �

�
� Pm is strati
ed� then TPi � �k � ���Mi��� � TPi�TPi � k�Mi���� �Mi��

for i � �� � � � �m and k � N	

Proof
 Let A � TP �I�	 Then there is a clause A � A�� � � � � Al���B�� � � � ��Bl� in
ground�P � such that Ak � I and Bl 	� I for k � �� � � � � k� and l � �� � � � � l�	 Since
I � J � Ak � J for all k� and since Bl � NP for all l� Bl 	� J 	 Hence A � TP �J�� which
proves the 
rst statement	 For the second� note that the statement trivially holds for
k � �	 Suppose now that it holds for some k 
 �	 Then TPi � �k � 
��Mi��� � TPi�TPi �
�k����Mi�����TPi � �k����Mi��� � TPi�TPi � �k����Mi�����TPi�TPi � k�Mi�����Mi���

Since TPi � �k � ���Mi��� � TPi � k�Mi���� it follows by the 
rst statement that
TPi�TPi � �k � ���Mi���� � TPi�TPi � k�Mi����� which 
nishes the proof	 �

Informally� the lemma says that TP is monotone as long as its arguments do not
di�er on the elements of NP 	
We now give an alternative characterization of the model MP for strati
ed P � as

de
ned above	

��� De�nition For a given normal logic program P and A � BP the resolution tree
RP �A� for A �with respect to P � is de
ned recursively as follows�

A is the root of RP �A�	
Let

N � A�� � � � � An���B�� � � � ��Bn�

be a node in RP �A�	 Then for every i � �� � � � � n� and every

Ai � C�� � � � � Cm���D�� � � � ��Dm� � ground�P ��

A�� � � � � Ai��� Ai��� � � � � An� � C�� � � � � Cm� ��B�� � � � ��Bn� ��D�� � � � ��Dm�

is a daughter of N 	 A branch with an empty leaf is called a success branch of A	 A
branch with a leaf such that all of its literals are negative is called a negative branch of
A	

In the following� let P � P�

�
� � � �

�
� Pm be a strati
ed logic program with strata

P�� � � � � Pm	 Furthermore� let Mi for i � �� � � � �m be de
ned as in Theorem �	�� let MP
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be the minimal supported model of P as given there and let Ti denote TPi	 Since it was
shown in �ABW��� that MP is independent of the strati
cation of P � we can assume
without loss of generality that each predicate in P is de
ned in exactly one Pi for some
i � f�� � � � �mg and P� is de
nite or empty	

��
 Lemma Let P� be a de
nite program and let P � P�

�
� � � �

�
� Pm be a strati
cation

of P 	 Then the following hold for i � �� � � � �m� ��

�	 A � T n
P�
��� eventually if and only if RP��A� has a success branch	


	 A � TPi�� � n�Mi� eventually if and only if RPi�A� has either a success branch or
a branch with leaf A�� � � � � Ak���B�� � � � ��Bl� such that Ak �Mi and Bl 	�Mi for
k � �� � � � � k� and l � �� � � � � l�	

Proof
 The 
rst statement follows from the de
nitions and the fact that TP� is mono�
tonic	 The second statement follows from the de
nitions and Lemma �	�	 �

��� Remark Suppose A � BP matches some head in Pi	 Then all positive literals
occuring in RP �A� are de
ned in some Pj with j � i and all negative literals occuring
in RP �A� are de
ned in some Pk with k � i	
If P is semi�strictly level�decreasing with respect to an ��level mapping and A � BP

with l�A� � n� then every atom in RP �A� is of level � n and every negated atom in
RP �A� is of level� n	 Analogous conditions hold for �strictly� level�decreasing programs	

��� De�nition We de
ne the set JP �
Sm

i�� Ji � BP recursively as follows�
J� is the set of all ground instances A of predicates matching some head in P� such

that RP��A� has a success branch	
Ji�� is Ji uni
ed with the set of all ground instances A of predicates matching

some head in Pi�� such that RPi���A� has a success branch or a branch with leaf
A�� � � � � Ak���B�� � � � ��Bl�� whereAk � Ji and Bl 	� Ji for k � �� � � � � k� and l � �� � � � � l�	
Since P is strati
ed� every Ji� and hence JP � is well�de
ned	

��� Lemma For i � �� � � � �m� we have Ji �Mi	

Proof
 Recall that P� is de
nite� so T� is monotone	 It follows that T k
� ��� � T� � k���	

Let A � J�	 By de
nition of a strati
cation� every literal occuring in RP��A� is
positive	 By de
nition of J��A has a success branch inRP��A�	 By Lemma �	�� A � T k

