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Abstract

W.C. Rounds and G.-Q. Zhang have recently proposed to study a form of res-
olution on algebraic domains [1]. This framework allows reasoning with knowledge
which is hierarchically structured and forms a (suitable) domain, more precisely, a
coherent algebraic cpo as studied in domain theory. In this paper, we give condi-
tions under which a resolution theorem — in a form underlying resolution-based
logic programming systems — can be obtained. The investigations bear potential
for engineering new knowledge representation and reasoning systems on a firm
domain-theoretic background.
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1 Introduction

Domain Theory [2] is an abstract mathematical theory for programming semantics and
has grown into a respected field on the borderline between mathematics and computer
science. Relationships between domain theory and logic were noted early on by Scott [3],
and subsequently developed by many authors, including Smyth [4], Abramsky [5], and
Zhang [6]. There has been much work on the use of domain logics as logics of types and
of program correctness, with a focus on functional and imperative languages. However,
there has been only little work relating domain theory to logic programming or other AI
paradigms, two exceptions being the application of methods from quantitative domain
theory to the semantic analysis of logic programming paradigms studied by Hitzler and
Seda [7, 8], and the work of Rounds and Zhang on the use of domain logics for disjunctive
logic programming and default reasoning [9, 1].

The latter authors, in [1], introduced a form of clausal logic generalized to coherent
algebraic domains, motivated by theoretical investigations into the logical nature of
ordered spaces occuring in domain theory. In essence, they propose to interpret finite sets
of compact elements as abstract formal clauses, yielding a theory which links standard
domain-theoretic notions to corresponding logical notions. Amongst other things, they
establish a sound and complete proof theory based on a generalized resolution rule, and
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a form of disjunctive logic programming in domains. A corresponding semantic operator
turns out to be Scott-continuous.

In this paper, we study this clausal logic, henceforth called logic RZ for convenience.
The occurrence of a proof theory based on a generalized resolution rule poses the question
whether results underlying resolution-based logic programming systems can be carried
over to the logic RZ. One of the most fundamental results underlying these systems
is the resolution theorem which states that a clause X is a logical consequence of a
theory T if and only if it is possible to derive a contradiction, i.e. the empty clause, via
resolution from the theory T ∪ {¬X} [10, 11].

What we just called resolution theorem is certainly an immediate consequence of the
fact that resolution is sound and complete for classical logic. However, it is not obvious
how it can be transfered to the logic RZ, mainly because it necessitates negating a clause,
and negation is not available in the logic RZ in explicit form. This observation will lead
our thoughts, and in the end we will develop conditions on the underlying domain which
ensure that a negation is present which allows to prove an analogon of the theorem.

The paper is structured as follows. In Section 2 we review the most fundamental
definitions from the logic RZ, as laid out in [1]. In Section 2.2 we recall the corresponding
proof theory, based on a form of resolution for this framework. In Section 3 we will
simplify the proof theory and provide a rule system which is simpler and easier to work
with. The remainder of the paper is devoted to determining conditions under which a
resolution theorem, in the form mentioned above, can be proven for the logic RZ. These
conditions will involve atomicity of the underlying domain, studied in Section 4, and a
form of negation for these spaces, studied in Section 5. We will conclude in Section 6.

An extended abstract of this paper appeared in [12].

2 Preliminaries

2.1 The Logic RZ

A partially ordered set is a pair (D,�), where D is a nonempty set and � is a relexive,
antisymmetric, and transitive relation on D. A subset X of a partially ordered set is
directed if for all x, y ∈ X there is z ∈ X with x, y � z. An ideal is a directed and
downward closed set. A complete partial order, cpo for short, is a partially ordered set
(D,�) with a least element ⊥, called the bottom element of (D,�), and such that every
directed set in D has a least upper bound, or supremum,

⊔
D. An element c ∈ D is said

to be compact or finite if whenever c � ⊔
L with L directed, then there exists e ∈ L

with c � e. The set of all compact elements of a cpo D is denoted by K(D). An algebraic
cpo is a cpo such that every e ∈ D is the directed supremum of all compact elements
below it.

