
Default reasoning over domains and concept

hierarchies

Pascal Hitzler

Department of Computer Science, Dresden University of Technology

Abstract. W.C. Rounds and G.-Q. Zhang have proposed to study a
form of disjunctive logic programming generalized to algebraic domains
[1]. This system allows reasoning with information which is hierarchically
structured and forms a (suitable) domain. We extend this framework to
include reasoning with default negation, giving rise to a new nonmono-
tonic reasoning framework on hierarchical knowledge which encompasses
answer set programming with extended disjunctive logic programs. We
also show that the hierarchically structured knowledge on which pro-
gramming in this paradigm can be done, arises very naturally from for-
mal concept analysis. Together, we obtain a default reasoning paradigm
for conceptual knowledge which is in accordance with mainstream devel-
opments in nonmonotonic reasoning.

1 Introduction

In [1], Rounds and Zhang propose to study a form of clausal logic generalized to
algebraic domains, in the sense of domain theory [2]. In essence, they propose
to interpret finite sets of compact elements as clauses, and develop a theory
which links corresponding logical notions to topological notions on the domain.
Amongst other things, they establish a sound and complete resolution rule and a
form of disjunctive logic programming over domains. A corresponding semantic
operator turns out to be Scott-continuous.

We will utilize this proposal as a link between the formerly unrelated areas
of formal concept analysis, on the one hand, and nonmonotonic reasoning, in the
form of answer set programming, on the other. The relationships thus worked
out serve a threefold purpose, namely (1) to obtain a sound domain-theoretic
perspective on answer set programming, (2) to provide a formal link between
domain logics and formal concept analysis for the purpose of cross-transfer of
methods and results, and (3) to devise a reasoning paradigm which encompasses
two formerly unrelated formalisms for commonsense reasoning, namely formal
concept analysis, and answer set programming.

So in this paper, we will extend the logic programming paradigm due to
Rounds and Zhang to include reasoning with default negation. We are motivated
by the gain in expressiveness through the use of negation in artificial intelligence
paradigms related to nonmonotonic reasoning. This approach, using ideas from
default logic [3], treats negation under the intuition that the negation of an item

2 Pascal Hitzler

shall be believed if there is no reason to believe the item itself. This perspective
on negation has recently led to the development of applications in the form of
nonmonotonic reasoning systems known as answer set programming, the two
most popular probably being dlv and smodels [4, 5]. We will indeed see that
the extension of the approach by Rounds and Zhang by default negation is a
natural generalization of answer set programming with extended disjunctive logic
programs [6].

On the other hand, building on the work reported in [7], we establish a strong
connection between the clausal logic on algebraic domains mentioned above, and
fundamental notions from formal concept analysis [8]. More precisely, we will see
that in certain cases the formation of formal concepts from formal contexts can
be recast naturally via the notion of logical consequence in Rounds’ and Zhang’s
clausal logic. Our default reasoning paradigm on domains can therefore be rein-
terpreted as a reasoning paradigm over conceptual knowledge, with potential
applications to symbolic data analysis.

To the best of our knowledge, the results in this paper constitute the first
proposal for a default reasoning paradigm on conceptual knowledge which is
compatible with mainstream research developments in nonmonotonic reasoning.
We focus on laying foundations for this, but will not pursue questions of appli-
cability to data analysis at this stage. This will be done elsewhere.

The plan of the paper is as follows. In Section 2 we recall main notions and
results on the clausal logic of Rounds and Zhang, and its extension to a logic
programming paradigm. In Section 3 we will add a notion of default negation,
and in Section 4 we will see that it naturally extends answer set programming for
extended disjunctive programs. Section 5 is devoted to the study of conceptual
knowledge related to our paradigm. Related work is being discussed in Section 6,
while we will conclude and discuss further work in Section 7.

Proofs have been omitted for lack of space; they can be found on the author’s
webpage.

Acknowledgements. This work was supported by a fellowship within the Postdoc-
Programme of the German Academic Exchange Service (DAAD) and carried
out while the author was visiting the Department of Electrical Engineering and
Computer Science at Case Western Reserve University, Cleveland, Ohio. I am
grateful for inspiring discussions with Rainer Osswald, Matthias Wendt, and
Guo-Qiang Zhang, and for the feedback of some anonymous referees on an earlier
version of this paper.

2 Clausal Logic and Logic Programming in Algebraic
Domains

The study of domain theory from a logical perspective has a long tradition, and
originates from [9], where a logical characterization (more precisely, a categor-
ical equivalence) of bounded complete algebraic cpo’s (with Scott continuous
functions as morphisms) was given. Rounds and Zhang [1] have recently devised

Default reasoning over domains and concept hierarchies 3

a similar characterization of Smyth powerdomains. They use a clausal logic for
this purpose, and have also shown that it extends naturally to a disjunctive logic
programming paradigm. We recall necessary notation and terminology in order
to make this paper self-contained.

A partially ordered set is a pair (D,�), where D is a nonempty set and
� is a reflexive, antisymmetric, and transitive relation on D. A subset X of a
partially ordered set is directed if for all x, y ∈ X there is z ∈ X with x, y � z.
Note that the empty set is directed. An ideal is a directed and downward closed
set. A complete partial order, cpo for short, is a partially ordered set (D,�)
with a least element ⊥, called the bottom element of (D,�), and such that every
directed set in D has a least upper bound, or supremum,

⊔
D. An element c ∈ D

is said to be compact or finite if whenever c �
⊔

L with L directed, then there
exists e ∈ L with c � e. The set of all compact elements of a cpo D is written as
K(D). An algebraic cpo is a cpo such that every e ∈ D is the directed supremum
of all compact elements below it. For a, b ∈ D we write a �↑ b if a and b are
inconsistent, i.e. if there does not exist a common upper bound of a and b.

