The Well-Founded Semantics
is a Stratified Fitting Semantics

Pascal Hitzler and Matthias Wendt

Knowledge Representation and Reasoning Group, Artificial Intelligence Institute
Department of Computer Science, Dresden University of Technology
Dresden, Germany

{phitzler,mw177754}@inf.tu-dresden.de

www.wv.inf.tu-dresden.de

Technical Report WV-02-07

Abstract

Part of the theory of logic programming and nonmonotonic reasoning concerns the study
of fixed-point semantics for these paradigms. While several different semantics have been
proposed, and some have been more successful than others, the exact relationships between
the approaches have not yet been fully understood. In this paper, we give new characteri-
zations, using level mappings, of the Fitting semantics, the well-founded semantics, and the
weakly perfect model semantics. The results will unmask the well-founded semantics as a
stratified version of the Fitting semantics.

Contents

1 Introduction

2 Preliminaries and Notation
3 Fitting Semantics

4 Well-Founded Semantics

5 Weakly Perfect Model Semantics

6 Conclusions and Further Work

14

1 Introduction

One of the very stimulating research questions in logic programming and nonmonotonic rea-
soning has been the search for an appropriate declarative understanding of negation. Several
different semantics have been proposed, see e.g. [Sub99], each being more or less convincing,
depending on one’s point of view, which may be that of a programmer, or motivated by
common-sense reasoning.

Among the semantics based on three-valued logics, the Fitting semantics [Fit85] and the
well-founded semantics [VGRS91] are prominent and widely acknowledged choices. Theoret-
ical relationships between them have been etablished, e.g. in [FitOx] by using lattice-based
logic programming in four-valued logic, an approach which was recently extended in [DMT00].
The development of the weakly perfect model semantics, due to [PP90], was motivated by
the intuition that recursion should be allowed through positive information, but not through
negation. As such, it was developed out of the notion of stratification [ABWS88, Prz88]. We
will see that the well-founded semantics achieves this very goal in a much better way than the
weakly perfect model semantics. This will probably be no surprise for the specialist, although
we are not aware of any formal argument for this case, and we believe that a presentation
from our point of view is rather clear and convincing.

We will provide new, and uniform, characterizations, based on level mappings, of the
Fitting semantics, the well-founded semantics, and the weakly perfect model semantics. Level
mappings are mappings from Herbrand bases to ordinals, i.e. they induce orderings on the
set, of all ground atoms while disallowing infinite descending chains. They have been studied
in termination analysis for logic programming, e.g. in [Bez89, AP93, Mar96], where they
appear naturally, they have been used for defining classes of programs with desirable semantic
properties, e.g. in [ABW88, Prz88, Cav91], they are intertwined with topological investigations
of fixed-point semantics in logic programming, as studied e.g. in [Fit94, Sed95, Hit01, HS0x],
and are relevant to some aspects of the study of relationships between logic programming
and artificial neural networks [HKS99]. Our motivation, however, is quite different. We will
employ level mappings in order to give uniform characterizations of different semantics in
nonmonotonic reasoning, and we will this way employ them to unmask the well-founded
semantics as a stratified version of the Fitting semantics, i.e. we will see that the difference
between the Fitting semantics and the well-founded semantics is, in a nutshell, that at some
particular point the former prevents recursion, while the latter at the same point prevents
only recursion through negation.

The paper is structured as follows. Section 2 contains preliminaries which are needed
to make the paper relatively self-contained. Section 3 contains our new characterization of
the Fitting semantics, while Section 4 covers the new characterization of the well-founded
semantics. In Section 5 the weakly perfect model semantics will be studied. We conclude with
a summary and a discussion of further work in Section 6.

2 Preliminaries and Notation

A (normal) logic program is a finite set of (universally quantified) clauses of the form V(A «+
Ay N~ NAy AN =By A --- A —By,), commonly written as A < Ay,..., A,,—By,...,7Bp,

where A, A;, and B, fori=1,...,nand j =1,...,m, are atoms over some given first order
language. A is called the head of the clause, while the remaining atoms make up the body of
the clause, and depending on context, a body of a clause will be a set of literals (i.e. atoms or
negated atoms) or the conjunction of these literals. Care will be taken that this identification
does not cause confusion. We allow a body, i.e. a conjunction, to be empty, in which case it
always evaluates to true. A clause with empty body is called a unit clause or a fact. A clause
is called definite, if it contains no negation symbol. A program is called definite if it consists
only of definite clauses. We will usually denote atoms with A or B, and literals, which may
be atoms or negated atoms, by L or K.

Given a logic program P, we can extract from it the components of a first order language.
The corresponding set of ground atoms, i.e. the Herbrand base of the program, will be denoted
by Bp. For a subset I € Bp, we set =1 = {=A | A € Bp}. The set of all ground instances of
P with respect to Bp will be denoted by ground(P). A (three-valued or partial) interpretation
I for P is a subset of Bp U - Bp which is consistent, i.e. whenever A € I then —A ¢ I. We
say that A is true with respect to (or in) I if A € I, we say that A is false with respect to (or
in) I if =A € I, and if neither is the case, we say that A is undefined with respect to (or in)
I. A body, i.e. a conjunction of literals, is true in an interpretation I if every literal in the
body is true in 7, it is false in [if one of its literals is false in I, and otherwise it is undefined
in I. For a negated literal L = = A we will find it convenient to write =L € I if A € I. By Ip
we denote the set of all (three-valued) interpretations of P. It is a cpo via set-inclusion, i.e. it
contains the empty set as least element, and every ascending chain has a supremum, namely
its union. A model of P is an interpretation I € Ip such that for each clause A < body we
have that body C I implies A € I. A total interpretation is an interpretation I such that no
A € Bp is undefined in I.

