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Abstract. In [1,2], a new methodology has been proposed which allows
to derive uniform characterizations of different declarative semantics for
logic programs with negation. One result from this work is that the well-
founded semantics can formally be understood as a stratified version
of the Fitting (or Kripke-Kleene) semantics. The constructions leading
to this result, however, show a certain asymmetry which is not readily
understood. We will study this situation here with the result that we will
obtain a coherent picture of relations between different semantics.

1 Introduction

Within the past twenty years, many different declarative semantics for logic pro-
grams with negation have been developed. Different perspectives on the question
what properties a semantics should foremost satisfy, have led to a variety of di-
verse proposals. From a knowledge representation and reasoning point of view it
appears to be important that a semantics captures established non-monotonic
reasoning frameworks, e.g. Reiters default logic [3], and that they allow intu-
itively appealing, i.e. “common sense”, encodings of AI problems. The seman-
tics which, due to common opinion by researchers in the field, satisfy these
requirements best, are the least model semantics for definite programs [4], and
for normal programs the stable [5] and the well-founded semantics [6]. Of lesser
importance, albeit still acknowledged in particular for their relation to resolution-
based logic programming, are the Fitting semantics [7] and approaches based on
stratification [8,9].

The semantics just mentioned are closely connnected by a number of well-
(and some lesser-) known relationships, and many authors have contributed to
this understanding. Fitting [10] provides a framework using Belnap’s four-valued
logic which encompasses supported, stable, Fitting, and well-founded semantics.
His work was recently extended by Denecker, Marek, and Truszczynski [11].
Przymusinsky [12] gives a version in three-valued logic of the stable semantics,
and shows that it coincides with the well-founded one. Van Gelder [13] constructs
the well-founded semantics unsing the Gelfond-Lifschitz operator originally asso-
ciated with the stable semantics. Dung and Kanchanasut [14] define the notion
of fixpoint completion of a program which provides connections between the
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supported and the stable semantics, as well as between the Fitting and the well-
founded semantics, studied by Fages [15] and Wendt [16]. Hitzler and Wendt [1,
2] have recently provided a unifying framework using level mappings, and results
which amongst other things give further support to the point of view that the
stable semantics is a formal and natural extension to normal programs of the
least model semantics for definite programs. Furthermore, it was shown that the
well-founded semantics can be understood, formally, as a stratified version of the
Fitting semantics.

This latter result, however, exposes a certain asymmetry in the construc-
tion leading to it, and it is natural to ask the question as to what exactly is
underlying it. This is what we will study in the sequel. In a nutshell, we will
see that formally this asymmetry is due to the well-known preference of false-
hood in logic programming semantics. More importantly, we will also see that
a “dual” theory, obtained from prefering truth, can be stablished which is in
perfect analogy to the close and well-known relationships between the different
semantics mentioned above. We want to make it explicit from the start that we
do not intend to provide new semantics for practical purposes!. We rather want
to focus on the deepening of the theoretical insights into the relations between
different semantics, by painting a coherent and complete picture of the depen-
dencies and interconnections. We find the richness of the theory very appealing,
and strongly supportive of the opinion that the major semantics studied in the
field are founded on a sound theoretical base.

The plan of the paper is as follows. In Section 2 we will introduce notation
and terminology needed for proving the results in the main body of the paper. We
will also review in detail those results from [1,2] which triggered and motivated
our investigations. In Section 3 we will provide a variant of the stable semantics
which prefers truth, and in Section 4 we will do likewise for the well-founded
semantics. Throughout, our definitions will be accompanied by results which
complete the picture of relationships between different semantics.

2 Preliminaries and Notation

A (normal) logic program is a finite set of (universally quantified) clauses of
the form V(A < Ay A---ANA, A =By A --- A =B,,), commonly written as
A+ Ay,...,A,,—By,...,m By, where A, A;, and Bj, for ¢ = 1,...,n and
j =1,...,m, are atoms over some given first order language. A is called the
head of the clause, while the remaining atoms make up the body of the clause,
and depending on context, a body of a clause will be a set of literals (i.e. atoms
or negated atoms) or the conjunction of these literals. Care will be taken that
this identification does not cause confusion. We allow a body, i.e. a conjunction,
to be empty, in which case it always evaluates to true. A clause with empty
body is called a unit clause or a fact. A clause is called definite, if it contains
no negation symbol. A program is called definite if it consists only of definite

! Although there may be some virtue to this perspective, see [17].
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clauses. We will usually denote atoms with A or B, and literals, which may be
atoms or negated atoms, by L or K.