A set U ⊆ D is said to be Scott open, or just open, if it is upward closed and
for any directed L ⊆ D we have

⊔
L ∈ U if and only if U ∩ L �= ∅. The Scott

topology on D is the topology whose open sets are all Scott open sets. An open
set is compact open if it is compact in the Scott topology. A coherent algebraic
cpo is an algebraic cpo such that the intersection of any two compact open sets
is compact open. We will not make use of many topological notions in the sequel.
So let us just note that coherency of an algebraic cpo implies that the set of all
minimal upper bounds of a finite number of compact elements is finite, i.e. if
c1, . . . , cn are compact elements, then the set mub{c1, . . . , cn} of minimal upper
bounds of these elements is finite. As usual, we set mub ∅ = {⊥}, where ⊥ is the
least element of D.

In the following, (D,�) will always be assumed to be a coherent algebraic
cpo. We will also call these spaces domains. All of the above notions are standard
and can be found e.g. in [2].

The following notions are taken from [1].

Definition 1. Let D be a coherent algebraic cpo with set K(D) of compact el-
ements. A clause is a finite subset of K(D). We denote the set of all clauses
over D by C(D). If X is a clause and w ∈ D, we write w |= X if there exists
x ∈ X with x � w, i.e. X contains an element below w. A theory is a set of
clauses, which may be empty. An element w ∈ D is a model of a theory T ,
written w |= T , if w |= X for all X ∈ T or, equivalently, if every clause X ∈ T
contains an element below w. A clause X is called a logical consequence of a
theory T , written T |= X, if w |= T implies w |= X. If T = {E}, then we write
E |= X for {E} |= X. Note that this holds if and only if for every w ∈ E there
is x ∈ X with x � w. For two theories T and S, we say that T |= S if T |= X
for all X ∈ S. In order to avoid confusion, we will throughout denote the empty
clause by {}, and the empty theory by ∅. A theory T is closed if T |= X implies
X ∈ T for all clauses X. It is called consistent if T �|= {} or, equivalently, if
there is w with w |= T .

4 Pascal Hitzler

The clausal logic introduced in Definition 1 will henceforth be called the logic
RZ for convenience.

A main technical result from [1], where the notions from Definition 1 were
introduced, shows that the set of all consistent closed theories over D, ordered
by inclusion, is isomorphic to the collection of all non-empty Scott-compact sat-
urated subsets of D, ordered by reverse inclusion — and the latter is isomorphic
to the Smyth powerdomain of D. This result rests on the Hofmann-Mislove the-
orem [10]. It is also shown that a theory is logically closed if and only if it is an
ideal,1 and also that a clause is a logical consequence of a theory T if and only
if it is a logical consequence of a finite subset of T . The latter is a compactness
theorem for clausal logic in algebraic domains.

Example 1. In [1], the following running example was given. Consider a count-
ably infinite set of propositional variables, and the set T = {f ,u, t} of truth
values ordered by u ≤ f and u ≤ t. This induces a pointwise ordering on the
space T

V of all interpretations (or partial truth assignments). The partially or-
dered set T

V is a coherent algebraic cpo2 and has been studied e.g. in [11] in a
domain-theoretic context, and in [12] in a logic programming context. Compact
elements in T

V are those interpretations which map all but a finite number of
propositional variables to u. We denote compact elements by strings such as pqr,
which indicates that p and q are mapped to t and r is mapped to f . Clauses in
T
V can be identified with formulae in disjunctive normal form, e.g. {pqr, pq, r}

translates to (p ∧ q ∧ ¬r) ∨ (¬p ∧ q) ∨ r.

In [1], it was shown that the logic RZ is compact. A proof theory for it was
also given. An alternative version was reported in [13, 14].

The logic RZ provides a framework for reasoning with disjunctive informa-
tion on a lattice which encodes background knowledge. Indeed it was shown [7]
that it relates closely to formal concept analysis, which in turn has been applied
successfully in data mining, and we will expand on this point later on in Sec-
tion 5. Moreover, the system can be extended naturally to a disjunctive logic
programming paradigm, as presented next, following [1].

Definition 2. A (disjunctive logic) program over a domain D is a set P of
rules of the form Y ← X, where X, Y are clauses over D. An element e ∈ D is
said to be a model of P if for every rule Y ← X in P , if e |= X, then e |= Y . A
clause Y is a logical consequence of P if every model of P satisfies Y . We write
cons(P) for the set of all clauses which are logical consequences of P . If T is a
theory, we write cons(T) for the set of all clauses which are logical consequences
of T , i.e. cons(T) is the logical closure of T .

Note that the notions of logical consequence differ for theories and programs.
However, given a theory T , we have cons(T) = cons (PT), where PT = {X ←
{⊥} | X ∈ T }.
1 An ideal with respect to the Smyth preorder ��, where X �� Y if and only if for

every y ∈ Y there exists some x ∈ X with x � y.
2 In fact it is also bounded complete.

Default reasoning over domains and concept hierarchies 5

The (clause) propagation3 rule

X1 . . . Xn; ai ∈ Xi (all i); Y ← Z ∈ P ; mub{a1, . . . , an} |= Z

Y ∪
⋃n

i=1(Xi \ {ai})
,

denoted by CP(P), for given program P , was studied in [1]. Applying this rule, we
say that Y ∪

⋃n
i=1(Xi\{ai}) is a CP(P)-consequence of a theory T if X1, . . . , Xn ∈

T . The following operator is based on the notion of CP(P)-consequence and acts
on logically closed theories. Let T be a logically closed theory over D and let P
be a program and define

TP (T) = cons ({Y | Y is a CP(P)-consequence of T}) .

In [1], it was shown that TP is a Scott-continuous function on the space of
all logically closed theories under set-inclusion, hence has a least fixed point
fix(TP) =

⊔
{TP ↑ n}, where TP ↑0 = cons({{⊥}}) and recursively TP ↑(n+1) =

TP (TP ↑n). It was also shown that fix(TP) = cons(P).

