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Logic programming is concerned with the use of logic as a programming language. The
main manifestation of this computing paradigm is in the various versions of Prolog
which are now available, in which computation is viewed as deduction from sets of Horn
clauses, although there is also growing interest in the related form known as answer
set programming, see [10]. The reference [2] contains a good survey of the growth of
logic programming over the last twenty five years both as a stand-alone programming
language and as a software component of large information systems.

One advantage a logic program P has over conventional imperative and object ori-
ented programs is that it has a natural machine-independent meaning, namely, its logical
meaning. This is often referred to as its declarative semantics, and is usually taken to
be some “standard” model canonically associated with P. Unfortunately, it is often the
case that there are many possible choices for the standard model, some even taken in
many-valued logic, which do not in general coincide and all of which have a claim to
be “the natural choice” depending on one’s view of non-monotonic reasoning [6, 7, 11].
However, most two-valued semantics which are proposed are refinements of a particular
model called the supported model semantics or Clark completion semantics [5], which we
study in this paper. Indeed, we focus on programs which have a unique reading under
this semantics or, in other words, programs which have a unique supported model and
which are called uniquely determined programs. Several classes of programs with this
property have been studied in the literature including acceptable programs [1], which
are of great importance in connection with termination, and the acyclic and the locally
hierarchical programs [4] studied from the point of view of denotational semantics. In
general, such classes as these are defined by restricting their syntax using well-founded
orders.

Starting from these results, our discussion will revolve around the following aspects
of classes of programs, which we call unique supported model classes or USM classes,
each member of which has a unique supported model.

(1) By means of operators in three-valued logic, it is possible to obtain a unifying
framework for the USM classes mentioned above, see [8]. Using this observation, results
which apply to these classes separately can be generalized to a considerable extent. This
approach gives rise to the USM class of ®*-accessible programs. This class is remarkable
in that not only does each program in it have a unique supported model, but in addition
it is computationally adequate in the sense that every partial recursive function can be
implemented, under Prolog, by such programs. This does not hold, for example, for the
subclass of acceptable programs which always terminate under the Prolog selection rule.
(2) The general classes arrived at in (1) are susceptible to a semantical analysis using
fixed-point theorems from general topology. The application of these theorems yields
strong results on how to obtain the supported-model semantics by a process involving
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limits in spaces which carry a notion of distance. Results of this kind make it possible to
study logic programs in the context of neural networks [9] or chaotic dynamical systems
[12].

(3) It is reasonable to expect that many of the standard semantics will coincide for
uniquely determined programs, so that they can be viewed as semantically unambiguous.
A formal analysis shows that this is the case for the ®*-accessible programs, for example,
and our results provide some interconnections between the various semantics which
have been proposed, although this issue has yet to be fully understood and is much
investigated in the current literature.
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