A set U ⊆ D is said to be Scott open, or just open, if it is upward closed and for any
directed L ⊆ D we have

⊔
L ∈ U if and only if U ∩ L �= 0. The Scott topology on D is

the topology whose open sets are all Scott open sets. An open set is compact open if it
is compact in the Scott topology. A coherent algebraic cpo is an algebraic cpo such that
the intersection of any two compact open sets is compact open. This coincides with the
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coherency notion defined in [2], which may be consulted as basic reference for domain
theory. We will not make use of many topological notions in the sequel. So let us note
that coherency of an algebraic cpo implies that the set of all minimal upper bounds of a
finite number of compact elements is finite, i.e. if c1, . . . , cn are compact elements, then
the set mub{c1, . . . , cn} of minimal upper bounds of these elements is finite. Note that
mub ∅ = {⊥}, where ⊥ is the least element of D.

In the following, (D,�) will always be assumed to be a coherent algebraic cpo.
We will also call these spaces domains. Two elements c, d ∈ D are called inconsistent,
symbolically c �↑ d, if c and d have no common upper bound.

Following [13], an element a ∈ D is called an atom, or an atomic element, if whenever
x � a we have x = a or x = ⊥. The set of all atoms of a domain is denoted by A(D).

2.1 Definition Let D be a coherent algebraic cpo with set K(D) of compact elements.
A clause is a finite subset of K(D). We denote the set of all clauses over D by C(D). If
X is a clause and w ∈ D, we write w |= X if there exists x ∈ X with x � w, i.e. X
contains an element below w.

A theory is a set of clauses, which may be empty. An element w ∈ D is a model of a
theory T , written w |= T , if w |= X for all X ∈ T or, equivalently, if every clause X ∈ T
contains an element below w.

A clause X is called a logical consequence of a theory T , written T |= X, if w |= T
implies w |= X. If T = {E}, then we write E |= X for {E} |= X. Note that this holds
if and only if for every w ∈ E there is x ∈ X with x � w.

For two theories T and S, we say that T |= S if T |= X for all X ∈ S. We say that T
and S are (logically) equivalent, written T ∼ S, if T |= S and S |= T . In order to avoid
confusion, we will throughout denote the empty clause by {}, and the empty theory by
∅. A theory T is (logically) closed if T |= X implies X ∈ T for all clauses X. It is called
consistent if T �|= {} or, equivalently, if there is w with w |= T .

Rounds and Zhang originally set out to characterize logically the notion of Smyth
powerdomain of coherent algebraic cpos. It naturally lead to the clausal logic RZ from
Definition 2.1. Indeed, as was shown in [1], the Smyth powerdomain of any coherent
algebraic domain is isomorphic to the set of all consistent closed theories over the do-
main, ordered by set-inclusion. A corollary from the proof is that a clause is a logical
consequence of a theory if and only if it is a logical consequence of a finite subset of the
theory, which is a compactness theorem for the logic RZ.

2.2 Example In [1], the domain T
ω from [14], here denoted T

V , was given as a running
example. Consider some three-valued logic in the propositional case, with the usual
(knowledge)-ordering on the set T = {f ,u, t} of truth values given by u < f and u < t.
This induces a pointwise ordering on the space T

V of all interpretations (or partial truth
assignments), where V is the (countably infinite) set of all propositional variables in the
language under consideration. The partially ordered set T

V is a coherent algebraic cpo.
Compact elements in T

V are those interpretations which map all but a finite number of
propositional variables to u. We denote compact elements by strings such as pqr, which
indicates that p and q are mapped to t and r is mapped to f .
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We note that {e | e |= φ} is upward-closed for any logical formula φ if considering
e.g. Kleene’s strong three-valued logic, which has been recognized as being important
in a logic programming context [15]. A clause in T

V is a formula in disjunctive normal
form, e.g. {pqr, pq, r} translates to (p ∧ q ∧ ¬r) ∨ (¬p ∧ q) ∨ r.

We also note that every compact element in T
V can be uniquely expressed as the

supremum of a finite number of atomic elements, and the set of all atomic elements is
A

(
T
V)

= V ∪ {v | v ∈ V}. Furthermore, there exists a bijective function : A
(
T
V) →

A
(
T
V)

: p → p which extends naturally to a Scott-continuous involution on all of T
V via

p1 . . . pn = p1 . . . pn. In the following, a clause over a domain D will be called an atomic
clause if it is a finite subset of A(D). Atomic clauses on T

V correspond to propositional
clauses in the classical sense. Note that p �↑ p for p ∈ A

(
T
V)

and in general for all
c ∈ K

(
T
V)

we have c �↑ c.