For an interpretation I and a program P, an I-partial level mapping for P is a partial
mapping [: Bp — «a with domain dom(l) = {A | A € I or mA € [}, where « is some
(countable) ordinal. We extend every level mapping to literals by setting I(—A) = [(A) for
all A € dom(l). A (total) level mapping is a total mapping [: Bp — « for some (countable)
ordinal a.

Given a normal logic program P and some I € Ip, we say that U C Bp is an unfounded
set (of P) with respect to I if each atom A € U satisfies the following condition: For each
clause A < body in ground(P) (at least) one of the following holds.

(Ui) Some (positive or negative) literal in body is false in I.
(Uii) Some (non-negated) atom in body occurs in U.

Given a normal logic program P, we define the following operators on Ip. Tp(I) is the set
of all A € Bp such that there exists a clause A < body in ground(P) such that body is true
in I. Fp(I) is the set of all A € Bp such that for all clauses A < body in ground(P) we have
that body is false in 1. Up(I) is the greatest unfounded set (of P) with respect to I, which
always exists due to [VGRS91]. Finally, define

Op(I) = Tp(I) U—~Fp(I) and
Wp(I) = Tp(I) U ~Up(I)

for all I € Ip. The operator ®p is due to [Fit85], while Wp is due to [VGRS91]. Both are
monotonic on the cpo Ip, hence have a least fixed point by the Tarski fixed-point theorem, and
we can obtain these fixed points by defining, for each monotonic operator F, that F'10 = (),
F1(a+1) = F(F1a) for any ordinal a, and F' 13 = |J,_4F 1 v for any limit ordinal
(3, and the least fixed point of F' is obtained as F' T « for some ordinal «. The least fixed
point of ®p is called the Kripke-Kleene model or Fitting model of P, determining the Fitting
semantics of P, while the least fixed point of Wp is called the well-founded model of P, giving
the well-founded semantics of P.

Given a program P, we define the operator T% on subsets of Bp by T (I) = Tp(IU~(Bp\
I)). It is well-known that for definite programs this operator is monotonic on the set of all
subsets of Bp, with respect to subset inclusion. Indeed it is Scott-continuous [L1088, SHLG94|
and, via Kleene’s fixed-point theorem, achieves its least fixed point M as the supremum of the
iterates T3 t'n for n € N. So M is the least two-valued model of P. In turn, we can identify M
with the total interpretation M U —(Bp \ M), which we will call the definite (partial) model
of P.

In order to avoid confusion, we will use the following terminology: the notion of interpreta-
tion will by default denote consistent subsets of BpU—Bp, i.e. interpretations in three-valued
logic. We will sometimes emphasize this point by using the notion partial interpretation. By
two-valued interpretations we mean subsets of Bp. Both interpretations and two-valued inter-
pretations are ordered by subset inclusion. Each two-valued interpretation I can be identified
with the partial interpretation I’ = TU—=(Bp\I). Note however, that in this case I' is always a
maximal element in the ordering for partial interpretations, while [is in general not maximal
as a two-valued interpretation.

3 Fitting Semantics
We give a new characterization, using level mappings, of the Fitting semantics.

3.1 Definition Let P be a normal logic program, I be a model of P, and [be an [-partial
level mapping for P. We say that P satisfies (F) with respect to I and l, if each A € dom(l)
satisfies one of the following conditions.

(Fi) A € I and there exists a clause A < Ly,..., L, in ground(P) with head A such that
L; € I and I(A) > I(L;) for all i.

(Fii) =A € I and for each clause A < Ly, ..., L, in ground(P) with head A there exists i

If A € dom(l) satisfies (Fi), then we say that A satisfies (Fi) with respect to I and [, and
similarly if A € dom(l) satisfies (Fii).

3.2 Theorem Let P be a normal logic program with Fitting model M. Then M is the
greatest model among all models I, for which there exists an [-partial level mapping [for P
such that P satisfies (F') with respect to I and [.

Proof: Let Mp be the Fitting model of P and define the Mp-partial level mapping [p as
follows: [p(A) = a, where « is the least ordinal such that A is not undefined in ®p1(a + 1).
The proof will be established by showing the following facts: (1) P satisfies (F) with respect
to Mp and lp. (2) If I is a model of P and [an I-partial level mapping such that P satisfies
(F) with respect to I and [, then I C Mp.

(1) Let A € dom(lp) and [p(A) = a. We consider two cases.

(Case i) If A € Mp, then A € Tp(®Pp 1), hence there exists a clause A < body in
ground(P) such that body is true in ®p1«. Thus, for all L; € body we have that L; € &pTa,
and hence Ip(L;) < a and L; € Mp for all i. Consequently, A satisfies (Fi) with respect to
Mp and [p.

(Case ii) If A € Mp, then A € Fp(®pTa), hence for all clauses A < body in ground(P)
there exists L € body with =L € ®p 1T« and Ip(L) < «, hence =L € Mp. Consequently, A
satisfies (Fii) with respect to Mp and [p, and we have established that fact (1) holds.

(2) We show via transfinite induction on o = [(A), that whenever A € I (respectively,
—A € I), then A € ®p 1 (o + 1) (respectively, A € ®p 1 (a + 1)). For the base case,
note that if [(A) = 0, then A € I implies that A occurs as the head of a fact in ground(P),
hence A € ®p 11, and —A € I implies that there is no clause with head A in ground(P),
hence A € ®p11. So assume now that the induction hypothesis holds for all B € Bp with
[(B) < a.. We consider two cases.

(Case i) If A € I, then it satisfies (Fi) with respect to I and [. Hence there is a clause
A < body in ground(P) such that body C I and [(K') < « for all K € body. Hence body C Mp
by induction hypothesis, and since Mp is a model of P we obtain A € Mp.