Given a logic program P, we can extract from it the components of a first
order language, and we always make the mild assumption that this language
contains at least one constant symbol. The corresponding set of ground atoms,
i.e. the Herbrand base of the program, will be denoted by Bp. For a subset
I C Bp, weset - = {-A| A€ Bp}. The set of all ground instances of P with
respect to Bp will be denoted by ground(P). For I C Bp U—Bp, we say that A
is true with respect to (or in) I if A € I, we say that A is false with respect to
(or in) I if =A € I, and if neither is the case, we say that A is undefined with
respect to (or in) I. A (three-valued or partial) interpretation I for P is a subset
of Bp U-Bp which is consistent, i.e. whenever A € [ then —A ¢ I. A body, i.e.
a conjunction of literals, is true in an interpretation I if every literal in the body
is true in I, it is false in I if one of its literals is false in I, and otherwise it is
undefined in I. For a negated literal L = = A we will find it convenient to write
-Lelif A€l By Ip we denote the set of all (three-valued) interpretations of
P. Both Ip and Bp U —Bp are complete partial orders (cpos) via set-inclusion,
i.e. they contain the empty set as least element, and every ascending chain has
a supremum, namely its union. A model of P is an interpretation I € Ip such
that for each clause A < body we have that body C I implies A € I. A total
interpretation is an interpretation I such that no A € Bp is undefined in I.

For an interpretation I and a program P, an [-partial level mapping for P
is a partial mapping [ : Bp — a with domain dom(l) = {A| A € [ or =4 € I},
where « is some (countable) ordinal. We extend every level mapping to literals
by setting I(-A) = I(A) for all A € dom(l). A (total) level mapping is a total
mapping [ : Bp — « for some (countable) ordinal a.

Given a normal logic program P and some I C Bp U —-Bp, we say that
U C Bp is an unfounded set (of P) with respect to I if each atom A € U satisfies
the following condition: For each clause A < body in ground(P) (at least) one
of the following holds.

(Ui) Some (positive or negative) literal in body is false in I.
(Uii) Some (non-negated) atom in body occurs in U.

Given a normal logic program P, we define the following operators on Bp U
—Bp. Tp(I) is the set of all A € Bp such that there exists a clause A + body
in ground(P) such that body is true in I. Fp(I) is the set of all A € Bp such
that for all clauses A < body in ground(P) we have that body is false in I.
Both Tp and Fp map elements of Ip to elements of Ip. Now define the operator
QSP : IP — [p by

®p(I) =Tp(I)U—Fp(I).

This operator is due to [7] and is well-defined and monotonic on the cpo Ip,
hence has a least fixed point by the Knaster-Tarski? fixed-point theorem, and
we can obtain this fixed point by defining, for each monotonic operator F', that

2 We follow the terminology from [18]. The Knaster-Tarski theorem is sometimes called
Tarski theorem and states that every monotonic function on a cpo has a least fixed



4 Pascal Hitzler

F1t0=90, Ft(a+1) = F(F1ta) for any ordinal a, and F 15 = {J 5 F 1y
for any limit ordinal 8, and the least fixed point of F' is obtained as F' 1« for
some ordinal a. The least fixed point of @p is called the Kripke-Kleene model
or Fitting model of P, determining the Fitting semantics of P.

Now, for I C BpU=Bp, let Up(I) be the greatest unfounded set (of P) with
respect to I, which always exists due to [6]. Finally, define

Wp(I) = Tp(I) U=Up(I)

for all I C BpU—Bp. The operator Wp, which operates on the cpo BpU—Bp, is
due to [6] and is monotonic, hence has a least fixed point by the Knaster-Tarski?
fixed-point theorem, as above for @p. It turns out that Wpta is in Ip for each
ordinal «, and so the least fixed point of Wp is also in Ip and is called the
well-founded model of P, giving the well-founded semantics of P.

In order to avoid confusion, we will use the following terminology: the no-
tion of interpretation, and Ip will be the set of all those, will by default denote
consistent subsets of Bp U —~Bp, i.e. interpretations in three-valued logic. We
will sometimes emphasize this point by using the notion partial interpretation.
By two-valued interpretations we mean subsets of Bp. Both interpretations and
two-valued interpretations are ordered by subset inclusion. Each two-valued in-
terpretation I can be identified with the partial interpretation I' = TU—~(Bp\I).
Note however, that in this case I’ is always a maximal element in the ordering
for partial interpretations, while I is in general not maximal as a two-valued
interpretation®. Given a partial interpretation I, we set IT = I N Bp and
I"={A€eBp|-A€l}.