The following example shows how knowledge can be represented in algebraic do-
mains. For convenience, examples will be presented as subsets of T

V , in the notation
from Example 2.2.

2.3 Example Consider the subspace of T
V constituted by the elements ⊥, b (is a bird),

f (flies), f (does not fly), a (lives in australia), s (lives near south pole), bfs (is a
penguin), and bfa (is an ostrich). Then e.g.

{{b}, {f
}} |= {a, s}.

As to the knowledge representation capabilities of the logic RZ, we remark that some
first investigations have exhibited a strong link to formal concept analysis [16, 17].

2.2 Resolution in the logic RZ

In [1], a sound and complete proof theory, using clausal hyperresolution, was given as
follows, where {X1, . . . , Xn} is a clause set and Y a clause.

Xi; ai ∈ Xi (i ≤ n); mub{ai | i ≤ n} |= Y

Y ∪ ⋃
i≤n (Xi \ {ai}) (hr)

This rule is sound in the following sense: Whenever w |= Xi for all i, then for any
admissible choice of the ai and Y in the antecedent, we have w |= Y ∪⋃n

i=1 (Xi \ {ai}).
For completeness, it is necessary to adjoin to the above clausal hyperresolution rule a

special rule which allows the inference of any clause from the empty clause. We indicate
this rule as follows. {}; Y ∈ C(D)

Y
(spec)

With this addition, given a theory T and a clause X with T |= X, we have that T �∗ X,
where �∗ stands for a finite number of applications of the clausal hyperresolution rule
together with the special rule.

Furthermore, [1, Remark 4.6] shows that binary hyperresolution, together with
(spec), is already complete, i.e. the system consisting of the binary clausal hyperres-
olution rule

X1 X2; ai ∈ Xi; mub{a1, a2} |= Y

Y ∪ (X1 \ {a1}) ∪ (X2 \ {a2}) (bhr)
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together with the special rule is sound and complete.
If the set {a1, a2} is inconsistent, then mub{a1, a2} = {}. Since {} |= {}, clausal

hyperresolution generalizes the usual notion of resolution, given by the following rule.

X1 X2; ai ∈ Xi; a1 �↑ a2

(X1 \ {a1}) ∪ (X2 \ {a2}) (r)

2.4 Example Returning to Example 2.3, note that e.g.
{{b}, {f

}} � {
bfs, bfa

}
using

(bhr).

3 Simplifying the Resolution System

Note that two special instances of the clausal hyperresolution rule are as follows, which
we call the reduction rule and the extension rule.

X; {a, y} ⊆ X; y � a

X \ {a} (red),

X; y ∈ K(D)

{y} ∪ X
(ext)

Indeed, the first rule follows from (hr) since a ∈ X and {a} |= {y}, while the latter rule
follows since {a} |= {a, y} for all y ∈ K(D). The special rule (spec) can be understood
as an instance of (ext). Note also that resolution (r) together with (ext) and (red) is not
complete. In order to see this, we refer again to Example 2.2. Let T = {{p}, {q}} and
X = {pq}. Then T |= X but there is no way to produce X from T using (r), (ext) and
(red) alone. Indeed, it is easy to show by induction that any X which can be derived
from T by using only (r), (ext) and (red), contains either p or q, which suffices.

It is our desire to provide a sound and complete system whose rules are as simple as
possible. Consider the following rule, which we call simplified hyperresolution. It is easy
to see that it is an instance of (hr) and more general than (r).

