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Abstract

Several recent publications have exhibited relationships between the theories of logic programming and of
neural networks� We consider a general approach to representing normal logic programs via feedforward
neural networks� We show that the immediate consequence operator associated with each logic program�
which can be understood as implicitly determining its declarative semantics� can be approximated by
��layer feedforward neural networks arbitrarily well in a certain measure�theoretic sense� If this operator
is continuous in a topology known as the atomic topology� then the approximation is uniform in all
points�

� Introduction

Logic Programs and Neural Networks are two important paradigms in Arti�cial Intelligence� Their abilities�
and our theoretical understanding of them� however� seem to be rather complementary� Logic Programs are
highly recursive and well understood from the point of view of declarative semantics� Neural Networks can
be trained but yet lack a declarative reading� Recent publications� for example �	� 
�� 
	�� suggest studying
the relationships between the two paradigms with the long
term aim of merging them in such a way that
the advantages of both can be combined�

The results we wish to discuss draw heavily on the work of H�olldobler� Kalinke and St�orr �
�� 
	�� which we
will in part generalize� It will be convenient to brie�y review their approach and their results� For unde�ned
notions� see Section ��

In �
��� a strong relationship between propositional logic programs and �
layer feedforward and recurrent
networks was established� For each such program P � a �
layer feedforward network can be constructed which
computes the single
step or immediate consequence operator TP associated with P � To this end� each atom
in P is represented by one or more units in the network� If the program is such that iterates of TP � for
any initial value� converge� to a unique �xed point of TP � �which can be understood to be the declarative
semantics� of P �� then the network can be cast into a recurrent network which settles down into a unique

�The �rst named author acknowledges �nancial support under grant SC������� from Enterprise Ireland	
�This convergence is essentially convergence in the atomic topology 
introduced in De�nition �	��� but this was not noted

in 
��� however	
�In the sense of the supported model semantics or Clark completion semantics 
��	
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stable state corresponding to the �xed point� On the other hand� for each �
layer network a propositional
logic program P can be constructed such that the corresponding operator TP is computed by the network�

In �
	�� an attempt was made to obtain similar results for logic programs which are not propositional�
that is� for programs which allow variables� The main obstacle which has to be overcome in this case is that
the Herbrand base� which is the domain on which the logic programs operate� is in general in�nite� it is
therefore not possible to represent an atom by one or more units in the network� The solution suggested in
�
	� uses a general result due to Funahashi ���� see Theorem ��
� which states that every continuous function
on a compact subset of the real numbers can be uniformly approximated by certain types of �
layer neural
networks� By casting the TP 
operator into such a function� approximating the single
step operator is shown
to be possible�

In order to obtain a continuous real
valued function from TP � metrics were employed in �
	�� For acyclic�

logic programs� a complete metric� can be obtained which renders the single
step operator a contraction� see
also �
��� By identifying the single
step operator with a mapping on the reals� a contractive� and therefore
continuous� real
valued function is obtained which represents the single
step operator� This function can in
turn be approximated by neural networks due to the result of Funahashi mentioned above� For certain kinds
of acyclic programs�� the resulting network can then again be cast into a recurrent network which settles
down into a unique stable state corresponding to the unique �xed point of the operator�

In this paper� we will investigate a more general approach to representing the single
step operator for
�non
propositional� normal logic programs by neural networks�

After some preliminaries in Section �� we will� in Section �� use a result from �
�� which characterizes
continuity of the single
step operator in the atomic topology� and apply the approximation theorem of
Funahashi in order to approximate single
step operators by neural networks�

In Section 	� we will show that for any given normal logic program� its associated single
step operator
can be realized as a Borel measurable real
valued function� An approximation theorem due to Hornik�
Stinchcombe and White �
��� see Theorem 	�
� can then be applied to show that each single
step operator
for any normal logic program can be approximated arbitrarily well by neural networks in a metric �� de�ned
in measure
theoretic terms in Section 	� see Theorem 	�
�

Finally� in Section �� we brie�y discuss our results and indicate the extensions of them which we are
currently pursuing�

� Preliminaries

We assume that the reader is familiar with basic topological and measure
theoretic notions as well as basic
notions from logic programming and the theory of neural networks� However� we will review some of the
concepts which are important in the sequel�

Logic Programs

A normal logic program is a �nite set of clauses �in the sense of �rst order logic� of the form

��A� B� � � � � � Bk � �C� � � � � � �Cl��

usually written as
A� B�� � � � � Bk��C�� � � � ��Cl�

where A� all the Bi and all the Cj are atoms over some underlying �rst order language� As usual� we refer to
a negated atom� for example �C� as a literal� We call A the head of the clause� and B�� � � � � Bk��C�� � � � ��Cl