Given a program P, we define the operator T3 on subsets of Bp by T (I) =
Tp(IU=(Bp\I)). The pre-fixed points of T, i.e. the two-valued interpretations
I C Bp with T; (I) C I, are exactly the models, in the sense of classical logic,
of P. Post-fixed points of T}, i.e. I C Bp with I C T} (I) are called supported
interpretations of P, and a supported model of P is a model P which is a
supported interpretation. The supported models of P thus coincide with the
fixed points of T;‘ . It is well-known that for definite programs P the operator
T; is monotonic on the set of all subsets of Bp, with respect to subset inclusion.
Indeed it is Scott-continuous [4,20] and, via the Tarski-Kantorovich? fixed-point
theorem, achieves its least pre-fixed point M, which is also a fixed point, as
the supremum of the iterates T4 tn for n € N. So M = Ifp (T3) = Tf tw is
the least two-valued model of P. Likewise, since the set of all subsets of Bp is

point, which can be obtained by transfinitely iterating the bottom element of the
cpo. The Tarski-Kantorovitch theorem is sometimes refered to as the Kleene theorem
or the Scott theorem (or even as “the” fixed-point theorem) and states that if the
function is additionally Scott (or order-) continuous, then the least fixed point can
be obtained by an iteration which is not transfinite, i.e. closes off at w, the least
infinite ordinal. In both cases, the least fixed point is also the least pre-fixed point
of the function.

 These two orderings in fact correspond to the knowledge and truth orderings as
discussed in [19].
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a complete lattice, and therefore has greatest element Bp, we can also define
T# 10 = Bp and inductively T3 | (a + 1) = TE(T# | @) for each ordinal «
and T; 8= ﬂv<6 T; 17 for each limit ordinal 5. Again by the Knaster-Tarski
fixed-point theorem, applied to the superset inclusion ordering (i.e. reverse subset
inclusion) on subsets of Bp, it turns out that TIJ; has a greatest fixed point,
gfp (17).

The stable model semantics due to [5] is intimately related to the well-
founded semantics. Let P be a normal program, and let M C Bp be a set of
atoms. Then we define P/M to be the (ground) program consisting of all clauses
A+ Ay,..., A, for which there is a clause A + Ay,...,A,,—By,...,mB,, in
ground(P) with By,..., By, € M. Since P/M does no longer contain negation,
it has a least two-valued model T;r M Tw. For any two-valued interpretation I

we can therefore define the operator GLp(I) = T;/I Tw, and call M a stable
model of the normal program P if it is a fixed point of the operator GLp, i.e.
if M = GLp(M) = TIJ;/M T w. As it turns out, the operator GLp is in general
not monotonic for normal programs P. However it is antitonic, i.e. whenever
I C J C Bp then GLp(J) C GLp(I). As a consequence, the operator GL%,
obtained by applying GLp twice, is monotonic, and hence has a least fixed point
Lp and a greatest fixed point Gp. In [13] it was shown that GLp(Lp) = Gp,
Lp = GLp(Gp), and that Lp U =(Bp \ Gp) coincides with the well-founded
model of P. This is called the alternating fixed point characterization of the
well-founded semantics.

Some Results

The following is a straightforward result which has, to the best of our knowledge,
not been noted before. It follows the general approach put forward in [1,2].

Theorem 1. Let P be a definite program. Then there is a unique two-valued
model M of P for which there exists a (total) level mapping | : Bp — a such
that for each atom A € M there exists a clause A < Ay,..., A, in ground(P)
with A; € M and [(A) > 1(A;) for all i = 1,...,n. Furthermore, M is the least
two-valued model of P.

Proof. Let M be the least two-valued model T;‘ Tw, choose a = w, and define
l : Bp — a by setting [(A) = min{n | A € T§ 1 (n+ 1)}, if A € M, and by
setting 1(4) = 0, if A ¢ M. From the fact that 0 C Tg 11 C ... C Tp tn C
.. CTHtw=,, T{ tm, for each n, we see that [ is well-defined and that the
least model ng Tw for P has the desired properties.

Conversely, if M is a two-valued model for P which satisfies the given con-
dition for some mapping [ : Bp — «, then it is easy to show, by induction on
I(A), that A € M implies A € T5 1(I(A) + 1). This yields that M C T{ 1w, and
hence that M = TIJ; 1w by minimality of the model T; Tw.

The following result is due to [15], and is striking in its similarity to Theo-
rem 1.
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Theorem 2. Let P be normal. Then a two-valued model M C Bp of P is a
stable model of P if and only if there exists a (total) level mapping | : Bp —
«a such that for each A € M there exists A «+ Ai,...,Ap,—By,..., By, in
ground(P) with A; € M, Bj ¢ M, and [(A) > I(4;) for all i = 1,...,n and
7=1,...,m.