(Case ii) If =A € I, then A satisfies (Fii) with respect to I and [. Hence for all clauses
A < body in ground(P) we have that there is K € body with =K € I and I(K) < «. Hence
for all these K we have =K € Mp by induction hypothesis, and consequently for all clauses
A < body in ground(P) we obtain that body is false in Mp. Since Mp = ®p(Mp) is a fixed
point of the ®p-operator, we obtain =A € Mp. This establishes fact (2) and concludes the
proof. [|

The following corollary follows immediately as a special case, and is closely related to
results reported in [HS99, HSOx].

3.3 Corollary A normal logic program P has a total Fitting model if and only if there is a
total model I of P and a (total) level mapping [for P such that P satisfies (F) with respect
to I and [.

4 Well-Founded Semantics

We will provide a new characterization, via level mappings, of the well-founded semantics, and
we will argue that from this new point of view the well-founded semantics can be understood
as a stratified version of the Fitting semantics.

Let us first recall the definition of a (locally) stratified program, due to [ABW88, Prz88|:
A normal logic program is called locally stratified if there exists a (total) level mapping
[: Bp — «, for some ordinal «, such that for each clause A < Ay,..., A,,~B;,...,—B,, in
ground(P) we have that [(A) > [(A;) and [(A) > I(B;) foralli=1,...,nand j=1,...,m.

5

The notion of (locally) stratifed program was developed with the idea of preventing re-
cursion through negation, while allowing recursion through positive dependencies. (Locally)
stratified programs have total well-founded models.

There exist locally stratified programs which do not have a total Fitting semantics and
vice versa. In fact, condition (Fii) requires a strict decrease of level between the head and
a literal in the rule, independent of this literal being positive or negative. But, on the other
hand, condition (Fii) imposes no further restrictions on the remaining body literals, while the
notion of local stratification does. These considerations motivate the substitution of condition
(Fii) by the condition (WFii), as given in the following definition.

4.1 Definition Let P be a normal logic program, I be a model of P, and [be an [-partial
level mapping for P. We say that P satisfies (WF) with respect to I and [, if each A € dom()
satisfies one of the following conditions.

(WFi) A € I and there exists a clause A <— L4, ..., L,, in ground(P) with head A such that
L; € I and [(A) > I(L;) for all 4.

(WFii) —A € I and for each clause A <+ Ay,..., A,, By, ..., By, in ground(P) with head
A (at least) one of the following conditions holds:

(WFiia) There exists i € {1,...,n} with =A4; € I and [(A) > [(4;).
(WFiib) There exists j € {1,...,m} with B; € I and [(A) > [(B;).

If A € dom(l) satisfies (WF1i), then we say that A satisfies (WFi) with respect to I and [, and
similarly if A € dom([) satisfies (WFii).

We note that conditions (Fi) and (WFi) are identical. Indeed, replacing (WF1i) by a strat-
ified version such as the following is not satisfactory.

(SFi) A € I and there exists a clause A < Ay,..., A,,—By,..., By, in ground(P) with
head A such that A;, B; € I, I[(A) > I(A;), and [(A) > [(B;) for all ¢ and j.

If we replace condition (WF1i) by condition (SFi), then it is not guaranteed that for any given
program there is a maximal model satisfying the desired properties: Consider the program
consisting of the two clauses p - p and ¢ < —p, and the two (total) models {p, ~¢} and
{=p, ¢}, which are incomparable, and the level mapping [with [(p) = 0 and I(q) = 1.

So, in the light of Theorem 3.2, Definition 4.1 should provide a natural “stratified ver-
sion” of the Fitting semantics. And indeed it does, and furthermore, the resulting semantics
coincides with the well-founded semantics, which is a very satisfactory result.

4.2 Theorem Let P be a normal logic program with well-founded model M. Then M is the
greatest model among all models I, for which there exists an I-partial level mapping [for P
such that P satisfies (WF) with respect to I and [.

Proof: Let Mp be the well-founded model of P and define the Mp-partial level mapping [p as
follows: [p(A) = «, where « is the least ordinal such that A is not undefined in Wp1(a + 1).
The proof will be established by showing the following facts: (1) P satisfies (WF) with respect

to Mp and [p. (2) If I is a model of P and [an I-partial level mapping such that P satisfies
(WF) with respect to I and [, then I C Mp.

(1) Let A € dom(lp) and [p(A) = o. We consider two cases.

(Case i) If A € Mp, then A € Tp(Wp 1 «), hence there exists a clause A < body in
ground(P) such that body is true in Wp1a. Thus, for all L; € body we have that L; € WpTa,
and hence Ip(L;) < a and L; € Mp for all i. Consequently, A satisfies (WFi) with respect to
Mp and lp.

(Case ii) If =A € Mp, then A € Up(WpTa),i.e. A is contained in the greatest unfounded
set of P with respect to WpTa. Hence for each clause A < body in ground(P), at least one of
(Ui) or (Uii) holds with respect to Wp T« and the unfounded set Up(Wp 1 «). If (Ui) holds,
then there exists some literal L € body with =L € Wp 1 «, hence [p(L) < « and condition
(WFiia) (if L is an atom), respectively condition (WFiib) (if L is a negated atom), is satisfied
by A with respect to Mp and [p. If (Uii) holds, then some (non-negated) atom B in body
occurs in Up(Wpta). Hence [p(B) < Ip(A) and A satisfies (WFiia) with respect to Mp and
[p. Thus we have established that fact (1) holds.