3 Default Negation

We intend to add a notion of default negation to the logic programming frame-
work presented above. The extension is close in spirit to mainstream develop-
ments concerning knowledge representation and reasoning with nonmonotonic
logics.

Definition 3. Let D be a coherent algebraic domain. An extended clause is a
pair (C, N) of clauses over D, which we also write as “C,∼N”. An extended
clause (C, N) is called trivially extended if N = {}, and we may omit N in this
case. A (trivially) extended rule is of the form Y ← X, where Y is a clause and
X is a (trivially) extended clause. An (extended disjunctive) program consists
of a set of extended rules. If Y ← C,∼N is an extended rule, then we call (C, N)
the body of the rule and Y the head of the rule.

Informally, we read an extended rule Y ← C,∼N as follows: If C holds, and
N does not, then Y shall hold. This intuition gives rise to the following notions,
akin to the answer set semantics [6], a point which we will discuss further in
Section 4.

Definition 4. Let D be a coherent algebraic domain, let P be an extended dis-
junctive program, and let w ∈ D. We define P/w to be the (non-extended) pro-
gram obtained by applying the following two transformations: (1) Replace each
body (C, N) of a rule by C if w �|= N . (2) Delete all rules with a body (C, N)
for which w |= N . An element w ∈ D is an answer model of P if it satisfies
w |= fix

(
TP/w

)
. An element w ∈ D is a min-answer model of P if it is minimal

among all v satisfying v |= fix
(
TP/w

)
.

3 This rule was called the hyperresolution rule determined by P in [1].

6 Pascal Hitzler

Note that every min-answer model is an answer model. Recall also from [1]
that the set of all models of a theory is compact saturated, hence is the upper
closure of its minimal elements.

Example 2. Consider the (finite) domain D depicted in Figure 1. This example
is taken from [7] and encodes restaurant menues via formal concept analysis, a
point which will be discussed in more detail later on in Section 5. We can now
encode the wishes of a customer by programs, e.g. as follows.

{d} ← {⊥}
{2, 3, 4} ← {⊥}
{rw} ← {⊥},∼{ww}

Informally, the first rule states that the customer definitely wants a dessert. The
second rule states that the customer wants one of the set meals 2, 3 or 4. The
third rule states that the customer will choose red wine in all cases in which he
does not have a good reason to choose white wine.

The element 4 ∈ D is a min-answer model for P , since P/4 consists of the
clauses {d} ← {⊥}, {2, 3, 4} ← {⊥}, and {rw} ← {⊥}, and 4 is a minimal
model of {{d}, {2, 3, 4}, {rw}}. Likewise, 3 ∈ D is a min-answer model since P/3
consists of the first two clauses from above and 3 is a minimal model of these.
7 ∈ D is an answer model of P , but not a min-answer model.

Fig. 1. Figure for Example 2. Abbreviations are: sd salad, st starter, f fish, m meat,
rw red wine, ww white wine, w water, d dessert, c coffee, e expensive. Numbers 1 to 9
stand for set meals.

3

��
��

��
��

��
��

��
��

��
��

��

�������������������������� 7

���������������

���������������������� 5

���

�����������������������������������

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

		
		

		
		

		
		

		
		

		
		

		
		

	

9

��
��

��
��

��
��

��
�

6

��
��

��
��

��
��

��
��

��

��
��
��
��
��
��
��
�

 4

��������������������������������

����������������������

ww, 1 e 8 rw, 2

d

������������������������
sd st f

����������������������
w

��������
c

���������������

���������
m

���������

⊥

�����������������������

��������

��������

��������������

����������������������

Default reasoning over domains and concept hierarchies 7

4 Answer Set Programming

Answer set programming is an artificial intelligent reasoning paradigm which
was devised in order to capture some aspects of commonsense reasoning. More
precisely, it is based on the observation that humans constantly tend to jump to
conlusions in real-life situations, and on the idea that this imprecise reasoning
mechanism (amongst other things) allows us to deal with the world effectively.
Formally, jumping to conclusions can be studied by investigating supraclassi-
cal logics, see [15], where supraclassicality means, roughly speaking, that under
such a logic more conclusions can be drawn from a set of axioms (or knowledge
base) than could be drawn using classical (e.g. propositional or first-order) logic.
Answer set programming, as well as the related default logic [3], is also non-
monotonic, in the sense that a larger knowledge base does not necessarily yield
a larger set of conclusions.

We next describe the notion of answer set for extended disjunctive logic pro-
grams, as proposed in [6]. It forms the heart of answer set programming systems
like dlv [4], which have become a standard paradigm in artificial intelligence.

Let V denote a countably infinite set of propositional variables. A rule is an
expression of the form

L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk,

where each of the Li is a literal, i.e. either a propositional variable or of the
form ¬p for some p ∈ V . Given such a rule r, we set Head(r) = {L1, . . . , Ln},
Pos(r) = {Ln+1, . . . , Lm}, and Neg(r) = {Lm+1, . . . , Lk}.

In order to describe the answer set semantics, or stable model semantics, for
extended disjunctive programs, we first consider programs without ∼. Thus, let
P denote an extended disunctive logic program in which Neg(r) is empty for
each rule r ∈ P . A subset X of V± = V ∪ ¬V is said to be closed by rules in P
if, for every r ∈ P such that Pos(r) ⊆ X , we have that Head(r) ∩ X �= ∅. The
set X ∈ 2V

±
is called an answer set for P if it is a minimal subset of V± such

that the following two conditions are satisfied.

1. If X contains complementary literals, then X = V±.
2. X is closed by rules in P .

We denote the set of answer sets of P by α(P). Now suppose that P is an
extended disjunctive logic program that may contain ∼. For a set X ∈ 2V

±
,

consider the program P/X defined as follows.