We next recall the following alternative characterization of the Fitting model,
due to [1,2].

Definition 1. Let P be a normal logic program, I be a model of P, and l be an
I-partial level mapping for P. We say that P satisfies (F) with respect to I and
l, if each A € dom(l) satisfies one of the following conditions.

(Fi) A € I and there ezists a clause A < Ly,..., Ly in ground(P) such that
L; € I and I(A) > I(L;) for all i.

(Fii) —=A € I and for each clause A < Li,..., Ly in ground(P) there exists i
with ~L; € I and I(A) > I(L;).

Theorem 3. Let P be a normal logic program with Fitting model M. Then M
is the greatest model among all models I, for which there exists an I-partial level
mapping | for P such that P satisfies (F) with respect to I and l.

Let us recall next the definition of a (locally) stratified program, due to
[8,9]: A normal logic program is called locally stratified if there exists a (to-
tal) level mapping I : Bp — «, for some ordinal «, such that for each clause
A+ Ay,...,A,,—By,...,mB,, in ground(P) we have that [(A) > [(A;) and
I(A) >1(Bj) foralli=1,...,n and j = 1,...,m. The notion of (locally) strat-
ifed program was developed with the idea of preventing recursion through nega-
tion, while allowing recursion through positive dependencies. (Locally) stratified
programs have total well-founded models.

There exist locally stratified programs which do not have a total Fitting
semantics and vice versa — just consider the programs consisting of the single
clauses p < p, respectively, p < —p,q. In fact, condition (Fii) requires a strict
decrease of level between the head and a literal in the rule, independent of this
literal being positive or negative. But, on the other hand, condition (Fii) imposes
no further restrictions on the remaining body literals, while the notion of local
stratification does. These considerations motivate the substitution of condition
(Fii) by the condition (Cii), as done for the following definition.

Definition 2. Let P be a normal logic program, I be a model of P, andl be an
I-partial level mapping for P. We say that P satisfies (WF) with respect to I
and I, if each A € dom(l) satisfies (Fi) or the following condition.

(Cii) —A € I and for each clause A < Ay,..., Ap,—By,...,~ By, contained
in ground(P) (at least) one of the following conditions holds:
(Ciia) There exists i € {1,...,n} with = A; € I and [(A) > I(4;).
(Ciib) There exists j € {1,...,m} with B; € I and [(A) > I(B;).
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So, in the light of Theorem 3, Definition 2 should provide a natural “stratified
version” of the Fitting semantics. And indeed it does, and furthermore, the
resulting semantics coincides with the well-founded semantics, which is a very
satisfactory result from [1,2].

Theorem 4. Let P be a normal logic program with well-founded model M . Then
M is the greatest model among all models I, for which there exists an I-partial
level mapping | for P such that P satisfies (WF) with respect to I and I.

For completeness, we remark that an alternative characterization of the
weakly perfect model semantics [21] can also be found in [1,2].

The approach which led to the results just mentioned, originally put for-
ward in [1,2], provides a methodology for obtaining uniform characterizations
of different semantics for logic programs.

3 Maximally Circular Stable Semantics

We note that condition (Fi) has been reused in Definition 2. Thus, Definition 1
has been “stratified” only with respect to condition (Fii), yielding (Cii), but not
with respect to (Fi). Indeed, also replacing (Fi) by a stratified version such as
the following seems not satisfactory at first sight.

(Ci) A € I and there exists a clause A < Ay,...,A,,B;,...,mB,, in
ground(P) such that A;,—~B; € I, I(A) > l(4;), and {(A) > I(B;) for
all ¢ and j.

If we replace condition (Fi) by condition (Ci) in Definition 2, then it is not
guaranteed that for any given program there is a greatest model satisfying the
desired properties, as the following example from [1, 2] shows.

Ezample 1. Consider the program consisting of the two clauses p < p and ¢q
-p, and the two (total) models M; = {p,—~q} and My = {-p,q}, which are
incomparable, and the level mapping ! with I(p) = 0 and I(q) = 1.

In order to arrive at an understanding of this asymmetry, we consider the
setting with conditions (Ci) and (Fii), which is somehow “dual” to the well-
founded semantics which is characterized by (Fi) and (Cii).

Definition 3. Let P be a normal logic program, I be a model of P, andl be an
I-partial level mapping for P. We say that P satisfies (CW) with respect to I
and I, if each A € dom(l) satisfies (Ci) or (Fii).