(2) We show via transfinite induction on a = [(A), that whenever A € I (respectively,
—A € 1), then A € Wpt(a+ 1) (respectively, =A € Wp T (a + 1)). For the base case, note
that if [(A) = 0, then A € I implies that A occurs as the head of a fact in ground(P), hence
A€ Wptl. If =A € I, then consider the set U of all atoms B with [(B) = 0 and =B € I.
We show that U is an unfounded set of P with respect to I = Mp, and this suffices since
it implies =A € Mp by A € U and the fact that Mp is a fixed point of Wp. So let C' € U
and let C' < body be a clause in ground(P). Since =C' € I, and [(C) = 0, we have that C'
satisfies (WFiia) with respect to I and [, so condition (Uii) is satisfied and we have that U
is an unfounded set of P with respect to I. Assume now that the induction hypothesis holds
for all B € Bp with [(B) < a. We consider two cases.

(Case i) If A € I, then it satisfies (WFi) with respect to I and [. Hence there is a
clause A < body in ground(P) such that body C I and [(K) < « for all K € body. Hence
body C WpTa, and we obtain A € Tp(WpTa) as required.

(Case ii) If =A € I, consider the set U of all atoms B with [(B) = o and =B € I. We show
that U is an unfounded set of P with respect to Mp, and this suffices since it implies A € Mp
by A € U and the fact that Mp is a fixed point of Wp. So let C' € U and let C' < body be a
clause in ground(P). Since =C' € I, we have that C satisfies (WFii) with respect to I and /.
If there is a literal L € body with =L € I and I(L) < [(C), then by induction hypothesis we
obtain =L € Mp, so condition (Ui) is satisfied for the clause C' < body with respect to Mp
and U. In the remaining case we have that C satisfies condition (WFiia), and there exists an
atom B € body with =B € I and [(B) = [(C), hence B € U, i.e. condition (Uii) is satisfied
for the clause C' < body with respect to Mp and U. Hence U is an unfounded set of P with
respect to Mp. |

As a special case, we immediately obtain the following corollary, which was obtained
directly in [Wen02].

4.3 Corollary A normal logic program P has a total well-founded model if and only if there
is a total model I of P and a (total) level mapping [such that P satisfies (WF) with respect
to I and [.

5 Weakly Perfect Model Semantics

We have obtained new characterizations of the Fitting semantics and the well-founded seman-
tics, and argued that the well-founded semantics is a stratified version of the Fitting semantics.
Our argumentation is based on the key intuition underlying the notion of stratification, that
recursion should be allowed through positive dependencies, but be forbidden through negative
dependencies. As we have seen in Theorem 4.2, the well-founded semantics provides this for a
setting in three-valued logic. Historically, a different semantics, given by the so-called weakly
perfect model associated with each program, was proposed in [PP90] in order to carry over
the intuition underlying the notion of stratification to a three-valued setting. In the following,
we will characterize weakly perfect models via level mappings, in the spirit of Theorems 3.2
and 4.2. We will thus have obtained uniform characterizations of the Fitting semantics, the
well-founded semantics, and the weakly perfect model semantics, which makes it possible to
easily compare them.

5.1 Definition Let P be a normal logic program, I be a model of P and [be an [-partial
level mapping for P. We say that P satisfies (WS) with respect to I and [, if each A € dom()
satisfies one of the following conditions.

(WSi) A € I and there exists a clause A < Ly,..., L, € ground(P) such that L; € I and
[(A) > I(L;) for alli=1,...,n.

(WSii) —=A € I and for each clause A < Ay,..., A,,7By,...,7B,, € ground(P) (at least)
one of the following three conditions holds.

(WSiia) There exists i such that =A; € I and [(A) > I(A;).

(WSiib) For all k& we have I(A) > I(Ay), for all j we have I(A) > I(B;), and there
exists ¢ with —A; € I.

(WSiic) There exists j such that B; € I and I(A) > I(B;).

We observe that the condition (WSii) in the above theorem is more general than (Fii),
and more restrictive than (WFii).

We will see below in Theorem 5.3, that Definition 5.1 captures the weakly perfect model,
in the same way in which Definitions 3.1 and 4.1 capture the Fitting model, respectively the
well-founded model.

In order to proceed with this, we first need to recall the definition of weakly perfect models
due to [PP90], and we will do this next. For ease of notation, it will be convenient to consider
(countably infinite) propositional programs instead of programs over a first-order language.
This is both common practice and no restriction, because the ground instantiation ground(P)
of a given program P can be understood as a propositional program which may consist of a
countably infinite number of clauses. Let us remark that our definition below differs slightly
from that given in [PP90], and we will return to this point later. It nevertheless leads to
exactly the same notion of weakly stratified program.

Let P be a (countably infinite propositional) normal logic program. An atom A € Bp
refers to an atom B € Bp if B or =B occurs as a body literal in a clause A <— body in P. A
refers negatively to B if =B occurs as a body literal in such a clause. We say that A depends

8

on B if the pair (A, B) is in the transitive closure of the relation refers to, and we write this
as B < A. We say that A depends negatively on B if there are C', D € Bp such that C' refers
negatively to D and one of the following holds: (1) C' < A or C = A (the latter meaning
identity). (2) B < D or B = D. We write B < A in this case. For A, B € Bp, we write A ~ B
if either A = B, or A and B depend negatively on each other, i.e. if A < B and B < A hold.
The relation ~ is an equivalence relation and its equivalence classes are called components of
P. A component is trivial if it consists of a single element A with A £ A.

Let ¢y and C be two components of a program P. We write C; < Cy if and only if
Ci # (5 and for all A; € C there is Ay € Cy with A; < A;. A component C is called
minimal if there is no component Cy with Cy < Cf.

Given a normal logic program P, the bottom stratum S(P) of P is the union of all minimal
components of P. The bottom layer of P is the subprogram L(P) of P which consists of all
clauses from P with heads belonging to S(P).

Given a (partial) interpretation I of P, we define the reduct of P with respect to I as
the program P/I obtained from P by performing the following reductions. (1) Remove from
P all clauses which contain a body literal L such that -L € I or whose head belongs to
I. (2) Remove from all remaining clauses all body literals L with L € I. (3) Remove from
the resulting program all non-unit clauses, whose heads appear also as unit clauses in the
program.