� ���
for some k � N and therefore A � T� � ���� �M�	
Let A � M� � T� � ����	 Since P� is de
nite� there exists some n� � N such that

A � T n
� ��� for all n 
 n�	 Hence� RP��A� has a success branch� and it follows that

A � J�	
We proceed by induction on i � �� � � � �m� �
Let A � Ji�� for some i 
 �	 Then RPi���A� has a leaf A�� � � � � An�� B�� � � � ��Bn�

such that for all k � �� � � � � n� and for all l � �� � � � � n�� Ak� � Ji and Bl� 	� Ji	 By the
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induction hypothesis� Ji �Mi� and from Lemma �	� it follows that for some n� � N we
have A � Ti�� � n��Mi� �Mi��	
Let A � Mi�� for some i 
 �	 Then there exists some n� � N such that A � Ti�� �

n�Mi� for all n 
 n�	 By Lemma �	�� RP��A� has a leaf A�� � � � � An�� B�� � � � ��Bn� such
that for all k � �� � � � � n� and for all l � �� � � � � n�� Ak� � Ji and Bl� 	� Ji	 By the
induction hypothesis� Ji �Mi� and by de
nition of Ji�� it follows that A � Ji��	 �

The following theorem is new	

���� Theorem For every strati
ed logic program P � JP �MP 	

Proof
 By Lemma �	� we have JP �
Sm

i�� Ji �
Sm

i��Mi �MP 	 �

The remainder of this section is devoted to the study of strati
ed programs and of
programs which are both strati
ed and semi�strictly level�decreasing with respect to a

nite level mapping	

���� De�nition Let P be a normal logic program with a 
nite level mapping l as
de
ned in �	�	 We de
ne the �nitely at level n intersected immediate consequence map��

T
�n

P � �Ln�� � �Ln�� for a �normal� logic program P by T

�n

P �I� �� TP �I� � Ln��	

Furthermore� for T � IP � IP let

T � ��I� �� I

and inductively
T � �k � ���I� �� T �T � k�I�� � I for k 
 ��

���� Lemma For strati
ed P and for every k � N� Ti � k�Mi��� � Ti � k�Mi���	

Proof
 The statement obviously holds for k � � and every i	 We proceed by induction
on k	 Suppose� the statement holds for k 
 �	 Then by Lemma �	�� Ti � �k����Mi��� �
Ti�Ti � k�Mi�����Mi�� � Ti�Ti � k�Mi�����Mi�� � Ti�Ti � k�Mi�����Ti � k�Mi��� �
Ti � �k � ���Mi���	 �

���� De�nition Let P be a logic program which is semi�strictly level�decreasing with
respect to a 
nite levelmapping� and which is strati
ed	 We de
ne the sequence �In� � IP
inductively as follows�
Since P� is de
nite and Ln is 
nite for every n� the sequence �T

�n

� � k����k�N is

eventually constant� say equal to In��	
By Lemma �	�
 and �	�� �Ti�� � k�In�i��k�N is increasing with k and hence is even�

tually constant� say equal to In�i	
Now de
ne In �� In�m	

��In �Hit�
�� a Prolog program was developped which computes the iterates of the operator T �n� in
the case of a �nite level mapping�



��� Semi�strictly Level�decreasing Progams ��

���� Example For Program ��� we de
ne a level mapping l � BP � BP by setting l�A�
to be equal to the number of function symbols s occuring in A	 We then get I��� � fq���g�
I� � I��� � fq���g and In � fq���g for all n � N	

The following result is new	

���� Theorem Let P be a logic program which is semi�strictly level�decreasing with
respect to a 
nite level mapping l� and which is strati
ed	 Then the sequence �In�n�N as
de
ned above converges in Q to MP 	

Proof
We show In � JP in Q	
�i� A � BP� � Let A � J� with l�A� � n�	 Since P� is de
nite� RP��A� has a success

branch such that all atoms occuring in any node of this branch are of level � n�	 By
Lemma �	�� A � T

�n

� � k for every n 
 n� and every k 
 k� for some k� � N	 Hence�

A � In eventually	
Let A 	� J�	 Then RP��A� has no success branch and therefore� for every n � N�

A 	� In	 We proceed by induction on i � �� � � � �m� �	
�ii� A � BPi�� matches some head in ground�Pi���� Let A � Ji�� with l�A� � n�	 If