By virtue of Definition 3 we will be able to develop a theory which comple-
ments the restults from Section 2. We will first characterize the greatest model
of a definite program analogously to Theorem 1.
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Theorem 5. Let P be a definite program. Then there is a unique two-valued
supported interpretation M of P for which there exists a (total) level mapping
l : Bp — « such that for each atom A & M and for all clauses A < Aq,..., A,
in ground(P) there is some A; & M with [(A) > I(A;). Furthermore, M is the
greatest two-valued model of P.

Proof. Let M be the greatest two-valued model of P, and let a be the least
ordinal such that M = T/ | a. Define [ : Bp — « by setting [(A) = min{y |
AgTH L (y+1)} for A ¢ M, and by setting I(4) = 0 if A € M. The mapping
I is well-defined because A ¢ M with A & T | v = ﬂB<7 T4 | B for some
limit ordinal v implies A & TI'D" 4 B for some B < 7. So the least ordinal § with
Ad T;‘ 1 B is always a successor ordinal. Now assume that there is A ¢ M which
does not satisfy the stated condition. We can furthermore assume without loss
of generality that A is chosen with this property such that [(A) is minimal.
Let A < Ai,..., A, be a clause in ground(P). Since 4 ¢ T# (T3 LI(A)) we
obtain A; g T/ L1(A) D M for some i. But then [(A;) < I(A) which contradicts
minimality of [(A).

Conversely, let M be a two-valued model for P which satisfies the given
condition for some mapping [ : Bp — «a. We show by transfinite induction on
I(A) that A ¢ M implies A & T/ | (I(A) + 1), which suffices because it implies
that for the greatest two-valued model TIJ; 4 B8 of P we have that TIJ; 8 C M,
and therefore T; 1B = M. For the inductive proof consider first the case where
I(A) = 0. Then there is no clause in ground(P) with head A and consequently
A ¢ Ty L1 =TF(Bp). Now assume that the statement to be proven holds
for all B ¢ M with [(B) < «a, where « is some ordinal, and let A ¢ M with
[(A) = a. Then each clause in ground(P) with head A contains an atom B
with [(B) = 8 < a and B ¢ M. Hence B ¢ T3 | (B + 1) and consequently
AETE L (a+1).

The following definition and theorem are analogous to Theorem 2.

Definition 4. Let P be normal. Then M C Bp is called a maximally circular
stable model (maxstable model) of P if it is a two-valued supported interpreta-
tion of P and there exists a (total) level mapping | : Bp — a such that for each
atom A & M and for all clauses A < Ay,...,An,—By,...,~ By, in ground(P)
with By,..., By & M there is some A; € M with [(A) > 1(4;).

Theorem 6. M C Bp is a mazstable model of P if and only if M = gfp (T;‘/M).

Proof. First note that every maxstable model is a a supported model. Indeed
supportedness follows immediately from the definition. Now assume that M
is maxstable but is not a model, i.e. there is A € M but there is a clause
A<+ Ay,... A, in ground(P) with A; € M for all 4. But by the definition of
maxstable model we must have that there is A; € M, which contradicts A; € M.

Now let M be a maxstable model of P. Let A € M and let T;_/M la=

gfp (T;/M). We show by transfinite induction on [(A) that A & T;/M L(I(A)+1)
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and hence A ¢ T;/Mia. For I(A) = 0 there is no clause with head A in P/M,

so A& T;/Mil. Now let [(A) = 3 for some ordinal 3. By assumption we have
that for all clauses A < Ay,..., Ay, ~By,..., B, with By,..., By, € M there
exists A; ¢ M with I[(A) > I(4;), say I(A;) = v < 8. Hence A; ¢ T;'/ML(7+ 1),

and consequently A ¢ T;/MJ,(B + 1), which shows that gfp (T;/M) C M.

So let again M be a maxstable model of P and let A ¢ gfp (T;/M) = TIJ;/M 1

a and [(A) = S. Then for each clause A « Ay,..., A, in P/M there is A; with
A; & T;/Mia and [(A) > [(4;). Now assume A € M. Without loss of generality
we can furthermore assume that A is chosen such that {(A) = ( is minimal.
Hence A; ¢ M, and we obtain that for each clause in P/M with head A one of
the corresponding body atoms is false in M. By supportedness of M this yields
A & M, which contradicts our assumption. Hence A € M as desired.

Conversely, let M = gfp (T; /M). Then as an immediate consequence of
Theorem 5 we obtain that M is maxstable.

4 Maximally Circular Well-Founded Semantics

Maxstable models are formally analogous? to stable models in that the former
are fixed points of the operator I — gfp (T; / 1)7 while the latter are fixed points

of the operator I > Ifp (T;'/I). Further, in analogy to the alternating fixed

point characterization of the well-founded model, we can obtain a corresponding
variant of the well-founded semantics, which we will do next. Theorem 6 suggests
the defininition of the following operator.