5.2 Definition The weakly perfect model Mp of a program P is defined by transfinite in-
duction as follows. Let Py = P and M, = (). For each (countable) ordinal o > 0 such that
programs Pj; and partial interpretations Mj have already been defined for all § < «, let

No= |J M,
<<
P, = P/N,,

R, is the set of all atoms which are undefined in N,

and were eliminated from P by reducing it with respect to N,
Se =S (P,), and
L,=L(P,).

The construction then proceeds with one of the following three cases. (1) If P, is empty,
then the construction stops and Mp = N, U =R, is the (total) weakly perfect model of P. (2)
If the bottom stratum S, is empty or if the bottom layer L, contains a negative literal, then
the construction also stops and Mp = N, U =R, is the (partial) weakly perfect model of P.
(3) In the remaining case L, is a definite program, and we define M, = H U —-R,,, where H
is the definite (partial) model of L,, and the construction continues.

For every a, the set S, U R, is called the a-th stratum of P and the program L, is called
the a-th layer of P.

A weakly stratified program is a program with a total weakly perfect model. The set of its
strata is then called its weak stratification.

Let us return to the remark made earlier that our definition of weakly perfect model, as
given in Definition 5.2, differs slightly from the version introduced in [PP90]. In order to obtain

9

the original definition, points (2) and (3) of Definition 5.2 have to be replaced as follows: (2) If
the bottom stratum S, is empty or if the bottom layer L, has no least two-valued model, then
the construction stops and Mp = N, U-R,, is the (partial) weakly perfect model of P. (3) In
the remaining case L, has a least two-valued model, and we define M, = H U =R, where H
is the partial model of L, corresponding to its least two-valued model, and the construction
continues.

The original definition is more general due to the fact that every definite program has a
least two-valued model. However, while the least two-valued model of a definite program can
be obtained as the least fixed point of the monotonic (and even Scott-continuous) operator
T5, we know of no similar result, or general operator, for obtaining the least two-valued
model, if existent, of progams which are not definite. The original definition therefore seems
to be rather awkward, and indeed, even in [PP90], when defining weakly stratified programs,
the more general version was dropped in favour of requiring definite layers. So Definition 5.2
is an adaptation taking the original notion of weakly stratified program into account, and
appears to be more natural. In the following, the notion of weakly perfect model will refer to
Definition 5.2.

5.3 Theorem Let P be a normal logic program with weakly perfect model Mp. Then Mp
is the greatest model among all models I, for which there exists an I-partial level mapping [
for P such that P satisfies (WS) with respect to I and .

We prepare the proof of Theorem 5.3 by introducing some notation, which will make the
presentation much more transparent.

It will be very convenient to consider level mappings which map into pairs (5, n) of ordi-
nals, where n < w, the least infinite ordinal. So let a be a (countable) ordinal and consider the
set A of all pairs (3,n), where § < o and n < w. Of course A endowed with the lexicographic
ordering is isomorphic to an ordinal. So any mapping from Bp to A can be considered to be
a level mapping.

Let P be a normal logic program with (partial) weakly perfect model Mp. Then define the
Mp-partial level mapping Ip as follows: [p(A) = (5, n), where A € S3URg and n is least with
Ae TLJ; 1 (n+ 1), if such an n exists, and n = w otherwise. We observe that if [p(A) = (p(B)
then there exists o with A,B € S, UR,,, and if A € S, UR, and B € SgU R with o < 3,
then [(A) < (B).

We next define model-consistent subsumption due to [Wen02].

5.4 Definition Let P and () be two programs and let I be an interpretation.

1.IfC, = (A« Ly,...,Ly,) and Cy = (B < Kj,...,K,) are two clauses, then we say
that Cy subsumes Cy, written Cy < Cy, if A= B and {Ly,...,L,} C{Ky,...,K,}.

2. We say that P subsumes @), written P < @, if for each clause C in P there exists a
clause C5 in @ with C; < Cb.

3. We say that P subsumes Q) model-consistently (with respect to I), written P <; @, if the
following conditions hold. (i) For each clause C; = (A < Ly,..., L,,) in P there exists a
clause Cy = (B + Ki,...,K,) in Q with C; < Cy and ({Ky, ..., K, }\{L1,...,Ly,}) C

10

I. (ii) For each clause Cy = (B + Ki,...,K,) in Q with {K;,...,K,} € ITand B¢ I
there exists a clause C; in P such that C < Cs.

Definition 5.4 facilitates the proof of Theorem 5.3 by employing the following lemma.

5.5 Lemma With notation from Definiton 5.2, we have P/N, <y, P for all a.

Proof: Condition 3(i) of Definition 5.4 holds because every clause in P/N,, is obtained from a
clause in P by deleting body literals which are contained in N,. Condition 3(ii) holds because
for each clause in P with head A ¢ N, whose body is true under N,, we have that A < is a
fact in P/N,. |

The next lemma establishes the induction step in part (2) of the proof of Theorem 5.3.

5.6 Lemma If [is a non-empty model of a (infinite propositional normal) logic program P’
and [an I-partial level mapping such that P’ satisfies (WS) with respect to I and [, then the
following hold for P = P'/(.

(a) The bottom stratum S(P) of P is non-empty and consists of trivial components only.
(b) The bottom layer L(P) of P is definite.

(c) The definite (partial) model N of L(P) is consistent with I in the following sense: we
have I' C N, where I’ is the restriction of I to all atoms which are not undefined in V.

(d) P/N satisfies (WS) with respect to I \ N and [/N, where [/N is the restriction of [to
the atoms in I\ N.