RPi�� has a success branch� then by the same argument as for J�� A � In eventually	 If
RPi���A� has no success branch� then it has a branch with leaf A�� � � � � Ak���B�� � � � ��Bl�

such that Ak � Ji and Bl 	� Ji for all k � �� � � � � k� and l � �� � � � � l�	 By the induction
hypothesis� Ak � In and Bl 	� In eventually� say for all n 
 n�	 It follows that for all
n 
 n�� we have Ak � In�i and Bl 	� In�i� and therefore A � In�i�� � In eventually	
Let A 	� Ji��	 Then RPi���A� does not have a success branch and does not have

a leaf A�� � � � � Ak���B�� � � � ��Bl� with Ak � Ji and Bl 	� Ji for all k � �� � � � � k� and
l � �� � � � � l�	 By the induction hypothesis� there is either some Ak� 	� In eventually or
some Bl� � In eventually	 In either case� A 	� In eventually	 �


�� Semi�strictly Level�decreasing Progams

We study the class of programs which are semi�strictly level�decreasing with respect
to an ��level mapping�	 and construct a minimal supported model for them which
coincides with MP if P is strati
ed	 In fact� the programs considered here are all locally
strati�ed� as de
ned in �Prz���� where it was shown that these programs have a unique
perfect model�
 �as de
ned there�	 The methods used here are quite di�erent from those
employed in the cited paper of Przymusinski	
For the remainder of this section� all level mappings are considered to be ��level

mappings	

���
 De�nition �Finitely restricted immediate consequence map� Let P be a
normal logic program with a level mapping l	 Let P�n� �� ground�P� n� be the set of all

��In �SH�
c�� we extended the approach to arbitrary level�mappings�
��It should be noted that in �SH�
c� we have shown that the model constructed in this section is

exactly the unique perfect model obtained in �Prz����
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clauses in ground�P � in which only atoms of level � n occur	 We de
ne the �nitely up
to level n restricted immediate consequence map�� T�n� � �

Ln�� � �Ln�� by T�n��I� ��
TP�n��I�	

The following proposition is immediate�

���� Proposition Let P be a level�decreasing logic program and let I � BP 	 Then
T�n��I� � T �n
�I� for every n � N	

We now construct an interpretation by using the 
nitely intersected immediate con�
sequence map for semi�strictly level�decreasing programs	 This interpretation will later
be shown to be a minimal supported model for the program in question	

���� De�nition Let P be a semi�strictly level�decreasing logic program	 We de
ne the
sequence �In�n�N inductively as follows�
For each m � N� let I���m� �� Tm

������� and set I� ��
S�

m�� I���m�	

Furthermore� for each m � N and n 
 �� let I�n���m� �� Tm
�n����In� and set In�� ��S�

m�� I�n���m�	
Finally� let I�P � ��

S�
n�� In	

The main technical lemma needed for showing that I�P � is indeed a minimal supported
model is the following	

���� Lemma �see �SH��c�� Let P be a normal logic program which is semi�strictly
level�decreasing with respect to an ��level mapping l	 Then the following statements
hold	

�	 For every n� the sequence �I�n�m�� is monotonic increasing in m	


	 For every n� In is a 
xed point of T�n�	

�	 The sequence �In� is monotonic increasing	

�	 If l�B� � n and B 	� In� where B � BP � then for every r � N � we have B 	� In�r
and hence B 	� I�P �	 In particular� if l�B� � n and B 	� I�n���m� for some m� then
B 	� In and hence B 	� I�P �	

Proof
 We begin by noting the technical fact that� for each n � N � we can partition
P�n��� as P�n� � P �n� ��� where P �n� �� denotes the subset of ground�P � consisting of
those clauses whose head has level n � �	 Thus� T�n����I� � T�n��I� � TP �n��
�I� for any
I � IP � note that if A � TP �n��
�I�� then l�A� � n � �	
It will be convenient to present the proof� which is by induction� in a sequence of

steps� and our induction hypothesis is the proposition� �For some n� and each n satisfying

�	In �Hit�
�� I developped a Prolog program which computes the iterates of the operator T
n� for a
�nite level mapping�
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� � n � n�� the sequence �I�n�m�� is monotonic increasing in m and In is a 
xed point of
T�n��	
Step �	 The proposition just stated is true of course for n� � � since P��� is a de
nite

program and I� is the least 
xed point of T��� by the classical construction	 Suppose the
proposition true for some n� 
 �	 Then in particular it holds with n � n� and hence In�
is a 
xed point of T�n��	 We show the proposition true for n� � � and hence that it is
true for all n�	 It will ease notation to write k for n� in what follows	
Step 
	 We establish the recursion equations�

I�k����� � Ik and

I�k���m��� � Ik � TP �k��
�I�k���m�� for m 
 �

and the 
rst is immediate	 Putting m � �� we have I�k����� � T�k����Ik� � T�k��Ik� �
TP �k��
�Ik� � Ik � TP �k��
�Ik� � Ik � TP �k��
�I�k������� using the fact that Ik is a

xed point of T�k�	 Now suppose that the second of these equations holds for some
m 
 �	 Then I�k����m��
��� � T�k����I�k���m���� � T�k��I�k���m���� � TP �k��
�I�k���m���� �
T�k��Ik � TP �k��
�I�k���m��� � TP �k��
�I�k���m����	 It su ces� therefore� to show that
T�k��Ik � TP �k��
�I�k���m��� � Ik	 Suppose that A � T�k��Ik � TP �k��
�I�k���m���	 Then
there is a clause A � A�� � � � � Ak���B�� � � � ��Bl� in P�k� such that A�� � � � � Ak� �
Ik � TP �k��
�I�k���m�� and B�� � � � � Bl� 	� Ik � TP �k��
�I�k���m��	 But then level considera�
tions and the hypothesis concerning P imply that A�� � � � � Ak� � Ik and B�� � � � � Bl� 	� Ik	
Therefore� A � T�k��Ik� � Ik and we have the inclusion T�k��Ik � TP �k��
�I�k���m��� � Ik	
The reverse inclusion is demonstrated in like fashion showing that the second of the
recursion equations holds with m replaced by m � � and hence� by induction� that it
holds for all m	
Step �	 We have the inclusions TP �k��
�Ik� � TP �k��
�Ik �TP �k��
�Ik�� � TP �k��
�Ik�

TP �k��
�Ik � TP �k��
�Ik��� � � � 	 These inclusions are established by methods similar to
those we have just employed and we omit the details	
It is now clear from this fact and the recursion equations in Step 
 that �I�k���m��

is monotonic increasing in m	 Since monotonic increasing sequences converge to their
union in Q� see Proposition �	
� and I�k���m� is an iterate of Ik� it now follows from
Theorem �	� that Ik�� is a model for P�k���	
Step �	 If B � BP and l�B� � k� then B � Ik�� i� B � Ik �where k still denotes n��	

Indeed� if B � Ik� then it is clear from the recursion equations of Step 
 that B � Ik��	
On the other hand� if B 	� Ik� then it is equally clear from the recursion equations and
level considerations that� for every m� B 	� I�k���m� and hence that B 	� Ik��� as required	
Step �	 One of the key technical features of our construction is the control it gives

over negation� and we illustrate this observation by showing next that Ik�� is a supported
model for P�k���	 To do this� suppose that A � Ik�� �

S�
m��I�k���m�	 Then there ism� � N

such that A � I�k���m��� � Tm��
�k����Ik� for all m 
 m�	 Thus� A � T�k����T

m�

�k����Ik�� �

T�k����I�k���m���	 Hence� there is a clause A� A�� � � � � Ak���B�� � � � ��Bl� in P�k��� such
that each Ai � I�k���m�� and no Bj � I�k���m��	 But l�Bj� � k for each j since P is semi�
strictly level�decreasing	 Since Bj 	� I�k���m��� we now see from the recursion equations
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that Bj 	� Ik	 From the result in Step � we now deduce that� for each j� Bj 	� Ik��	
Since it is obvious that each Ai belongs to Ik��� we obtain that A � T�k����Ik���	 Thus�
Ik�� � T�k����Ik��� and therefore Ik�� is a supported model for P�k���� or a 
xed point
of T�k���� as required	
Thus� the induction hypothesis holds for n� � � showing therefore that it holds for

all n�	 Thus� for every n� I�n�m� is monotonic increasing in m and In is a 
xed point
of T�n�� establishing statements � and 
	 It is immediate from the construction that the
sequence �In� is monotonic increasing� which establishes statement �	 As far as statement
� is concerned� it follows �by iterating the result of Step �� that if l�B� � n and B 	� In�
then� for every r � N� we have that B 	� In�r and hence that B 	� I�P �	 The 
nal
statement in � results from the argument given in the previous paragraph showing that
Bj 	� Ik	 �

Note that it now follows that the recursion equations established in the previous
proof hold for all k � N	

���� Remark Let P be a strictly level�decreasing program with respect to an ��level
mapping	 It is easy to see that for all n�m � N� I�n���m� � In � TP �n��
�In�� so that the
iterates become constant after one step	