Definition 5. Let P be a normal program and I be a two-valued interpretation.
Then define CGLp(I) = gfp (T;/I).

Using the operator CGLp, we can define a “maximally circular” version of
the alternating fixed-point semantics.

Proposition 1. Let P be a normal program. Then the following hold.

(i) CGLp is antitonic and CGL% is monotonic.
(ii) CGLp (Ifp (CGL})) = gfp (CGL}) and CGLp (gfp (CGL})) = Ifp (CGLY).

Proof. (i) If I C J € Bp, then P/J C P/I and consequently CGLp(J) =
gfp (T;/J) C gfp (T;/I) = CGLp(I). Monotonicity of CGL% then follows triv-
ially.

(i) Let Lp = Ifp (CGL}) and Gp = gfp (CGL}). Then we can calculate
CGL%(CGLp(Lp)) = CGLp (CGLyH(Lp)) = CGLp(Lp), so CGLp(Lp) is a

* The term dual seems not to be entirely adequate in this situation, although it is
intuitionally appealing.
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fixed point of CGL%, and hence Lp C CGLp(Lp) C Gp. Similarly, Lp C
CGLp(Gp) C Gp. Since Lp C Gp we get from the antitonicity of CGLp that
Lp C CGLp(Gp) C CGLp(Lp) C Gp. Similarly, since CGLp(Lp) C Gp, we
obtain CGLp(Gp) C CGL%(Lp) = Lp C CGLp(Gp), so CGLp(Gp) = Lp,
and also Gp = CGL%(Gp) = CGLp(Lp).

We will now define an operator for the maximally circular well-founded se-
mantics. Given a normal logic program P and some I € Ip, we say that S C Bp
is a self-founded set (of P) with respect to I if SUT € Ip and each atom A € S
satisfies the following condition: There exists a clause A < body in ground(P)
such that one of the following holds.

(Si) body is true in I.
(Sii) Some (non-negated) atoms in body occur in S and all other literals in
body are true in I.

Self-founded sets are analogous® to unfounded sets, and the following propo-
sition holds.

Proposition 2. Let P be a normal program and let I € Ip. Then there exists
a greatest self-founded set of P with respect to I.

Proof. If (S;)iez is a family of sets each of which is a self-founded set of P with
respect to I, then it is easy to see that (J;o7 S; is also a self-founded set of P
with respect to I.

Given a normal program P and I € Ip,let Sp(I) be the greatest self-founded
set of P with respect to I, and define the operator CWp on Ip by

CWp(I) = Sp(I)U—Fp(I).
Proposition 3. The operator CW p is well-defined and monotonic.

Proof. For well-definedness, we have to show that Sp(I) N Fp(I) = O for all
I € Ip. So assume there is A € Sp(I) N Fp(I). From A € Fp(I) we obtain that
for each clause with head A there is a corresponding body literal L which is false
in I. From A € Sp(I), more precisely from (Sii), we can furthermore conclude
that L is an atom and L € Sp(I). But then =L € I and L € Sp(I) which is
impossible by definition of self-founded set which requires that Sp(I)UI € Ip.
So Sp(I)NFp(I) =0 and CW p is well-defined.

For monotonicity, let I C J € Ip and let L € CWp(I). f L = —A is a
negated atom, then A € Fp(I) and all clauses with head A contain a body
literal which is false in I, hence in J, and we obtain A € Fp(J). If L = A is an
atom, then A € Sp(I) and there exists a clause A < body in ground(P) such
that (at least) one of (Si) or (Sii) holds. If (Si) holds, then body is true in I,
hence in J, and A € Sp(J). If (Sii) holds, then some non-negated atoms in body
occur in S and all other literals in body are true in I, hence in J, and we obtain

AeSp(J).

5 Again, it is not really a duality.
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The following theorem relates our previous observations to Definition 3, in
perfect analogy to the correspondence between the stable model semantics, The-
orem 1, Fages’s characterization from Theorem 2, the well-founded semantics,
and the alternating fixed point characterization.

Theorem 7. Let P be a normal program and Mp = Ifp(CWp). Then the fol-
lowing hold.

(i) Mp is the greatest model among all models I of P such that there is an
I-partial level mapping | for P such that P satisfies (CW) with respect to
I andl.

(ii) Mp = Ifp (CGLE) U~ (Bp \ gfp (CGLE)).

Proof. (i) Let Mp = Ifp(CW p) and define the Mp-partial level mapping I[p as
follows: Ip(A) = a, where « is the least ordinal such that A is not undefined in
CWp1(a+1). The proof will be established by showing the following facts: (1)
P satisfies (CW) with respect to Mp and lp. (2) If I is a model of P and [ is an
I-partial level mapping such that P satisfies (CW) with respect to I and [, then
IC Mp.