Proof: (a) Assume there exists some component C' C S(P) which is not trivial. Then there
must exist atoms A, B € C with A < B, B < A, and A # B. Without loss of generality,
we can assume that A is chosen such that [(A) is minimal. Now let A’ be any atom occuring
in a clause with head A. Then A > B > A > A’, hence A > A’, and by minimality of the
component we must also have A’ > A, and we obtain that all atoms occuring in clauses with
head A must be contained in C'. We consider two cases.

(Case i) If A € I, then there must be a fact A < in P, since otherwise by (WSi) we had
a clause A < Ly,..., L, (for some n > 1) with L,,...,L, € I and [(A) > [(L;) for all i,
contradicting the minimality of [(A). Since P = P'/() we obtain that A < is the only clause
in P with head A, contradicting the existence of B # A with B < A.

(Case ii) If =A € I, and since A was chosen minimal with respect to [, we obtain that
condition (WSiib) must hold for each clause A < Ay,..., Ay, =By, ..., "B, with respect to
I and [, and that m = 0. Furthermore, all A; must be contained in C, as already noted
above, and [(A) > [(A;) for all ¢ by (WSiib). Also from (Case i) we obtain that no A; can be
contained in 1. We have now established that for all A; in the body of any clause with head
A, we have [(A) = I(4;) and —A; € I. The same argument holds for all clauses with head
A;, for all 7, and the argument repeats. Now from A > B we obtain that there are D, E € C
with A > FE (or A=FE), D> B (or D = B), and E refers negatively to D. As we have just
seen, we obtain =F € I and [(F) = [(A). Since FE refers negatively to D, there is a clause
with head F and =D contained in the body of this clause. Since (WSii) holds for this clause,

11

there must be a literal L in the body with level less than [(E), hence I(L) < I(A) and L € C
which is a contradiction. We thus have established that all components are trivial.

We show next that the bottom stratum is non-empty. Indeed, let A be an atom such that
[(A) is minimal. We will show that {A} is a component. So assume it is not, i.e. that there is
B with B < A. Then there exist Dy, ..., Dy, for some k£ € N, such that D, = A, D; refers to
Djiy forall j=1,...,k—1, and Dy refers negatively to some B’ with B’ > B (or B’ = B).

We show next by induction that for all j = 1,.. ., k the following statements hold: =D, € I,
B < Dj, and I(D;) = [(A). Indeed note that for j =1, i.e. D; = A, we have that B < D; = A
and [(D;) = I(A). Assuming A € I, we obtain by minimality of I(A) that A < is the only
clause in P = P’/() with head A, contradicting the existence of B < A. So =A € I, and the
assertion holds for j = 1. Now assume the assertion holds some j < k. Then obviously D;; >
B. By =D, € I and [(D;) = I(A), we obtain that (WSii) must hold, and by the minimality
of I(A) we infer that (WSiib) must hold and that no clause with head D, contains negated
atoms. So [(D;+1) = I(D;) = I(A) holds by (WSiib) and minimality of /(A). Furthermore,
the assumption D;y; € I can be rejected by the same argument as for A above, because
then D;;; < would be the only clause with head Dy, by minimality of I(D,1) = [(A),
contradicting B < D;. This concludes the inductive proof.

Summarizing, we obtain that D refers negatively to B’, and that =D, € I. But then
there is a clause with head Dy and =B’ in its body which satisfies (WSii), contradicting the
minimality of [(Dy) = [(A). This concludes the proof of statement (a).

(b) According to [PP90] we have that whenever all components are trivial, then the bottom
layer is definite. So the assertion follows from (a).

(c) Let A € I' be an atom with A ¢ N, and assume without loss of generality that A is
chosen such that [(A) is minimal with these properties. Then there must be a clause A < body
in P such that all literals in body are true with respect to I’, hence with respect to N by
minimality of [(A). Thus body is true in N, and since N is a model of L(P) we obtain A € N,
which contradicts our assumption.

Now let A € N be an atom with A ¢ I', and assume without loss of generality that A is
chosen such that n is minimal with A € TLJF(P) 1 (n + 1). But then there is a definite clause
A + body in L(P) such that all atoms in body are true with respect to TLJF(P) 1Tn, hence also
with respect to I', and since I’ is a model of L(P) we obtain A € I', which contradicts our
assumption.

Finally, let =A € I'. Then we cannot have A € N since this implies A € I'. So ~A € N
since N is a total model of L(P).

(d) From Lemma 5.5, we know that P/N <y P. We distinguish two cases.

(Case i) If I\ N = A, then there must exist a clause A <— Ly, ..., Ly in P such that L; € T
and [(A) > [(L;) for all 4. Since it is not possible that A € N, there must also be a clause
in P/N which subsumes A < Ly,..., L, and which therefore satisfies (WSi). So A satisfies
(WSi).

(Case ii) If =A € I\ N, then for each clause A < body1l in P/N there must be a clause
A < body in P which is subsumed by the former, and since =A € I, we obtain that condition
(WSii) must be satisfied by A, and by the clause A +— body. Since reduction with respect to
N removes only body literals which are true in N, condition (WSii) is still met. |

We can now proceed with the proof.

12

Proof of Theorem 5.3: The proof will be established by showing the following facts: (1) P
satisfies (WS) with respect to Mp and [p. (2) If I is a model of P and [an I-partial level
mapping such that P satisfies (WS) with respect to I and [, then I C Mp.

(1) Let A € dom(lp) and [p(A) = (a,n). We consider two cases.

(Case i) If A € Mp, then A € T;" 1 (n + 1). Hence there exists a definite clause A <
Al; C ,Ak in L, with Al; C ,Ak € T;a Tn, SO Al; .. .,Ak € Mp with lp(A) > lP(AZ) for all
i. Since P/N, <y, P by Lemma 5.5, there must exist a clause A «— Ay,..., Ag, L1,..., Ly
in P with literals Ly, ..., Ly, € Ny, € Mp, and we obtain [p(L;) < Ip(A) forall j =1,...,m.
So (WSi) holds in this case.