X1 X2; ai ∈ Xi

mub{a1, a2} ∪ (X1 \ {a1}) ∪ (X2 \ {a2}) (shr)

3.1 Theorem The system consisting of (shr), (ext) and (red) is complete.

Proof: In order to show completeness, we derive (bhr) from (shr), (ext) and (red). Let
X1, X2 be given with a1 ∈ X1 and a2 ∈ X2 with a1 ↑ a2. Furthermore, let Y be
a clause with mub{a1, a2} |= Y . Let mub{a1, a2} = {b1, . . . , bn}. Then for every bi

there exists yi ∈ Y with yi � bi. Using (shr), from X1 and X2 we can derive X3 =
mub{a1, a2}∪ (X1 \ {a1})∪ (X2 \ {a2}), and with repeated application of (ext) and (red)
we obtain from this X4 = {y1, . . . , yn} ∪ (X1 \ {a1}) ∪ (X2 \ {a2}). Finally, using (ext)
repeatedly, we can add to X4 all remaining elements from Y . The argumentation for
a1 �↑ a2 is similar. This completes the proof. �

We note that a rule with weaker preconditions than (red) suffices, which we call the
weakening rule:

X; a ∈ X; y � a

{y} ∪ (X \ {a}) (w)
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Indeed, (red) can be derived from (w) as follows. Let {a, y} ⊆ X with y � a. Then in
particular a ∈ X, i.e. using (w) we can derive {y}∪ (X \ {a}) which is equal to X \ {a}
since y is already contained in X. On the other hand, (w) can be derived from (red) and
(ext) as follows. Let a ∈ X and y � a. If a = y then there is nothing to show, so assume
a �= y. Then X � X ∪ {y} by the extension rule, so the reduction rule can be applied,
yielding (X ∪ {y}) \ {a} as required.

The following technical result is inspired by [18, Theorem 7].

3.2 Proposition For clauses X1, . . . , Xn we have {X1, . . . , Xn} |= X if and only if
{{a1}, . . . , {an}} |= X for all (a1, . . . , an) ∈ X1 × . . . × Xn.

Proof: Assume {X1, . . . , Xn} |= X and let ai ∈ Xi be arbitrarily chosen for i =
1, . . . , n. Then {ai} Xi for all i = 1, . . . n by (ext) and therefore {{a1}, . . . , {an}} |=
{X1, . . . , Xn} |= X.

Conversely, assume that {{a1}, . . . , {an}} |= X for all (a1, . . . , an) ∈ X1 × . . . × Xn

and let w ∈ D with w |= {X1, . . . , Xn}, i.e. w |= Xi for all i = 1, . . . , n. Then for all
i = 1, . . . , n there is ai ∈ Xi with ai � w. So for all i = 1, . . . , n choose ai with ai � w.
Then w |= {{a1}, . . . , {an}} and by assumption we obtain w |= X. �

We call the system consisting of the rules (red), (ext) and (shr) the RAD system,
from Resolution in Algebraic Domains. For two theories T and S, we write T �∗ S if
T �∗ A for each A ∈ S, and for clauses X and Y we write X �∗ Y , respectively X �∗ T ,
for {X} �∗ Y , respectively {X} �∗ T . The symbol � denotes derivation by a single
application of one of the rules in RAD. With slight abuse of notation, for two theories
T and S we allow to write T � S if T � X for some clause X and S ⊆ T ∪ {X}.

We interpret the RAD rules in the setting of Example 2.2. We already know that
clauses correspond to formulas in disjunctive normal form (DNF), and theories to sets
of DNF formulas. The weakening rule acts on single clauses and replaces a conjunction
contained in a DNF formula by a conjunction which contains a subset of the propositional
variables contained in the original conjunction, e.g. (p∧q)∨r becomes p∨r. The extension
rule disjunctively extends a DNF formula by a further conjunction of propositional
variables, e.g. (p∧q)∨r becomes (p∧q)∨r∨ (s∧q). The simplified hyperresolution rule
finally takes two DNF formulas, deletes one conjunction from each of them, and forms
a disjunction from the resulting formulas together with the conjunction of the deleted
items, e.g. (p ∧ q) ∨ r and ¬p ∨ (s ∧ r) can be resolved to (p ∧ q) ∨ (r ∧ ¬p) ∨ (s ∧ r).