(1) Let A € dom(lp) and Ip(A) = a. We consider two cases.

(Case i) If A € Mp, then A € Sp(CWp 1 a), hence there exists a clause
A < body in ground(P) such that (Si) or (Sii) holds with respect to CWp 1 «.
If (Si) holds, then all literals in body are true in CW p 1 «, hence have level less
than Ip(A) and (Ci) is satisfied. If (Sii) holds, then some non-negated atoms
from body occur in Sp(CW p 1), hence have level less than or equal to Ip(A),
and all remaining literals in body are true in CW p 1, hence have level less than
Ip(A). Consequently, A satisfies (Ci) with respect to Mp and Ip.

(Caseii) If ~A € Mp,then A € Fp(CWpTa), hence for all clauses A < body
in ground(P) there exists L € body with =L € CWp 1« and Ip(L) < «, hence
—L € Mp. Consequently, A satisfies (Fii) with respect to Mp and lp, and we
have established that fact (1) holds.

(2) We show via transfinite induction on o = [(A4), that whenever A € I
(respectively, A € I), then A € CWp 1 (a + 1) (respectively, —A € CWp 1
(a+1)). For the base case, note that if /(4) = 0, then —A € I implies that there
is no clause with head A in ground(P), hence -A € CWp 1 1. If A € [ then
consider the set S of all atoms B with {(B) = 0 and B € I. We show that S is
a self-founded set of P with respect to CWp 10 = (), and this suffices since it
implies A € CWp 11 by the fact that A € S. Solet C € S. Then C € I and C
satisfies condition (Ci) with respect to I and [, and since I(C) = 0, we have that
there is a definite clause with head C whose body atoms (if it has any) are all
of level 0 and contained in I. Hence condition (Sii) (or (Si)) is satisfied for this
clause and S is a self-founded set of P with respect to I. So assume now that
the induction hypothesis holds for all B € Bp with [(B) < «, and let A be such
that I(A) = a. We consider two cases.

(Case i) If A € I, consider the set S of all atoms B with [(B) = a and B € I.
We show that S is a self-founded set of P with respect to CWp 1 a, and this
suffices since it implies A € CWp 1 (a + 1) by the fact that A € S. First note
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that S C I,s0 SUI € Ip. Now let C' € S. Then C € I and C satisfies condition
(Ci) with respect to I and I, so there is a clause A « Ay,..., Ay, B1,...,7 By
in ground(P) such that A;,—B; € I, [(A) > I(4;), and I(A) > I(B;) for all i and
j. By induction hypothesis we obtain =B; € CWp1ta. If [(4;) < I[(A) for some
A; then we have A; € CWp Ta, also by induction hypothesis. If there is no A;
with 1(A;) = I(A), then (Si) holds, while I(4;) = I(A) implies 4; € S, so (Sii)
holds.

(Caseii) If =A € I, then A satisfies (Fii) with respect to I and I. Hence for all
clauses A < body in ground(P) we have that there is L € body with —=L € I and
I(L) < «. Hence for all these L we have =L € CW p 1« by induction hypothesis,
and consequently for all clauses A < body in ground(P) we obtain that body is
false in CW pta which yields =A € CW p1(a +1). This establishes fact (2) and
concludes the proof of (i).

(if) We first introduce some notation. Let

Ly = wa GO = BP7
L,+1 = CGLp(G,), Guot+1 = CGLp(L,) for any ordinal «,

L,= U Lg, Go = ﬂ Gg for limit ordinal a,
B<a B<a
Lp =1fp(CGL}),  Gp =gfp(CGLE).

By transfinite induction, it is easily checked that L, C Lg C G3 C G, whenever
a<pB.SoLp=Lyand Gp =(G,.

Let M = Lp U—~(Bp \ Gp). We intend to apply (i) and first define an M-
partial level mapping [. We will take as image set of [, pairs («, ) of ordinals,
with the lexicographic ordering. This can be done without loss of generality
since any set of such pairs, under the lexicographic ordering, is well-ordered, and
therefore order-isomorphic to an ordinal. For A € Lp, let [(A) be the pair (¢, 0),
where « is the least ordinal such that A € L,41. For B ¢ Gp, let [(B) be the
pair (f,7), where j is the least ordinal such that B ¢ Gg41, and v is least such
that B & Tp/r, 7. It is easily shown that [ is well-defined, and we show next
by transfinite induction that P satisfies (CW) with respect to M and [.