(Case ii) If mA € Mp, then let A < Ay,..., Ay, B1,...,7 B, be a clause in P, noting
that (WSii) is trivially satisfied in case no such clause exists. We consider the following two
subcases.

(Subcase ii.a) Assume A is undefined in N, and was eliminated from P by reducing it
with respect to N,, i.e. A € R,. Then, in particular, there must be some —A; € N, or some
B; € N,, which yields [p(A;) < lp(A), respectively (p(B;) < lp(A), and hence one of (WSiia),
(WSiic) holds.

(Subcase ii.b) Assume —A € H, where H is the definite (partial) model of L,. Since P/N,
subsumes P model-consistently with respect to N,, we obtain that there must be some A;
with = A; € H, and by definition of Ip we obtain [p(A) = [p(4;) = (@, w), and hence also
Ip(Air) <Ip(A;) for all i' # i. Furthermore, since P/N, is definite, we obtain that ~B; € N,
for all j, hence lp(B;) < Ip(A) for all j. So condition (WSiib) is satisfied.

(2) First note that for all models M, N of P with M C N we have (P/M)/N = P/(M U
N) = P/N and (P/N)/0 = P/N.

Let I, denote I restricted to the atoms which are not undefined in N, U R,,. It suffices to
show the following: For all & > 0 we have I, C N, U R, and I \ Mp = ().

We next show by induction that if @ > 0 is an ordinal, then the following statements
hold. (a) The bottom stratum of P/N, is non-empty and consists of trivial components only.
(b) The bottom layer of P/N, is definite. (¢) I, C No U Rq. (d) P/Nyy1 satisfies (WS) with
respect t0 I\ Nyy1 and [/Nyyq.

Note first that P satisfies the hypothesis of Lemma 5.6, hence also its consequences. So
P/N; = P/0) satisfies (WS) with respect to I \ N; and [/Ny, and by application of Lemma
5.6 we obtain that statements (a) and (b) hold. For (c), note that no atom in R; can be true
in I, because no atom in R; can appear as head of a clause in P, and apply Lemma 5.6 (c).
For (d), apply Lemma 5.6, noting that P/Ny <y, P.

For « being a limit ordinal, we can show exactly as in the proof of Lemma 5.6 (d), that P
satisfies (WS) with respect to I \ N, and [/N,. So Lemma 5.6 is applicable and statements
(a) and (b) follow. For (¢), let A € R,. Then every clause in P with head A contains a body
literal which is false in N,. By induction hypothesis, this implies that no clause with head A
in P can have a body which is true in I. So A ¢ I. Together with Lemma 5.6 (¢), this proves
statement (c). For (d), apply again Lemma 5.6 (d), noting that P/Nyi1 <n,,, P.

For o = + 1 being a successor ordinal, we obtain by induction hypothesis that P/Njg
satisfies the hypothesis of Lemma 5.6, so again statements (a) and (b) follow immediately
from this lemma, and (c), (d) follow as in the case for a being a limit ordinal.

13

It remains to show that I \ Mp = (). Indeed by the transfinite induction argument just
given we obtain that P/Mp satisfies (WS) with respect to I \ Mp and {/Mp. If I \ Mp is
non-empty, then by Lemma 5.6 the bottom stratum S(P/Mp) is non-empty and the bottom
layer L(P/Mp) is definite with definite (partial) model M. Hence by definition of the weakly
perfect model Mp of P we must have that M C Mp which contradicts the fact that M is the
definite model of L(P/Mp). Hence I \ Mp must be empty which concludes the proof. |

We obtain the following corollary, previously reported, and proven directly, in [Wen02].

5.7 Corollary A normal logic program P is weakly stratified, i.e. has a total weakly perfect
model, if and only if there is a total model I of P and a (total) level mapping [for P such
that P satisfies (WS) with respect to I and .

We also obtain the following corollary as a trivial consequence of our uniform characteri-
zations by level mappings.

5.8 Corollary Let P be a normal logic progam with Fitting model M, weakly perfect model
MWP; and well-founded model MWF Then MF g MWP g MWF

6 Conclusions and Further Work

We have obtained new characterizations of the Fitting semantics, the well-founded semantics,
and the weakly perfect model semantics, and argued that the well-founded semantics is a
stratified version of the Fitting semantics. Considering that the main motivation for the
introduction of (weak) stratification was to restrict recursion through negation, we notice by
comparing (WFii) and (WSii) that the well-founded semantics provides a much cleaner and
more convincing way of achieving this.

Our approach, using level mappings, provides a way of comparing different semantics
which is an alternative to the approach taken e.g. in [FitOx, DMTO00]. It provides uniform
characterizations, and we believe that it should be applicable to most fixed-point semantics
based on monotonic operators. In particular, it should be possible to employ our methods
in order to characterize different forms of well-founded semantics for (extended) disjunctive
logic programs, see [LMR92, BG94, LRS97], and also to the study of fixed-point semantics of
logic programming in algebraic domains, as put forward in [RZ01, Hit02].

Under characterizations with level mappings, as proposed in this paper, a model should be
computationally tractable, in a sense which remains to be specified by further research, if the
corresponding partial level mapping maps into w, the first infinite ordinal. This is certainly
the case for Datalog, and it remains to be seen whether our results can be exploited for more
efficient computation of the well-founded model, as in the currently evolving paradigm of
answer set programming, see [Lif99, MT99, WZ00, SNSOx].

14

References

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of

[APY3]

[Bez89|

[BG94]

[Cav9l]

[DMT00]

[Fit85]

[Fit94]

[Fit0x]

[Hit01]

[Hit02]

[HKS99)]

[HS99]

declarative knowledge. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89-148. Morgan Kaufmann, Los Altos, CA, 1988.