1. If r ∈ P is such that Neg(r)∩X is not empty, then we remove r i.e. r �∈ P/X .
2. If r ∈ P is such that Neg(r) ∩X is empty, then the rule r′ belongs to P/X ,

where r′ is defined by Head(r′) = Head(r), Pos(r′) = Pos(r) and Neg(r′) = ∅.

The program transformation (P, X) �→ P/X is called the Gelfond-Lifschitz
transformation of P with respect to X .

8 Pascal Hitzler

It is clear that the program P/X does not contain ∼ and therefore α (P/X)
is defined. We say that X is an answer set or stable model of P if X ∈ α (P/X).
So, answer sets of P are fixed points of the operator GLP introduced by Gelfond
and Lifschitz in [6], where GLP (X) = α (P/X). We note that the operator GLP

is in general not monotonic, and call it the Gelfond-Lifschitz operator of P .
Now consider the coherent algebraic cpo T

V from Example 1, and call an
extended program over T

V a propositional program if for each rule Y ← (C, N)
in P we have that Y , C and N contain only atoms in T

V or ⊥, i.e. propositional
variables or their negations (with respect to ¬) or ⊥, Y does not contain ⊥, and
C is a singleton clause.

Now if P is a propositional program, then let P ′ be the extended disjunctive
logic program obtained from P by transforming each rule

{p1, . . . , pn} ← {q1 . . . qm},∼{r1, . . . , rk}

from P into the rule

p1, . . . , pn ← q1, . . . , qm,∼r1, . . . ,∼rk,

in P ′, where pi, qj , rl are atoms in T
V , i.e. literals over V . If q1 . . . qm = ⊥, then

it is omitted. If ri = ⊥ for some i, then the rule will never play a role, so we can
assume without loss of generality that this does not occur. This transformation
can obviously be reversed. We say that P and P ′ are associated with each other.

Theorem 1. Let P be a propositional program and P ′ be its associated extended
disjunctive logic program. Then w ∈ T

V is a min-answer model of P if and only
if w′ = {p ∈ V± | w |= {p}}, i.e. the set of all atoms for which w is a model, is
an answer set for P ′. Conversely, if X ⊆ V± is an answer set for P ′ which does
not contain complementary literals, then x =

⊔
X ∈ T

V exists and is a min-
answer model of P . If V± is an answer set for P ′ (and hence the only answer
set of P ′), then P does not have any min-answer models.

Theorem 1 shows that reasoning (or programming) with min-answer models
encompasses answer set programming with extended disjunctive logic programs.
More precisely, we obtain the classical answer set programming paradigm by
restricting our attention to the domain T

V . What do we gain through this more
general framework? One the one hand, we improve in conceptual clarity: Our re-
sults open up the possibility of a domain-theoretical (and domain-logical) treat-
ment of answer set programming in the basic paradigm, and possibly also for
some extensions recently being studied. On the other hand, we gain flexibility
due to the possible choice of underlying domain, which we like to think of as
background knowledge on which we program or which we query. The choice of
T
V corresponds to the language of propositional logic, and all order structures

satisfying the requirements of being coherent algebraic cpos are suitable. These
requirements are rather weak from a computational perspective, because among
the computationally relevant order structures studied in domain theory, coher-
ent algebraic cpos form a rather general class. In particular, they encompass all
finite partial orders, and all complete algebraic lattices.

Default reasoning over domains and concept hierarchies 9

In Section 5 we will actually propose a very general way — using formal
concept analysis — of obtaining suitable order structures.

The following theorem is an immediate corollary from Theorem 1.

Theorem 2. Let P be a propositional program not containing ∼ and P ′ be its
associated extended disjunctive program. If w ∈ T

V is a minimal model of P
then w′ = {p ∈ V± | w |= {p}} is minimally closed by rules in P ′. Conversely, if
X ⊆ V± is minimally closed by rules in P ′ and does not contain complementary
literals, then x =

⊔
X ∈ T

V exists and is a minimal model of P . If V± is
minimally closed by rules in P ′ (and thus is the only answer set of P ′), then P
does not have any models.

In particular, Theorem 1 shows that the minimal model semantics for definite
logic programs [16] can be recovered using the original approach from [1] without
default negation. Likewise, the same holds for the stable model semantics for
normal logic programs [17], which are non-disjunctive ones without negation ¬.

5 Formal Concept Analysis

Formal concept analysis is a powerful lattice-based approach to symbolic data
analysis. It was devised in the 1980s [18] and was originally inspired by ideas
from philosophy, more precisely by Port Royal Logic, which describes a con-
cept as consisting of a set of objects (the extent of the concept) and a set of
attributes (the intent of the concept) such that these objects share exactly all
these attributes and vice-versa. In the meantime, an active community is driving
the field, covering mathematical foundations, logical aspects, and applications
in data mining, ontology engineering, artificial intelligence, and elsewhere.

The formation of concepts can be viewed as logical closure in the sense that
a set of attributes B implies an attribute m (which may or may not be contained
in B), if all objects which fall under all attributes in B also share the attribute
m. This will be made more precise below. We thus obtain a notion of logical
consequence on attribute sets, respectively a natural implicative theory, which
corresponds to so-called association rules in data mining. This implicative theory
is intimately related to the logic RZ, a point which we mentioned earlier and
will study formally in the following. The strong correspondence between the
logic RZ and the formation of formal concepts from formal contexts has already
been reported in [7] for the case of finite contexts. We will now supplement these
results by a theorem which treats the case of infinite contexts.

We first introduce the notions of formal context and concept as used in formal
concept analysis. We follow the standard reference [8].

A (formal) context is a triple (G, M, I) consisting of two sets G and M and
a relation I ⊆ G ×M . Without loss of generality, we assume that G ∩M = ∅.
The elements of G are called the objects and the elements of M are called the
attributes of the context. For g ∈ G and m ∈ M we write gIm for (g, m) ∈ I,
and say that g has the attribute m.