A more abstract interpretation of the RAD system comes from a standard intuition
underlying domain theory. Elements of the domain D are interpreted as pieces of infor-
mation, and if x � y, this represents that y contains more information than x. Compact
elements are understood as items which are computationally accessible. From this point
of view, RAD gives a calculus for reasoning about disjunctive information in compu-
tation, taking a clause, i.e. a finite set of computationally accessible information items
as disjunctive knowledge about these items. The rules from RAD yield a system for
deriving further knowledge from the given disjunctive information. The weakening rule
states that we can replace an item by another one which contains less information. The
extension rule states that we can always extend our knowledge disjunctively with further
bits of information. Both rules decrease our knowledge. The simplified hyperresolution
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rule states that we can disjunctively merge two collections of disjunctive information,
while strengthening our knowledge by replacing two of the items from the collections by
an item which contains both pieces of information, and deleting the original items.

3.3 Example For Example 2.3, note that
{{b}, {f

}} � {
bfs, bfa

}
using (shr),{

bfs, bfa
} � {

s, bfa
}

using (w), and finally
{
s, bfa

} � {s, a} using (w) again.

4 Atomic Domains

We simplify proof search via resolution by requiring stronger conditions on the domain.

4.1 Definition An atomic domain is a coherent algebraic cpo D with the following
property: For all c ∈ K(D), the set A(c) = {p ∈ A(D) | p � c} is finite and c =

⊔
A(c).

The domain T
V from Example 2.2 is an example of an atomic domain. In the re-

mainder of this section, D will always be an atomic domain.
We seek to represent a clause X by a finite set A(X) of atomic clauses which is

logically equivalent to X. Given X = {a1, . . . , an}, we define A(X) as follows.

A(X) = {{b1, . . . , bn} | bi ∈ A(ai) for all i = 1, . . . , n}

Then the following theorem holds.

4.2 Theorem For any clause X we have A(X) ∼ {X}.
Proof: For a clause X = {a1, . . . , an} set X/a1 = {{b, a2, . . . , an} | b ∈ A(a1)}. Then
X/a1 |= X. Indeed, since

⊔
A(a1) = a1 we obtain mub A(a1) |= {a1}, and therefore

X/a1 �∗ X from (hr).
Now let X = {a1, . . . , an} and let Y = {b1, . . . , bn} ∈ A(X) with bi ∈ A(ai) for all

i. Then bi � ai for all i and hence X �∗ Y by repeated application of the weakening
rule. Conversely, define for any compact element a and any set T of clauses: T/a =
{Z ∈ T | a �∈ Z} ∪ {{b} ∪ (Z \ {a}) | b ∈ A(a), a ∈ Z ∈ T}. So for any clause Z
and a ∈ Z we have {Z}/a = Z/a and we obtain that T/a |= T for all sets of clauses
T and a ∈ K(D). Now let X = {a1, . . . , an}. Then (. . . (X/a1)/a2 . . . )/an = A(X) and
consequently A(X) |= X, which completes the proof. �

In view of Theorem 4.2, it suffices to study T �∗ X for theories T and atomic clauses
X. We can actually obtain a stronger result, as follows, which provides some kind of
normal forms of derivations. For a theory T , define A(T ) = {A(X) | X ∈ T}.

4.3 Theorem Let D be an atomic domain, T be a theory, X be a clause and

T � T1 � · · · � TN � X

be a derivation in RAD. Then there exists a derivation

A(T ) �∗ A(T1) �∗ · · · �∗ A(TN) �∗ A(X)
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using only the atomic extension rule

X; y ∈ A(D)

{y} ∪ X
(axt)

and the multiple atomic shift rule (mas), as follows.

ai ∈ Xi; mub{ai | i ≤ n} = {xj | j ≤ m}; bi ∈ A(xi)

{b1, . . . , bm} ∪
⋃

i≤n(Xi \ {ai})
Furthermore, all clauses occuring in the derivation are atomic.

Proof: Let X1, X2, X be clauses. We distinguish three cases, from which the assertion
follows easily by induction on N .