Krzysztof R. Apt and Dino Pedreschi. Reasoning about termination of pure prolog
programs. Information and Computation, 106:109-157, 1993.

Marc Bezem. Characterizing termination of logic programs with level mappings. In
Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the North American
Conference on Logic Programming, pages 69-80. MIT Press, Cambridge, MA, 1989.

Chitta Baral and Michael Gelfond. Logic programming and knowledge represen-
tation. Journal of Logic Programming, 19-20:73-148, 1994.

Lawrence Cavedon. Acyclic programs and the completeness of SLDNF-resolution.
Theoretical Computer Science, 86:81-92, 1991.

Marc Denecker, V. Wiktor Marek, and Miroslaw Truszynski. Approximating oper-
ators, stable operators, well-founded fixpoints and applications in non-monotonic
reasoning. In Jack Minker, editor, Logic-based Artificial Intelligence, chapter 6,
pages 127-144. Kluwer Academic Publishers, Boston, 2000.

Melvin Fitting. A Kripke-Kleene-semantics for general logic programs. Journal of
Logic Programming, 2:295-312, 1985.

Melvin Fitting. Metric methods: Three examples and a theorem. Journal of Logic
Programming, 21(3):113-127, 1994.

Melvin Fitting. Fixpoint semantics for logic programming — A survey. Theoretical
Computer Science, 200x. To appear.

Pascal Hitzler. Generalized Metrics and Topology in Logic Programming Semantics.
PhD thesis, Department of Mathematics, National University of Ireland, University
College Cork, 2001.

Pascal Hitzler. Resolution and logic programming in algebraic domains: Negation
and defaults. Technical Report WV-02-05, Knowledge Representation and Reason-
ing Group, Department of Computer Science, Dresden University of Technology,
Dresden, Germany, 2002.

Steffen Holldobler, Yvonne Kalinke, and Hans-Peter Storr. Approximating the
semantics of logic programs by recurrent neural networks. Applied Intelligence,
11:45-58, 1999.

Pascal Hitzler and Anthony K. Seda. Characterizations of classes of programs
by three-valued operators. In Michael Gelfond, Nicola Leone, and Gerald Pfeifer,
editors, Logic Programming and Nonmonotonic Reasoning, Proceedings of the 5th

15

[HSO0x]

[Lif99)]

[L1088]

[LMR92]

[LRS97]

[Mar96]

[MT99)

[PP90)

[Prz88)

[RZ01]

[Sed95]

[SHLGO4]

[SNSOx]

[Sub99]

International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR’99), El Paso, Texas, USA, volume 1730 of Lecture Notes in Artificial
Intelligence, pages 357-371. Springer, Berlin, 1999.

Pascal Hitzler and Anthony K. Seda. Generalized metrics and uniquely determined
logic programs. Theoretical Computer Science, 200x. To appear.

Vladimir Lifschitz. Answer set planning. In Danny De Schreye, editor, Logic Pro-
gramming. Proceedings of the 1999 International Conference on Logic Program-
ming, pages 23-37, Cambridge, Massachusetts, 1999. MIT Press.

John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1988.

Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of disjunctive logic
programming. MI'T Press, 1992.

Nicola Leone, Pasquale Rullo, and Francesco Scarello. Disjunctive stable models:
Unfounded sets, fixpoint semantics, and computation. Information and Computa-
tion, 135(2):69-112, 1997.

Elena Marchiori. On termination of general logic programs with respect to con-
structive negation. Journal of Logic Programming, 26(1):69-89, 1996.

V. Wiktor Marek and Miroslav Truszczynski. Stable models and an alternative
logic programming paradigm. In Krzysztof R. Apt, V. Wiktor Marek, Miroslav
Truszczynski, and David S. Warren, editors, The Logic Programming Paradigm: A
25 Year Persepective, pages 375—398. Springer, Berlin, 1999.

Halina Przymusinska and Teodor C. Przymusinski. Weakly stratified logic pro-
grams. Fundamenta Informaticae, 13:51-65, 1990. Krzysztof R. Apt, editor, special
issue of Fundamenta Informaticae on Logical Foundations of Artificial Intelligence.

Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193-216. Morgan Kaufmann, Los Altos, CA, 1988.

William C. Rounds and Guo-Qiang Zhang. Clausal logic and logic programming
in algebraic domains. Information and Computation, 171(2):156-182, 2001.

Anthony Karel Seda. Topology and the semantics of logic programs. Fundamenta
Informaticae, 24(4):359-386, 1995.

Viggo Stoltenberg-Hansen, Ingrid Lindstrom, and Edward R. Griffor. Mathemat-
ical Theory of Domains. Cambridge University Press, 1994.

Patrik Simons, Ilkka Niemeld, and Timo Soininen. Extending and implementing
the stable model semantics. Artificial Intelligence, 200x. To appear.

V.S. Subrahmanian. Nonmonotonic logic programming. [EEFE Transactions on
Knowledge and Data Engineering, 11(1):143-152, January/February 1999.

16

[VGRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded se-

[Wen02]

[WZ00]

mantics for general logic programs. Journal of the ACM, 38(3):620-650, 1991.

Matthias Wendt. Towards a unified view of the hierarchy of logic program classes.
Project Thesis, Knowledge Representation and Reasoning Group, Artificial Intel-
ligence Institute, Department of Computer Science, Dresden University of Tech-
nology, 2002. To appear.

Haixun Wang and Carlo Zaniolo. Nonmonotonic reasoning in LDL**. In Jack
Minker, editor, Logic-Based Artificial Intelligence, chapter 22, pages 523-542.
Kluwer Academic Publishers, Boston, 2000.

17