���� Lemma �see �SH��c�� I �� I�P � is a supported model for P 	

Proof
 We show 
rst that TP �I� � I	 Let A � TP �I�	 Then there is a ground in�
stance A � A�� � � � � Ak���B�� � � � ��Bl� of a clause in P such that A�� � � � � Ak� � I and
B�� � � � � Bl� 	� I	 By monotonicity of �In�n�N� the fact that I �

S
In and part � of Lemma

�	�� there is n� � N such that� for all n 
 n�� A�� � � � � Ak� � In and B�� � � � � Bl� 	� In	 By
de
nition� A � T�maxfn��l�A
g��In�� � I as required	 So I is a model for P 	
It remains to show that TP �I� � I	 Let A � I	 By monotonicity of �In�n�N� there is

n� � N such that A � In for all n 
 n�	 Thus� there is m� � N such that A � I�n��m� for
all m 
 m�	 By de
nition of I�n��m�� there is a clause A� A�� � � � � Ak���B�� � � � ��Bl� in
P�n�� such that A�� � � � � Ak� � I�n��m� � � I and B�� � � � � Bl� 	� I�n��m��	 Since l�Bj� � n� for
all j � �� � � � � l� and by part � of Lemma �	��� B�� � � � � Bl� 	� I	 By virtue of the clause
A� A�� � � � � Ak���B�� � � � ��Bl� � it follows that A � TP �I� as required	 �

The obtained model I�P � is not only supported� but is also minimal�

���� Theorem �see �SH��c�� Let P be a semi�strictly level decreasing logic program
and let I �� I�P � be de
ned as in De
nition �	��	 Then I�P � is a supported and minimal
model for P 	

Proof
 By the previous lemma� it remains to show that I is a minimal model	 We show
this by induction in establishing the following proposition� �If J � I and TP �J� � J �
then I�n�m� � J for all m�n � N	�
Now I� �

S
I���m� � J since P��� is de
nite and I� is the least model of P���� thus� the

proposition holds for n � �	



��� Semi�strictly Level�decreasing Progams ��

Assume now that the proposition holds for some n� 
 � and allm � N� so I�n��m� � J

for allm	 We show by induction on m that I�n����m� � J for allm	 Indeed� withm � � we
have I�n������ � In� �

S�
m��I�n��m� � J by our current assumption	 Suppose� therefore�

that I�n����m�� � J for some m� 
 �	 Let A � I�n����m���� � T�n�����T
m�

�n����
�In���	 Then

there is a clause A � A�� � � � � Ak� ��B�� � � � ��Bl� in P�n���� such that A�� � � � � Ak� �
Tm�

�n����
�In�� � I�n����m� � and B�� � � � � Bl� 	� I�n����m��	 But l�Bj� � n� for each j	 Applying

Lemma �	�� part � again we see that no Bj belongs to I�P � and consequently no Bj

belongs to J since J � I�P �	 Since I�n����m�� � J by assumption� we haveA�� � � � � Ak� � J 	
Therefore� A � T�n�����J� � TP �J� � J � from which we obtain that I�n����m���� � J as
required	 �

For an application� see Program �	
The model obtained thus coincides with MP if P is strati
ed	

���� Proposition Every strati
ed logic program is semi�strictly level�decreasing	

Proof
 Let P � P�

�
� � � �

�
� Pm be strati
ed as in De
nition �	�	 We de
ne a level

mapping l by l�A� �� i if A is an element of BP in which the predicate symbol occuring
is de
ned in Pi��� and set l�A� � � for every A � BP � which is not de
ned in P 	 �

���� Theorem Let P � P�

�
� � � �

�
� Pm be a strati
ed logic program with level mapping

as de
ned in the proof of Proposition �	
� and let I�P � be de
ned as in De
nition �	��	
Then I�P � �MP 	

Proof
 We will show by induction that Ik � Mk�� for k � �� �� � � � �m � � and that
Ik �Mm for k 
 m	 From this we clearly have I�P � �Mm �MP as required	
Now P��� � ground�P�� is de
nite� even if empty� and so it is immediate that I� �

M�	 So suppose next that Ik � Mk�� for some k 
 �	 Then I�k����� � Ik � Mk�� �
TPk��

� ��Mk���	 So now suppose that I�k���m� � TPk��
�m�Mk��� for some m 
 �	 We

have I�k���m��� � Ik � TP �k��
�I�k���m�� � Mk�� � TPk��
�TPk��

� m�Mk���� � Mk�� �
TPk��

�TPk��
�m�Mk���� � TPk��

� �m � ���Mk��� � TPk��
� �m � ���Mk���� by Lemma

�	�
	 Therefore� I�k���m��� � TPk��
� �m� ���Mk���	 From this we obtain� by induction�

the equality I�k���m� � TPk��
�m�Mk��� for all m and with it the equality Ik�� � Mk��

as required	 �

We close with a comparision of the complexities of the di�erent approaches discussed
for strictly and semi�strictly level�decreasing programs�

�	 For strictly level�decreasing programs with respect to ��level mappings� it su ces�
as shown in Section �� to compute the sequence �T n

P ���� to obtain the unique
supported model for the program� and therefore only a single limit is involved	


	 The approach in Section �	� for programs which are strati
ed and semi�strictly
level�decreasing with respect to a 
nite level mapping requires one to compute the



�� � PARTITIONING PROGRAMS

single sequence �In�	 Moreover� each member of this sequence is itself obtained by
a 
nite computation	 Again� therefore� only a single limit is required in this case	

�	 The approach of Apt� Blair and Walker �ABW��� or the use of the approach from
Section �	
 in the case of strati
ed programs requires the computation of the limits
of 
nitely many sequences �TPk��

� n�Mk��	

�	 Using the construction in Section �	
 for semi�strictly level�decreasing programs
with respect to an ��level mapping involves the computation of the limit of the
sequence �In�	 Here each In is itself obtained by constructing the sequence �I�n�m��m
and its limit	 So in this case at most countably many limits have to be computed	 If
the program is semi�strictly level�decreasing with respect to a 
nite level mapping�
then the sequence �I�n�m��m stabilises after 
nitely many steps� and therefore only
a single limit needs to be computed	

Summary

We have shown how to obtain minimal supported models for a logic program P by
partitioning it or its Herbrand base� and applying the respective immediate consequence
operators subsequently	 In particular� we constructed minimal supported models for
semi�strictly level�decreasing logic programs with ��level mappings	 Additionally� we
have given an alternative characterization of the minimal supported standard model
MP for strati
ed programs	

Problems

Problem �� In �ABW���� an interpreter for strati
ed logic programs �without function
symbols� was given	 Does there exist an interpreter for semi�strictly level�decreasing logic
programs P �including function symbols� which derives exactly I�P �! See Program ��	

Problem �
 Can the methods from Section � be applied to semi�strictly level�
decreasing programs by using Theorem �	�!

Problem �� Is it possible to extend any of the approaches discussed so far to �level�
increasing programs�! See Program ��	
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� Conclusions

We have seen that in order to 
nd models for a given logic program P � it is worth
endowing the space IP of all Herbrand interpretations for P with topologies or topology�
like structures	 All of those structures discussed in this thesis have a strong relationship
with the natural order on IP � which is set�inclusion� and all of those can be applied to
normal logic programs to some extent�
The Scott topology� which we were able to discribe as a natural topology on IP �

determines the semantics of de
nite programs	 The atomic topology Q allows one to

nd supported models under some semi�syntactic conditions which are all closely related
to the absence of local variables	 Metric and P�metric spaces were used to 
nd the
unique supported model for strictly level�decreasing programs	 Approaching semantics
by partitioning programs is only indirectly connected with topology� though the atomic
topology was used to prove the main theorem �	

 of Section �� yielding a minimal
supported model for programs which are semi�strictly level�decreasing with respect to
��level mappings	

There is a number of strong relationships between the sections	 The de
nition of the
Scott topology on IP � given as the positive atomic topology Q

�� and the de
nition of the
Cantor topology on IP � given as the atomic topology Q� are closely related and this gives
a connection between Sections 
 and �	 Section � on quasi�metrics relates to Section 
 by
giving an alternative approach to de
nite programs� and to Section � by displaying the
strong relationships between quasi�metrics obtained from level�mappings and the atomic
topology	 We have seen in Sections � and � that domains can be viewed as ultrametric�
P�metric and quasi�ultrametric spaces	 The relationships between these have still to be
investigated� incorporating the results from Section �	 Section � connects with Section
� by employing the atomic topology� and with Section � by the closely related notions
of strictly and semi�strictly level�decreasing programs	

We raised �� problems� theoretical and practical in nature� which are worth following
in order to further enlighten the relationships between topology and logic programming
semantics	
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Appendix

A Programs

The following programs are given in Edinburgh�Syntax� as implemented e	g	 in SICStus�
or SWI�Prolog �cf	 �Wie����	 Throughout� P will always denote the actual program inside
the examples� and T abbreviates TP 	

Program �
p���X�X��

p�s�X��Y�s�Z�� �� p�X�Y�Z��

We compute the least Herbrand model of the above de
nite program by using the
Knaster�Tarski Theorem 
	� and the observations from Section 
	 If we denote T n��� by
In� we get