10 Pascal Hitzler

For a set A ⊆ G of objects we set A′ = {m ∈M | gIm for all g ∈ A}, and for
a set B ⊆M of attributes we set B′ = {g ∈ G | gIm for all m ∈ B}. A (formal)
concept of (G, M, I) is a pair (A, B) with A ⊆ G and B ⊆M , such that A′ = B
and B′ = A. We call A the extent and B the intent of the concept (A, B). For
singleton sets, e.g. B = {b}, we simplify notation by writing b′ instead of {b}′.

The set B(G, M, I) of all concepts of a given context (G, M, I) is a complete
lattice with respect to the order defined by (A1, B1) ≤ (A2, B2) if and only if
A1 ⊆ A2, which is equivalent to the condition B2 ⊆ B1. B(G, M, I) is called the
concept lattice of the context (G, M, I).

Remark 1. For every set B ⊆ M of attributes we have that B′ = B′′′, so that
(B′, B′′) is a concept. Hence, the concept lattice of a context (G, M, I) can be
identified with the set {B′′ | B ⊆M}, ordered by reverse subset inclusion.

Furthermore, if m ∈M is an attribute, then we call (m′, m′′) = ({m}′, {m}′′)
an attribute concept. Dually, if g ∈ G is an object, then we call (g′′, g′) =
({g}′′, {g}′) an object concept. The subposet L of B(G, M, I) consisting of all
attribute and object concepts is called the Galois subhierarchy or AOC associ-
ated with (G, M, I). By abuse of notation, we denote members of L by elements
from G∪M . This is justified by the obvious possibility to identify the set L with
(G∪M)/∼, where ∼ is the equivalence relation identifying each two elements in
G ∪M whose associated concepts coincide. We denote the induced order on L
by ≤.

Theorem 3. Let (G, M, I) be a formal context, B(G, M, I) be the corresponding
formal concept lattice, and (L,≤) be the Galois subhierarchy associated with
(G, M, I). Let (D,�) be a coherent algebraic cpo and ι : L → D be an order-
reversing injective function which covers all of K(D), i.e. for each c ∈ K(D)
there exists some a ∈ L with ι(a) = c. Furthermore, let A = {m1, . . . , mn} ⊆M
such that ι(mi) ∈ K(D) for all i. Then

A′′ = {m | {{ι(m1)}, . . . , {ι(mn)}} |= {ι(m)}}.

We remark that Theorem 3 applies to all finite contexts since the Galois
subhierarchy of a finite context is always (and trivially) a coherent algebraic
cpo where all elements are compact; a bottom element may have to be added,
though. This finite case is also a corollary from [7, Theorem 3], taking Example
1 and Proposition 1 from [7] into account.

The following example is taken from [7]; it complements Example 2.

Example 3. Consider the formal context given in Table 1. It shall represent, in
simplified form, a selection of set dinners from a restaurant menu. The Galois
subhierarchy of its formal concept lattice is depicted in Figure 1. Concepts in
this setting correspond to types of dinners, e.g. one may want to identify the
concept with extent {4, 6, 7} and intent {st, m, c}, using the abbreviations from
Figure 1, to be the heavy meals, while the expensive ones are represented by
the attribute concept of e, and turn out to always include coffee. Using the logic

Default reasoning over domains and concept hierarchies 11

Table 1. Formal context for Example 3.

salad starter fish meat red wine white wine water dessert coffee expensive

1 × × ×
2 × × ×
3 × × × × × ×
4 × × × × × ×
5 × × × ×
6 × × × × ×
7 × × × × × × × ×
8 × × ×
9 × × ×

RZ, we can for example conclude that a customer who wants salad and fish will
choose one of the meals 3 or 5, since these elements of the poset are exactly
those which are both objects and models of the theory {{sd}, {f}}. Also, he
will always get a starter or a dessert, formally {{sd}, {f}} |= {st, d}. To give
a slightly more sophisticated example, suppose that a customer wants salad or
a starter, additionally fish or a dessert, and drinks water. From this we can
conclude that in any case he will get both a salad and a starter. Formally, we
obtain {{sd, st}, {f, d}, {w}} |= {sd} and {{sd, st}, {f, d}, {w}} |= {st}. A little
bit of reflection on the context makes it clear that these inferences are indeed
natural ones.

Let us stop for a moment and dwell on the significance of Theorem 3. We note
first of all that the hypothesis is not very strong from a domain-theoretic per-
spective: we encompass all concept lattices for which some corresponding Galois
subhierarchy forms at least an abstract basis for a coherent algebraic cpo. One
could argue that such or similar conditions have to be satisfied in any case if one
intends to perform computation on an infinite order structure. The conclusion
of the theorem then says that concept closure (or in other words, the under-
lying implicative theory) basically coincides with consequence in RZ, restricted
to finite sets of singleton clauses, which can be interpreted as conjunctions of
elements or items from G∪M . The logic RZ then lifts concept closure to become
part of disjunctive reasoning, in a natural and intuitively appealing way. From
this perspective we can say that the logic RZ is the implicative theory obtained
from concept closure, naturally extended with a notion of disjunction.

What we gain from this perspective is not only a tight relationship between
formal concept analysis and domain theory, but also a non-monotonic reason-
ing paradigm on conceptual knowledge, by utilizing our results in Section 4.
Formal contexts can now be interpreted as providing background knowledge in
elementary form, which can be queried, or programmed on, by using disjunctive
logic programs with default negation, as described in Section 4. From this, we
obtain a clear distinction between the (monotonic!) background knowledge or
underlying database, and the program written on top of it, allowing for a clear

12 Pascal Hitzler

separation of the nonmonotonic aspects which are diffcult to deal with efficiently
and effectively.

6 Related Work

Logical aspects of formal concept analysis have certainly received ample atten-
tion in the literature, see e.g. [19, 20]. In particular, the contextual attribute logic
due to Ganter and Wille [19] is closely related to our results in Section 5, and
for the finite case this was spelled out in [7].