�These programs were called recurrent in 
���� see also 
�� ��	
�This metric also generates the atomic topology if the level mapping has the additional property that the preimage of each

n � N is a �nite set� see 
���� which is a condition ful�lled by all the level mappings which arise in practice	
�Acyclic programs which admit an injective level mapping	
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the body of the clause� Our notation and terminology generally follow that of �
��� which is also our reference
for background in logic programming�

We will work over Herbrand interpretations only� Thus� BP denotes the Herbrand base for a given program
P � that is� the set of all ground atoms over the underlying language of P � As usual� Herbrand interpretations
for P can be identi�ed with subsets of BP � In turn� this means that the set IP of all Herbrand interpretations
for P can be identi�ed with the power set of BP � and this identi�cation will normally be made� The set of
all ground instances of clauses in P will be denoted by ground�P ��

Note that BP is countably in�nite if there is at least one function symbol that occurs in P � In the sequel�
we will impose the mild condition that this is indeed the case� In fact� if no function symbols occur in P �
then BP is �nite� Thus� P can be thought of as a propositional program� and this case was handled in �
��
as already noted in the introduction�

A major tool for analysing logic programs �and for assigning a denotational semantics to a program� is
the single
step or immediate consequence operator TP � IP � IP associated with a given program P � This
operator is de�ned as follows� for I � IP � we set TP �I� to be the set of all A � BP for which there exists a
clause A� B�� � � � � Bk��C�� � � � ��Cl in ground�P � such that I j� B� � � � � �Bk ��C� � � � � � �Cl �so� in the
classical two
valued logic we are using here we have� for all i� j� that Bi � I and Cj 	� I�� It is well
known
that an interpretation I � IP is a model of P if and only if TP �I� 
 I � that is� if and only if I is a pre�xed
point of TP � In particular� the �xed points of TP are called the supported models of P and they play an
especially important r�ole in the theory� In many ways a program P can essentially be represented by its
associated single
step operator� and we will take up this point again in the discussion in Section ��

We now proceed to de�ne the atomic topology Q on IP � which will play a major r�ole in the development�
The atomic topology was introduced in �
�� as a generalization of the query topology ���� but coincides with
it in the context of Herbrand preinterpretations�

��
 De�nition Let P be a normal logic program� The set G � fG�A� � A � BP g � fG��A� � A � BP g� where
G�L� � fI � IP � I j� Lg for each literal L� is the subbase of a topology called the atomic topology Q on IP �

The basic open sets of Q are of the form G�A�� � � � � � G�Ak� � G��B�� � � � � � G��Bl�� of course� be

ing derived from the subbasic open sets in the usual way� and we will denote such an open set by
G�A�� � � � � Ak��B�� � � � ��Bl�� Note also that the collection of basic open sets is countable�

The Cantor Topology

As mentioned above� IP can be identi�ed with the powerset of BP � It can therefore also be identi�ed with the
set �BP of all functions from BP to f�� 
g �or to any other two
point space�� Using this latter identi�cation�
the topology Q becomes a topology on the function space �BP � and is exactly the product topology �of
point
wise convergence� on �BP if the two
point space is endowed with the discrete topology� see �
�� for
details�

If we interpret IP as the set of all functions from BP to f�� �g� so that we now take the two
point space
as f�� �g� we can identify IP with the set of all those real numbers in the unit interval ��� 
� which can
be written in ternary form without using the digit 
� in other words we can identify IP with the Cantor
set� The product topology mentioned above then coincides with the subspace topology inherited from the
natural topology on the real numbers� and the resulting space is called the Cantor space C� Thus� the Cantor
space C is homeomorphic to the topological space �IP � Q�� and in the following � � IP � C will denote a
homeomorphism between IP and C� see �
�� for more details� It is well
known that the Cantor space is a
compact subset of R� see ��
�� and we can de�ne l�x� � maxfy � C � y 
 xg and u�x� � minfy � C � y � xg
for each x � ��� 
� n C�

We refer the reader to ��
� for background concerning elementary topology�

	th Irish Workshop on Formal Methods� ����� �



A Note on the Relationships between Logic Programs and Neural Networks

Neural Networks

A �
layer feedforward network �or single hidden layer feedforward network� consists of an input layer� a
hidden layer� and an output layer� Each layer consists of �nitely many computational units� There are
connections from units in the input layer to units in the hidden layer� and from units in the hidden layer to
units in the output layer� The input
output relationship of each unit is represented by inputs xi� output y�
connection weights wi� threshold �� and a function � as follows�

y � �

�X
i

wixi � �

�
�

The function �� which we will call the squashing function of the network� is usually nonconstant� bounded
and monotone increasing� and sometimes also assumed to be continuous� We will specify the requirements
on � that we assume in each case�

We assume throughout that the input
output relationships of the units in the input and output layer are
linear� The output function of a network as described above is then obtained as a mapping f � Rr � R with

f�x�� � � � � xr� �
X
j

cj�

�X
i

wjixi � �j

�
�

where r is the number of units in the input layer and the constants cj correspond to weights from hidden to
output layers�

Measurable Functions

A collection M of subsets of a set X is called a �
algebra if �i� � � M � �ii� if A � M then its complement
cA � M � �iii� if �An� is a sequence of sets in M � then the union

S
An � M � The pair �X�M� is called a

measurable space� A function f � X � X is said to be measurable with respect to M if f���A� � M for
each A �M �

If M is a collection of subsets of a set X � then the smallest �
algebra ��M� containing M is called
the �
algebra generated by M � In this case� a function f � X � X is measurable with respect to ��M� if
f���A� � ��M� for each A �M � If B is the subbase of a topology T � and B is countable� then ��B� � ��T ��
If B is a subbase of the natural topology on R� then ��B� is called the Borel �
algebra on R� and a function
which is measurable with respect to this �
algebra is called Borel
measurable� A measure on �R� ��B�� is
called a Borel
measure�

We refer the reader to ��� for background concerning elementary measure theory�

� Approximating Continuous Single�Step Operators by Neural Networks

Under certain conditions� given in Theorem ���� the single
step operator associated with a logic program is
continuous in the atomic topology� By identifying the space of all interpretations with the Cantor space� a
continuous function on the reals is obtained which can be approximated by �
layer feedforward networks�
We investigate this next�

The following Theorem can be found in ��� Theorem ���

��
 Theorem Suppose that � is non
constant� bounded� monotone increasing and continuous� Let K 
 R
n

be compact� let f � K � R be a continuous mapping and let 	 
 �� Then there exists a �
layer feedforward
network with squashing function � whose input
output mapping �f � K � R satis�es maxx�K d�f�x�� �f �x�� �
	� where d is a metric which induces the natural topology on R�

In other words� each continous function f � K � R can be uniformly approximated by input
output
functions of �
layer networks�
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We already know that the Cantor space C is a compact subset of the real line and that the topology C
inherits as a subspace of R coincides with the Cantor topology on C� Also� the Cantor space C is homoeo

morphic to IP endowed with the atomic topology Q� Hence� if the TP 
operator is continuous in Q� we can
identify it with a mapping ��TP � � C � C � x �� ��TP �����x��� which is continous in the subspace topology
of C in R�

The following characterization of continuity in Q was given in �
�� Theorem ���

��� Theorem Let P be a normal logic program� Then TP is continous in Q if� for each I � IP and for each
A � BP with A 	� TP �I�� either there is no clause in P with head A or there is a �nite set S�I� A� �
fA�� � � � � Ak� B�� � � � � Bk�g of elements of BP with the following properties�

�i� A�� � � � � Ak � I and B�� � � � � Bk� 	� I �

�ii� Given any clause C with head A� at least one �Ai or at least one Bj occurs in the body of C�

As a corollary� one obtains that programs without local variables� have continuous single
step operators�
It can also be shown that acyclic� programs have continuous single
step operators� For the slightly larger
classes of acceptable �
� and locally hierarchical ��� programs�� the single
step operator is in general not
continuous� see �

� 
���

We can now present our �rst main theorem�

��� Theorem Let P be a normal logic program� If� for each I � IP and for each A � BP with A 	� TP �I��
either there is no clause in P with head A or there is a �nite set S�I� A� � fA�� � � � � Ak� B�� � � � � Bk�g of
elements of BP satisfying the properties �i� and �ii� of Theorem ���� then TP �more precisely ��TP �� can be
uniformly approximated by input
output mappings of �
layer feedforward networks�

In particular� this holds for the operator TP if P is acyclic or does not contain any local variables�

Proof� Under the conditions stated in the Theorem� the single
step operator TP is continuous in the atomic
topology� Using a homeomorphism � � IP � C� the resulting function ��TP � is continuous on the Cantor
space C� which is a compact subset of R� Applying Theorem ��
� ��TP � can be uniformly approximated by
input
output functions of �
layer feedforward networks� �

� Approximating the Single�Step Operator by Neural Networks

By Theorem ��
� continuous functions can be uniformly approximated by input
output functions of �
layer
feedforward networks� It is also possible to approximate each measurable function on R� but in a much
weaker sense� We will investigate this in the present section�

The following was given in �
�� Theorem ��	�

	�
 Theorem Suppose that � is a monotone increasing function from R onto ��� 
�� Let f � Rr � R be a
Borel
measurable function and let � be a probability Borel
measure on R

r � Then� given any 	 
 �� there
exists a �
layer feedforward network with squashing function � whose input
output function �f � Rr � R

satis�es
���f� �f� � inff
 
 � � �fx � jf�x�� �f�x�j 
 
g � 
g � 	�

In other words� the class of functions computed by �
layer feedforward neural nets is dense in the set of
all Borel measurable functions f � Rr � R relative to the metric �� de�ned in Theorem 	�
�

We have already noted that the operator TP is not continuous in the topology Q in general� nor is it
continuous in the Scott topology on IP in general �it satis�es this latter property when P is de�nite� that

�A variable is called local if it occurs in the body of a clause� but not in the corresponding head	
�See 
��� ���	
�A unifying approach to these classes can be found in 
���	
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is� when P contains no negative literals�� We proceed to show next that the single step operator has the
pleasing property that it is Borel measurable for arbitrary programs� and therefore that it can always be
extended to a measurable function on R�

	�� Proposition Let P be a normal logic program and let TP be its associated single
step operator� Then TP
is measurable on �IP � ��G�� � �IP � ��Q���

Proof� We need to show that for each subbasic set G�L�� we have T��
P �G�L�� � ��G��

First� let L � A be an atom� If A is not the head of any clause in ground�P �� then T��
P �G�A�� � � � ��G��

If A is the head of a clause in ground�P �� then there are at most countably many clauses

A� Ai�� � � � � Aiki ��Bi� � � � � ��Bili

in ground�P � with head A� and we obtain

T��
P �G�A�� �

�
i

G�Ai�� � � � � Aiki ��Bi� � � � � ��Bili�

which is indeed in ��G��
Now suppose that L � �A is a negative literal� If A is not the head of any clause in ground�P �� then

T��
P �G��A�� � IP � ��G�� So assume that A is the head of some clause in ground�P �� If there is a unit

clause with head A� then T��
P �G��A�� � � � ��G�� So assume that none of the clauses in ground�P � with

head A is a unit clause� Then there are at most countably many clauses

A� Ai�� � � � � Aiki ��Bi� � � � � ��Bili

in ground�P � with head A� We then obtain

T��
P �G��A�� �

�
i

G��Ai�� � � � � � G��Aiki � � G�Bi�� � � � � � G�Bili�

which is indeed in ��G�� �

By means of Proposition 	��� we can now view the operator TP as a measurable function ��TP � on C
by identifying IP with C via the homeomorphism �� Since C is measurable as a subset of the real line� this
operator can be extended	 to a measurable function on R and we can now state our second main theorem�

	�� Theorem Given any normal logic program P � the associated operator TP �more precisely ��TP �� can be
approximated in the manner of Theorem 	�
 by input
output mappings of �
layer feedforward networks�

In fact� we are able to strengthen this result a bit by giving an explicit extension of TP to the real line� We
de�ne a sequence �Tn� of measurable functions on R as follows �where l�x� and u�x� are as de�ned earlier��

T
�x� �

�����
����
��TP ��x� if x � C

��TP ���� if x � �

��TP ��
� if x 
 


� otherwise

T��x� �

	
��TP ��l�x�� � ��TP ��u�x�����TP ��l�x��

u�x��l�x� if x � ����� � � ����

� otherwise

Ti�x� �

	
��TP ��l�x�� � ��TP ��u�x�����TP ��l�x��

u�x��l�x� �x� l�x�� if x �
S���i��

k
� ���k � 
���i� �k � ��i�

� otherwise

	E	g	 as a function T � R� R with T 
x� � �
TP 
�
��
x��� if x � C and T 
x� � � otherwise	
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for i � �� We de�ne the function T � R � R by T �x� � supi Ti�x� and obtain T �x� � ��TP �x�� for all x � C
and T ���I�� � ��TP �I�� for all I � IP � Since all the functions Ti� for i � 
� are piecewise linear and therefore
measurable� the function T is also measurable� Intuitively� T is obtained by a kind of linear interpolation�

If i � BP � N is a bijective mapping� then we can obtain a homeomorphism � � IP � C from i as follows�
we identify I � IP with x � C where x written in ternary form has � as its i�A�th digit �after the decimal
point� if A � I � and � as its i�A�th digit if A 	� I � If I � IP is �nite or co�nite�
� then the sequence of digits
of ��I� in ternary form is eventually constant � �if I �nite� or eventually constant � �if I co�nite�� Thus� each
such interpretation is the endpoint of a linear piece of one of the functions Ti� and therefore of T �

	�	 Corollary Given any normal logic program P � its single
step operator TP �more precisely ��TP �� can be
approximated by input
output mappings of �
layer feedforward networks in the following sense� for every
	 
 � and for every I � IP which is either �nite or co�nite� there exist a �
layer feedforward network with
input
output function f and x � ��� 
� with jx� ��I�j � 	 such that j��TP �I��� f�x�j � 	�

Proof� We use a homeomorphism � which is obtained from a bijective mapping i � BP � N as in the
paragraph preceeding the Corollary� We can assume that the measure � from Theorem 	�
 has the property
that �f�x� x � 	�g 
 	 for each x � R� Let 	 
 � and I � IP be �nite or co�nite� Then by construction of
T there exists an interval ���I�� ��I� � 
� with 
 � �

� �or analogously ���I� � 
� ��I��� such that T is linear on
���I�� ��I��
� and jT ���I���T �x�j � �

� for all x � ���I�� ��I��
�� By Theorem 	�
 and the previous paragraph�
there exists a �
layer feedforward network with input
output function f such that ���T� f� � 
� that is�
�fx � jT �x�� f�x�j 
 
g � 
� By our condition on �� there is x � ���I�� ��I� � 
� with jT �x�� f�x�j 
 
 � �

� �
We can conclude that j��TP �I���f�x�j � jT ���I���f�x�j 
 jT ���I���T �x�j� jT �x��f�x�j � 	 as required�

�

It would be of interest to strengthen this approximation for sets other than the �nite and co�nite elements
of IP � although it is interesting to note that the �nite interpretations correspond to compact elements in the
sense of domain theory� see �����

� Conclusion

There are two aspects to this work� On the one hand� one can consider the problem of approximating the
TP operator� associated with logic programs P � by means of input
output functions of multi
layer neural
networks� as we have done here� This� in detail� involves relating properties of the network to classes of
programs for which the approximation is possible� It also involves the consideration of what mathematical
notions of approximation are useful and appropriate� Here we have discussed two well
known ones� uniform
approximation on compacta� and a notion of approximation closely related to convergence in measure� Both
these strands need further investigation� and this paper is an account of our work to date which is at an early
stage of development� In the other direction� and we have not discussed this at all here except in passing� is
to view logic programs as fundamental and to view the approximation process as a means of giving semantics
to neural networks based on the declarative semantics of logic programs� There is considerable point in doing
this in that the semantics of logic programming is well understood whilst that of neural networks is not� but
is something to be taken up elsewhere�

At the detailed mathematical level� the mapping P �� TP is not injective� So� although the single

step operator can basically be used to represent a program semantically� di�erent programs may have the
same single
step operator� This �ne tuning is lost by our representation of logic programs by neural networks�
However� passing to classes of programs with the same single
step operator is something that is often done in
the literature on semantics and in fact is exactly the notion of subsumption equivalence due to Maher� see �
���
Moreover� there exist uncountably many homeomorphisms � � IP � C� for example� every bijective mapping
from BP to N gives rise to such a homeomorphism as observed in the paragraph preceeding Corollary 	�	� So

�
I � IP is co�nite if BP n I is �nite	

	th Irish Workshop on Formal Methods� ����� �



A Note on the Relationships between Logic Programs and Neural Networks

there is a lot of �exibility in the choice of � and therefore in how one embeds IP in R� The homeomorphism
used in �
	� employed the quaternary number system�

In �
	�� as mentioned in the introduction� the neural network obtained by applying the approximation
Theorem of Funahashi was cast into a recurrent network which settled down in a unique stable state
corresponding to the unique �xed point of the single
step operator of the underlying program P � Strong
assumptions had to be placed on P to make this possible� P was required to be acyclic with an injective
level mapping� Acyclicity of the program yields the existence of a complete metric on IP with respect to
which its single
step operator is a contraction� For larger classes of programs such metrics are yet unknown�
and there are indications that they do not exist� However generalized metric structures on IP can render
TP a contraction� and these matters are currently under investigation by the authors� see e�g� ��� 

� 
�� 
���
using various methods including those of many
valued logic�
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