I��

I�T �I�� � fp��� s
k���� sk���� j k � Ng

I�T �I�� � I� � fp�s���� s
k���� sk����� j k � Ng

InT �In��� � In�� � fp�s
n������ sk���� sk�n����� j k � Ng

which yields
S
In � fp�sk���� sl���� sm���� j k� l�m � N� k � l � mg as least Herbrand

model for P 	

Program �
p����

p�X� �� 	
 p�X��

The given program is level�decreasing and has BP as its only model� which is not
supported	 Note that the sequence �T n����n�N does not converge in Q	

Program �
p����

p�s�X�� �� 	
 p�X��

The sequence �T n����n�N is not monotonic increasing� but converges in Q to M �
fp�s�n���� j n � Ng� which therefore is a model for P 	 Moreover� M is a supported
model for P by Proposition �	��	 In fact� P is strictly level�decreasing with respect to
the level mapping l de
ned by l�p�sn����� � n	 Applying Theorem �	�� yieldsM as the
only supported model for P 	

Program �
q��� �� 	
p�X��	
p�s�X���

p����

p�s�X�� �� 	
p�X��

De
ne l � BP � ��� by l�p�sn����� � n and l�q�sn����� � � as a level mapping	 By
Theorem �	�
� P has a unique supported model which is the set fp�s�n���� j n � Ng	
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Program �
p������

p�s�Y���� �� 	
p�Y�X��	
p�Y�s�X���

p�Y�s�X�� �� 	
p�Y�X��

De
ne a level mapping on BP by l�p�sk���� sj����� � �k� j	 Then P is strictly level�
decreasing and hence has a unique supported model which turns out to be fp��� s�n���� j
n � Ng � fp�sn������ s�k������ j k� n � Ng	

Program 

p��� �� p����

p��� �� 	
 q����

q����

The sequence �T n����n�N converges in Q to M � fp���� q���g� which therefore is a
model of P 	 Moreover� M is a supported model for P by Proposition �	��	 But note
that M is not minimal supported� since fq���g is a supported model� too	 Note that P
is not strictly level�decreasing but is strati
ed� and in this case MP � fq���g	

Program �
p����

p�X� �� p�X��

p�s�X�� �� 	
p�X��

The sequence �T n����n�N converges in Q to M � BP � which therefore �and trivially�
is a model for P 	 Moreover�M is a supported model for P by Proposition �	��	 But note
that M is not minimal supported� sinceM� � fp�s�n���� j n � Ng is a supported model�
too	 Note that P is not strictly level�decreasing but is semi�strictly level�decreasing� and
this yields the minimal supported modelM�	

Program �
r����

p��� �� 	
r����

p�s�X�� �� p�X��

q��� �� p�X��

The sequence �T n����n�N converges in Q to M � fr���� q���g 	� T �M� � fr���g�
which therefore is a model for P but is not supported	 So it follows immediately that
T can not be continuous in Q	 Using the fact that P is strati
ed� one gets fr���g as a
minimal supported model for P 	

Program �
q����

q�s�s�X��� �� q�X��

p�X� �� p�X��

p�X� �� 	
 q�X��

p�s�s�X��� �� 	
 p�X��

The given program is not strati
ed� but is semi�strictly level�decreasing� We assign
to P a level mapping l with l�q�sn����� � � and l�p�sn����� � n � � for every n � N	
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Using the notation from Section �	
� we get

I� � fq�s
�n���� j n � Ng

I� � I�

I� � I� � fp�s����g

I� � I� � fp�s
�����g

I� � I� � fp�s
�����g

			

In � I� � fp�s
m���� j � � m � ng

Therefore we get I�P � � fq�s�n����� p�sn������ j n � Ng as a supported minimal model
for P 	 The sequence �T n����n�N converges in Q to M � fq�s�n����� p�sn���� j n � Ng�
which is a supported model for P since by Proposition �	��� T is continuous in Q	 Note
that M is not a minimal model since I�P � is strictly smaller	

Program ��
p�s���� �� 	
 q����

r�X��� p�X��

p�X��� r�X��

q����

Note that the sequence �T n����n�N does not converge in the Topology Q	 In fact�
T �n����� � fq���� r�s����g and T �n����� � fq���� p�s����g for all n � N	 But the se�
quence �T n�fq���g��n�N does converge� becoming constant at M � fp���g after the
second step	 By Proposition �	��� M is a supported model for P 	 The approach using
the fact that P is strati
ed yields the same model and states additionally that M is
minimal	