The study of relationships between formal concept analysis and domain the-
ory has only recently received attention. Zhang and Shen [21, 22] approach the
issue from the perspective of Chu spaces and Scott information systems. A
category-theoretical setting was developed from these investigations in [23]. The
work just mentioned has a different focus than our result in Section 5 and [7], but
develops along similar basic intuitions and is mainly compatible with ours. Its
flavour is more category-theoretical and targets categorial constructions which
may be used for ontology engineering.

Osswald and Petersen [24, 25] study an approach to encoding knowledge in
order structures which is inspired from linguistics. They obtain a framework
which is more flexible than formal concept analysis, and appears to be compatible
with our results in Section 5 and [7]. They also propose a default reasoning
paradigm, but it remains to be worked out how it relates to ours.

Relationships between domain theory and nonmonotonic reasoning have hardly
been studied in the literature, except from series of papers by Rounds and Zhang,
e.g. [1, 26, 27], and Hitzler and Seda, e.g. [28–30]. This is remarkable since do-
main theory has become a respected paradigm in the theory of computing with
widespread applications. We believe that this relationship deserves much more
attention in order to understand the theoretical underpinnings of nonmonotonic
reasoning and other artificial intelligence paradigms.

Default reasoning on concept hierarchies has also been studied before, for
example in the form of default reasoning in semantic networks, e.g. [31], and as
nonmonotonic reasoning with ontologies, e.g. [32, 33]. Since ontology creation is a
currently evolving area of application for formal concept analysis, we expect that
our paradigm will also be useful for similar purposes. Another related paradigm
is logic programming with inheritance [34], where the underlying order structures
are is-a hierarchies, which do not have a similarly rich logical structure as the
logic RZ or Galois subhierarchies of formal concept lattices.

7 Conclusions and Further Work

The work presented in this paper touches domain theory, nonmonotonic reason-
ing, and symbolic data analysis. The contribution should mainly be considered
as an inspiration for further investigations which grow naturally out of our ob-
servations. There are several starting points for such work, and some of them
bear potential for full research projects which are interesting in their own right.

Default reasoning over domains and concept hierarchies 13

Concerning the relations worked out between the logic RZ and nonmonotonic
reasoning, we have described a general reasoning framework which encompasses
answer set programming with extended disjunctive programs as a special case,
namely with the domain restricted to T

V . This opens up new ways for domain-
theoretic analysis for nonmonotonic reasoning in this paradigm, with the hope
that e.g. decidability aspects could be tackled — an issue which has so far re-
ceived only little attention in the nonmonotonic reasoning community. On the
other hand, by substituting T

V by other domains, it should be possible to lift
answer set programming out of the restricted syntax provided by the fragment
of first-order logic usually considered.

Concerning the relations between the logic RZ and formal concept analysis
displayed in Section 5, we can understand the logic RZ as a means of reasoning
with conceptual knowledge, related to the approach presented in [19], as already
mentioned in [7]. Indeed, the choice of T

V as underlying domain relates to answer
set programming, while the choice of other domains can be motivated by formal
concept analysis. Of particular interest are also the infinitary aspects of this, and
the potential of the domain-theoretic approach to deal with questions of com-
putability and query-answering even on infinite contexts. From this perspective,
it should be investigated under which conditions a context satisfies the hypothe-
ses of Theorem 3. It would also be important to relate this result to those of [21],
where domain theory and formal concept analysis are being related by means of
Chu space theory, and [24, 25], where a general approach encompassing formal
concept analysis is described for obtaining order structures carrying hierarchical
knowledge.

Finally, we would like to emphasize that the results presented here lead to
a nonmonotonic reasoning paradigm on conceptual knowledge. More precisely,
starting from a given (and possibly infinite) context, we have provided means
for doing nonmonotonic reasoning on the Galois subhierarchy of the context.
Since the logic RZ captures the notion of concept closure, we obtain a reasoning
paradigm dealing with conceptual knowledge in a way very natural to formal
concept analysis. On the other hand, the nonmonotonic reasoning paradigm
thus put in place is very close in spirit to mainstream developments in answer
set programming, and can thus benefit from the experience gained within this
field of research.

We believe that the resulting nonmonotonic reasoning paradigm with concep-
tual knowledge bears potential for applications. One could envisage background
knowledge in the form of formal contexts, and sophisticated queries or planning
tasks expressed by programs. We are not aware of any other work which pro-
poses a default reasoning paradigm on conceptual knowledge compatible with
mainstream research developments in nonmonotonic reasoning.

References

1. Rounds, W.C., Zhang, G.Q.: Clausal logic and logic programming in algebraic
domains. Information and Computation 171 (2001) 156–182

14 Pascal Hitzler

2. Abramsky, S., Jung, A.: Domain theory. In Abramsky, S., Gabbay, D., Maibaum,
T.S., eds.: Handbook of Logic in Computer Science. Volume 3. Clarendon, Oxford
(1994)

3. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1980) 81–132

4. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for
nonmonotonic reasoning. In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings
of the 4th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97. Volume 1265 of Lecture Notes in Artificial Intelligence.,
Springer, Berlin (1997)

5. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable
model semantics. Artificial Intelligence (200x) To appear.