Let A € Ly = gfp (T;/Bp)' Since P/Bp contains exactly all clauses from

ground(P) which contain no negation, we have that A is contained in the greatest
two-valued model of a definite subprogram of P, namely P/Bp. So there must
be a definite clause in ground(P) with head A whose corresponding body atoms
are also true in Li, which, by definition of /, must have the same level as A,
hence (Ci) is satisfied. Now let =B € =(Bp \ Gp) such that B € (Bp \ G1) =
Bp\gfp (TIJ;/@). Since P/ contains all clauses from ground(P) with all negative
literals removed, we obtain that B is not contained in the greatest two-valued
model of the definite program P/, and (Fii) is satisfied by Theorem 5 using a
simple induction argument.

Assume now that, for some ordinal «, we have shown that A satisfies (CW)
with respect to M and [ for all A € Bp with [(4) < («,0).
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Let A€ Lot1\ Lo =gfp (T;/Ga) \ Ly. Then A € (T;/Ga iy) \ L,, for some

~; note that all (negative) literals which were removed by the Gelfond-Lifschitz
transformation from clauses with head A have level less than («,0). Then A
satisfies (Ci) with respect to M and ! by definition of /.

Let A € (Bp \ Gat+1) N Gy. Then A ¢ gfp (T;_/La) and we conclude again

from Theorem 5, using a simple induction argument, that A satisfies (CW) with
respect to M and I.

This finishes the proof that P satisfies (CW) with respect to M and [. It
remains to show that M is greatest with this property.

So assume that M; D M is the greatest model such that P satisfies (CW)
with respect to My and some M;-partial level mapping l;. Assume L € My \ M
and, without loss of generality, let the literal L be chosen such that I3 (L) is
minimal. We consider two cases.

(Casei) If L = —~A € M;\ M is a negated atom, then by (Fii) for each clause
A<+ Ly,...,L, in ground(P) there exists ¢ with =L; € M; and Iy (A4) > l;(L;).
Hence, ~L; € M and consequently for each clause A « body in P/Lp we
have that some atom in body is false in M = Lp U —(Bp \ Gp). But then
A ¢ CGLp(Lp) = Gp, hence ~A € M, contradicting A € M; \ M.

(Caseii) If L= A € M\ M is an atom, then A ¢ M = LpU—~(Bp\Gp) and
in particular A € Lp = gfp (T;‘/GP). Hence A & T;'/GP 4 for some ~, which
can be chosen to be least with this property. We show by induction on 7 that
this leads to a contradiction, to finish the proof.

If v = 1, then there is no clause with head A in P/Gp, i.e. for all clauses
A < body in ground(P) we have that body is false in M, hence in My, which
contradicts A € M.

Now assume that there is no B € My \ M with B ¢ T;_/Gp 49 for any 6 < v,
and let A € M;\ M with A ¢ TIJ;/GP 17, which implies that v is a successor ordi-
nal. By A € M; and (Ci) there must be a clause A < A;,...,A,—By,...,~ By,
in ground(P) with A;,—B; € M, for all i and j. However, since A ¢ T;/GP i
~ we obtain that for each A < A;,...,A, in P/Gp, hence for each A «
Ay,...,Ap,By,...,1By, in ground(P) with =By,...,nB,, € °(Bp \ Gp) C
M C M, there is A; with A; ¢ T;'/GP l(v—=1) € M, and by induction hypoth-
esis we obtain A; € My. So A; € M, and A; &€ M, which is a contradiction and
concludes the proof.

Definition 6. For a normal program P, we call Ifp(CW p) the maximally cir-
cular well-founded model (maxwf model) of P.

5 Conclusions and Further Work

We have displayed a coherent picture of different semantics for normal logic
programs. We have added to well-known results new ones which complete the
formerly incomplete picture of relationships. The richness of theory and rela-
tionships turns out to be very appealing and satisfactory. From a mathematical
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perspective one expects major notions in a field to be strongly and cleanly in-
terconnected, and it is fair to say that this is the case for declarative semantics
for normal logic programs.

The situation becomes much more difficult when discussing extensions of the
logic programming paradigm like disjunctive [22], quantitative [23], or dynamic
[24] logic programming. For many of these extensions it is as yet to be determined
what the best ways of providing declarative semantics for these frameworks are,
and the lack of interconnections between the different proposals in the literature
provides an argument for the case that no satisfactory answers have yet been
found.

We believe that successful proposals for extensions will have to exhibit similar
interrelationships as observed for normal programs. How, and if, this can be
achieved, however, is as yet rather uncertain. Formal studies like the one in this
paper may help in designing satisfactory semantics, but a discussion of this is
outside the scope of our exhibition, and will be pursued elsewhere.
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