Program ��
q�X� �� 	
 r�X��

q�X� �� q�s�X���

r����

r�s�X�� �� r�X��

The sequence �T n����n�N converges in Q to M � BP � which therefore �and trivially�
is a model for P 	 Moreover�M is a supported model of P by Proposition �	��	 But note
that M is not minimal since M� � fr�sn���� j n � Ng is a supported model� too	 Note�
that P is not strictly level�decreasing but is semi�strictly level�decreasing� and this also
yields the minimal supported model M�	

Program ��
q����

r��� �� 	
q����

r�s�X���� r�X��

t�X� �� r�X��
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t�X� �� t�s�X���

The sequence �T n����n�N does not converge in Q� since

T ��� � fq���� r���g

T ���� � fq���� r�s����� t���g

T ���� � fq���� r�s�s������ t�s����g

T ���� � fq���� r�s�s�s������� t���� t�s�s�����g

T n����� � fq���� r�sn����� t�s�n��
��k���� j k � N� 
k � n� �g�

and therefore t��� � In if and only if n is even	 But P is strati
ed� and this fact yields
fq���g as minimal supported model	

Program ��
q��� �� 	
 p�X��

p����

p�s�X���� p�X��

The sequence �T n����n�N converges in Q to M � BP � which therefore �and trivially�
is a model for P 	 But M is not supported� so T cannot be continuous in Q	 In fact� P
is strictly level�decreasing and its unique supported model is fp�sn���� j n � Ng� which
is the model gained by stratifying P 	 Note that the interpreter for strati
ed programs
given in �ABW��� never terminates on input q���	

Program ��
q�s�s������

q�X���	
q�s�X���

In fact� P would be an example of a �strictly level�increasing program	� The sequence
�T n����n�N does not converge in Q	 A minimal supported model for P � however� is
fq�s�n���� j n � Ng	 Another minimal 
xed point of T is fq���� q�s�s������ q�s�n������ j
n � Ng	
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B Problems

We list the problems posed in the sequel by sections	

The Atomic Topology

Problem � Find neccessary and su cent syntactic conditions for convergence in Q of
orbits of the immediate consequence operator	

Problem � In the situation of Theorem �	�� 
nd neccessary and su cient conditions
to ensure that M is a minimal model for P 	

Problem � Let I � IP 	 Consider the sequence �Ik� de
ned by I� �� I and Ik�� ��
limT n

P �Ik�	 When is this construction possible! Does �Ik� converge in Q! Does it become
stable after 
nitely many steps! Is the limit a �supported� model!

Metric and P�Metric Spaces

Problem � To what extent can the construction of extended ultrametric spaces out of
domains� as done in Section �	�� be reversed!

Problem � Examine the relationships between domains and extended ultrametric
spaces	

Problem 
 To what extent can Theorem �	�
 be reversed!

Problem � Try to 
nd a contructive proof of Theorem �	� in order to 
nd a 
xed point
of the function given there in the hypothesis	

Quasi�metric Spaces

Problem � Is it possible to weaken the assumption of the Rutten�Smyth Theorem that
f is non�expansive!

Problem � Connect the Rutten�Smyth Theorem with Theorem �	�by Pries�Crampe
and Ribenboim	 Is there a common generalization!

Problem �� Examine the relationships between generalized metric spaces� P�metric
spaces and domains	

Problem �� Try to 
nd a normal logic program P together with a level mapping such
that TP is not monotonic �nor Scott�continuous� but is non�expanding in order to apply
the Rutten�Smyth Theorem in non�trivial cases	 Is this at all possible!
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Compactness of Generalized Metric Spaces

Problem �� Investigate the importance of CN�completeness in the context of the rela�
tionships between domains and generalized metric spaces� especially� how CNs connect
up with directed sets	

Problem �� Try to characterize the topologies underlying the notions of CN�
completeness	 Connect this to the topologies in �BBR���� if possible	

Problem �� Investigate the relationships between the notion of CN�completeness for
generalized metric spaces and spherical completeness for P�metric spaces� perhaps by
adopting a domain�theoretical point of view	

Partitioning Programs

Problem �� In �ABW���� an interpreter for strati
ed logic programs �without function
symbols� was given	 Does there exist an interpreter for semi�strictly level�decreasing logic
programs P �including function symbols� which derives exactly I�P �! See Program ��	

Problem �
 Can the methods from Section � be applied to semi�strictly level�
decreasing programs by using Theorem �	�!

Problem �� Is it possible to extend any of the approaches discussed so far to �level�
increasing programs�! See Program ��	
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