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 (1991) 365–385

7. Hitzler, P., Wendt, M.: Formal concept analysis and resolution in algebraic do-
mains. In de Moor, A., Ganter, B., eds.: Using Conceptual Structures — Contri-
butions to ICCS 2003, Shaker Verlag, Aachen (2003) 157–170

8. Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations.
Springer, Berlin (1999)

9. Scott, D.S.: Domains for denotational semantics. In Nielsen, M., Schmidt,
E.M., eds.: Automata, Languages and Programming, 9th Colloquium, July 1982,
Aarhus, Denmark, Proceedings. Volume 140 of Lecture Notes in Computer Sci-
ence., Springer, Berlin (1982) 577–613

10. Hofmann, K.H., Mislove, M.W.: Local compactness and continuous lattices. In
Banaschewski, B., Hofmann, R., eds.: Continuous Lattices, Proceedings. Volume
871 of Lecture Notes in Mathematics., Springer-Verlag (1981) 209–248

11. Plotkin, G.: T ω as a universal domain. Journal of Computer and System Sciences
17 (1978) 209–236

12. Fitting, M.: A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming 2 (1985) 295–312

13. Hitzler, P.: A resolution theorem for algebraic domains. In Gottlob, G., Walsh,
T., eds.: Proceedings of the 18th International Joint Conference on Artificial In-
telligence, Acapulco, Mexico, August 2003, Morgan Kaufmann Publishers (2003)
1339–1340

14. Hitzler, P.: A generalized resolution theorem. Journal of Electrial Engineering,
Slovak Academy of Sciences 55 (2003) 25–30

15. Makinson, D.: Bridges between classical and nonmonotonic logic. Logic Journal
of the IGPL 11 (2003) 69–96

16. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1988)

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In Kowalski, R.A., Bowen, K.A., eds.: Logic Programming. Proceedings of the
5th International Conference and Symposium on Logic Programming, MIT Press
(1988) 1070–1080

18. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of con-
cepts. In Rival, I., ed.: Ordered Sets. Reidel, Dordrecht-Boston (1982) 445–470

19. Ganter, B., Wille, R.: Contextual attribute logic. In Tepfenhart, W.M., Cyre, W.R.,
eds.: Conceptual Structures: Standards and Practices. Proceedings of the 7th Inter-
national Conference on Conceptual Structures, ICCS ’99, July 1999, Blacksburgh,
Virginia, USA. Volume 1640 of Lecture Notes in Artificial Intelligence., Springer,
Berlin (1999) 377–388

Default reasoning over domains and concept hierarchies 15

20. Wille, R.: Boolean judgement logic. In Delugach, H., Stumme, G., eds.: Conceptual
Structures: Broadening the Base, Proceedings of the 9th International Conference
on Conceptual Structures, ICCS 2001, July 2001, Stanford, LA, USA. Volume 2120
of Lecture Notes in Artificial Intelligence., Springer, Berlin (2001) 115–128

21. Zhang, G.Q.: Chu spaces, concept lattices, and domains. In: Proceedings of the
Nineteenth Conference on the Mathematical Foundations of Programming Seman-
tics, March 2003, Montreal, Canada. Volume 83 of Electronic Notes in Theoretical
Computer Science. (2003)

22. Zhang, G.Q., Shen, G.: Approximable concepts, Chu spaces, and information
systems. Theory and Applications of Categories (200x) To appear.

23. Hitzler, P., Zhang, G.Q.: A cartesian closed category of approximable concept
structures. In Pfeiffer, H., Wolff, K., eds.: Proceedings of the International Con-
ference On Conceptual Structures, Huntsville, Alabama, USA. Lecture Notes in
Computer Science, Springer (2004) To appear.

24. Osswald, R.: Assertions, conditionals, and defaults. In: Proceedings of the 1st
Workshop on Conditionals, Information, and Inference. Lecture Notes in Artificial
Intelligence (200x) To appear.

25. Osswald, R., Petersen, W.: A logical approach to data driven classification. In
Günter, A., Kruse, R., Neumann, B., eds.: KI-2003: Advances in Artificial Intel-
ligence. Volume 2821 of Lecture Notes in Artificial Intelligence., Springer (2003)
267–281

26. Zhang, G.Q., Rounds, W.C.: Reasoning with power defaults (preliminary report).
In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings of the Fourth International
Conference on Logic Programming and Non-Monotonic Reasoning, LPNMR’97,
Dagstuhl, Germany. Volume 1265 of Lecture Notes in Computer Science., Springer
(1997) 152–169

27. Zhang, G.Q., Rounds, W.C.: Semantics of logic programs and representation of
Smyth powerdomains. In Keimel, K., et al., eds.: Domains and Processes. Kluwer
(2001) 151–179

28. Hitzler, P., Seda, A.K.: Some issues concerning fixed points in computational logic:
Quasi-metrics, multivalued mappings and the Knaster-Tarski theorem. In: Pro-
ceedings of the 14th Summer Conference on Topology and its Applications: Special
Session on Topology in Computer Science, New York. Volume 24 of Topology Pro-
ceedings. (1999) 223–250

29. Hitzler, P., Seda, A.K.: Generalized metrics and uniquely determined logic pro-
grams. Theoretical Computer Science 305 (2003) 187–219

30. Seda, A.K., Hitzler, P.: Topology and iterates in computational logic. In: Proceed-
ings of the 12th Summer Conference on Topology and its Applications: Special
Session on Topology in Computer Science, Ontario, August 1997. Volume 22 of
Topology Proceedings. (1997) 427–469

31. Shastri, L.: Default reasoning in semantic networks: A formalization of recognition
and inheritance. Artificial Intelligence 39 (1989) 283–355

32. Baader, F., Hollunder, B.: Embedding defaults into terminological representation
systems. J. Automated Reasoning 14 (1995) 149–180

33. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Trans. Comput. Logic 3 (2002) 177–225

34. Buccafurri, F., Leone, N.: Disjunctive logic programs with inheritance. Theory
and Practice of Logic Programming 2 (2002) 293–321

16 Pascal Hitzler

Appendix: Proofs

Theorem 1 Let P be a propositional program and P ′ be its associated extended
disjunctive logic program. Then w ∈ T

V is a min-answer model of P if and only
if w′ = {p ∈ V± | w |= {p}}, i.e. the set of all atoms for which w is a model, is an
answer set for P ′. Conversely, if X ⊆ V± is an answer set for P ′ which does not
contain complementary literals, then x =

⊔
X ∈ T

V exists and is a min-answer
model of P . If V± is an answer set for P ′ (and hence the only answer set of P ′),
then P does not have any min-answer models.

Proof. Note that (P/w)′ = (P ′/w′), so we first restrict our attention to programs
without ∼. Let Q, Q′ be such programs associated with each other. We show first
that for every min-answer model v for Q we have that

v′ =
{
p ∈ V± | v |= {p}

}

is closed by rules in Q′. Then we show that for every answer set X of Q′ we
have that x =

⊔
X is an answer model of Q. Then we proceed with showing

that v′ is an answer set if v is a min-answer model, and finally that x =
⊔

X is
a min-answer model for Q whenever X is an answer set for Q′.

So let v ∈ T
V be a min-answer model for Q. Then v is minimal among all z

with z |= fix
(
TQ/v

)
= fix (TQ) = cons(Q), i.e. v is a minimal model of Q. Note

that v =
⊔

v′ =
⊔
{p ∈ V± | v |= {p}}, so v′ cannot contain complementary

literals, since two complementary literals do not have a common upper bound in
T
V . We show next that v′ is closed by rules in Q′. So let p1, . . . , pn ← q1, . . . , qm

be a rule in Q′ such that q1, . . . , qm ∈ v′. But then v |=
⊔
{q1, . . . , qm} = q1 . . . qm

and {p1, . . . , pn} ← {q1 . . . qm} is a clause in Q. Since v is a model of Q we obtain
v |= {p1, . . . , pn} and hence v |= {pi} for some i, which implies pi ∈ v′ as desired.

Now let X ⊆ V± be an answer set for Q′ which does not contain comple-
mentary literals. Then x =

⊔
X exists, and we show that it is an answer model

of Q. So let {p1, . . . , pn} ← {q1 . . . qm} be a clause in Q with x |= {q1 . . . qm}.
Then {q1, . . . , qm} ⊆ X , hence pi ∈ X for some i, and consequently x |= {pi} as
desired.

For a min-answer model v for Q we know already that v′ does not contain
complementary literals and is closed by rules in Q′. Now let Y ⊆ v′ be an answer
set for Q′. Then

⊔
Y exists and

⊔
Y �

⊔
v′ = v, hence

⊔
Y = v by minimality

of v, and consequently Y = v′, so v′ is an answer set for Q′.
For an answer set X for Q′ we know already that x =

⊔
X is an answer

model of Q. Now let y � x be a min-answer model for Q. Then y′ = {p ∈ V± |
y |= {p}} ⊆ X is an answer set for Q′, hence y′ = X by minimality of X , and
consequently y = x, so x is a min-answer model for Q.

This closes the proof for programs without ∼. Now let P be a propositional
program including ∼.

Let w be a min-answer model for P , hence w is minimal among all v with
v |= fix

(
TP/w

)
, and in particular w is a min-answer model for P/w. So w′ =

{p ∈ V± | w |= {p}} is an answer set for (P/w)′ = P ′/w′ as desired.

Default reasoning over domains and concept hierarchies 17

Let X be an answer set for P ′ which does not contain complementary literals.
Then X in particular is an answer set for P ′/X = (P/

⊔
X)′, hence x =

⊔
X is

a min-answer model for P/x, and consequently also a min-answer set model P
as desired.

If X is an answer set for P ′ containing complementary literals then X = V±,
and X is the only answer set for P ′. Now if P had a min-answer model w, then
w′ = {p ∈ V± | w |= {p}} ⊆ X were an answer set for P . But then w′ = X which
is impossible since this implies w =

⊔
X , but the supremum does not exist.

Theorem 3 Let (G, M, I) be a formal context, B(G, M, I) be the corresponding
formal concept lattice, and (L,≤) be the Galois subhierarchy associated with
(G, M, I). Let (D,�) be a coherent algebraic cpo and ι : L → D be an order-
reversing injective function which covers all of K(D), i.e. for each c ∈ K(D) there
exists some a ∈ L with ι(a) = c. Furthermore, let A = {m1, . . . , mn} ⊆ M such
that ι(mi) ∈ K(D) for all i. Then

A′′ = {m | {{ι(m1)}, . . . , {ι(mn)}} |= {ι(m)}}.

Proof. Let m be such that {{ι(m1)}, . . . , {ι(mn)}} |= {ι(m)}. We have to show
that m ∈ A′′. So let g ∈ G be such that gImi for all i, which implies g ≤ mi for all
i. So ι(g) � ι(mi) for all i, i.e. ι(g) |= {{ι(m1)}, . . . , {ι(mn)}}, and consequently
ι(g) |= {ι(m)}. It follows that ι(g) � ι(m) which implies g ≤ m, hence gIm.
Since g was chosen arbitrarily, we conclude m ∈ A′′.

Conversely, let m ∈ A′′ and let w be chosen arbitrarily with w ∈ mub ι(A).
Then it remains to show that ι(m) � w since this implies ι(m) � x for all x with
x |= {{ι(m1)}, . . . , {ι(mn)}} by arbitrary choice of w, and hence

{{ι(m1)}, . . . , {ι(mn)}} |= {ι(m)}

as desired.
In order to show ι(m) � w first note that w ∈ K(D) by coherency and our

assumption on A. We consider the two cases (i) ι−1(w) ∈ G and (ii) ι−1(w) ∈M .
(i) If ι−1(w) = g ∈ G, then g ≤ mi for all i, hence gImi for all i and

consequently gIm. We obtain g ≤ m, hence w = ι(g) � ι(m) as desired.
(ii) If ι−1(w) = a ∈ M , then a ≤ mi for all i, hence a′ ⊆ m′

i for all i. So for
all g with gIa we have gImi for all i, and by m ∈ A′′ we obtain gIm. We have
just shown that g ∈ a′ implies g ∈ m′, so a′ ⊆ m′, which is equivalent to a ≤ m.
Hence w = ι(a) � ι(m) as desired.