1. X1 � X using the reduction rule. First note that the following atomic shift rule
(ash) is a special instance of the multiple atomic shift rule.

a1 ∈ X1 a2 ∈ X2; a ∈ A(x) for all x ∈ mub{a1, a2}
{a} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})

Indeed, (ash) follows from (mas) with n = 2 and a = b1 = . . . = bk. Now let a, y ∈ X1

with y � a and X = X1 \ {a} = {y, x1, . . . , xn}. Let A ∈ A(X), say A = {y′, x′
1, . . . , x

′
n}

with y′ ∈ A(y) and x′
i ∈ A(xi) for all i. Without loss of generality we can assume

that A(y) ⊂ A(a), so there is {a′} ∪ A ∈ A(X1) for some a′ ∈ A(a) \ A(y). So we now
have a′, y′ � a and y′ � y, i.e. {y′, a′, x′

1, . . . , x
′
n} ∈ A(X1) and {y′, y′, x′

1, . . . , x
′
n} =

A ∈ A(X1). So a′ ∈ {y′, a′, x′
1, . . . , x

′
n}, y′ ∈ {y′, y′, x′

1, . . . , x
′
n} and since y′ � x for all

x ∈ mub{y′, a′} we can derive {y′} ∪ ({y′, a′, x′
1, . . . , x

′
n} \ {a′}) ∪ ({y′, y′, x′

1, . . . , x
′
n} \

{y′}) = {y′, x′
1, . . . , x

′
n} = A using the atomic shift rule.

2. X1 � X using the extension rule, i.e. X = X1 ∪ {y} for some y. Let A ∈ A(X).
Then A = {y′} ∪ Y for some y′ ∈ A(y) and Y ∈ A(X1). Using the atomic extension rule
we can derive Y � A and therefore A(X1) � A using the atomic extension rule only,
which suffices.

3. {X1, X2} � X using the simplified hyperresolution rule. Let a1 ∈ X1, a2 ∈ X2

and X = mub{a1, a2} ∪ (X1 \ {a1}) ∪ (X2 \ {a2}). Furthermore, let M = mub{a1, a2} =
{m1, . . . , mk} and let A ∈ A(X), i.e. A = {m′

1, . . . , m
′
k} ∪ B1 ∪ B2, where m′

i ∈ A(mi)
for all i, B1 ∈ A(X1 \ {a1}) and B2 ∈ A(X2 \ {a2}). Note that for all a′

1 ∈ A(a1) we have
that B1 ∪ {a′

1} ∈ A(X1) and for all a′
2 ∈ A(a2) we have that B2 ∪ {a′

2} ∈ A(X2). Let
A(a1) = {a′

1, . . . , a
′
k1
} and A(a2) = {a′

k1+1, . . . , a
′
k1+k2

}. For i = 1, . . . , k1 let Yi = B1 ∪
{a′

i} ∈ A(X1) and for i = k1, . . . , k1 + k2 let Yi = B2 ∪{a′
i} ∈ A(X2). Since a1 =

⊔
A(a1)

and a2 =
⊔

A(a2) we have mub (A(a1) ∪ A(a2)) = mub{a1, a2} = {m1, . . . , mk} = M .
From the multiple atomic shift rule we obtain (with i ≤ k1 + k2 and j ≤ k)

ai ∈ Yi mub{a′
1, . . . , a

′
k1+k2

} = M, m′
j ∈ A(mj)

{m′
1, . . . , m

′
k} ∪

⋃
i≤k1+k2

(Yi \ {ai})

Since Yi \ {a′
i} ⊆ B1 for i = 1, . . . , k1 and Yi \ {a′

2} ⊆ B2 for i = k1, . . . , k1 + k2, we
obtain {m′

1, . . . , m
′
k} ∪

⋃
(Yi \ {ai}) ⊆ A which suffices by the atomic extension rule. �
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Note that the atomic extension rule is a special case of the extension rule, and that
the multiple atomic shift rule can be obtained as a subsequent application of first the
hyperresolution rule (with Y = mub{a1, . . . , an}) and then multiple instances of the
reduction rule, hence both rules are sound.

4.4 Remark We note that Theorem 4.3 does not hold if (mas) is replaced by its binary
version (bas), as follows.

a1 ∈ X1, a2 ∈ X2; mub{a1, a2} = {x1 | i ≤ k}; bi ∈ A(xi)

{b1, . . . , bk} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})
In order to see this, consider three atomic elements a1, a2, a3 which are mutually consis-
tent with supremum sup{ai, aj} = aij , but do not have a common upper bound. Then
{{a1}, {a2}, {a3}} |= {}, but the empty clause {} cannot be derived from the theory
T = {{a1}, {a2}, {a3}} using (axt) and (bas) alone. Indeed it is easy to show by in-
duction that every clause which is derived from T using applications of (axt) and (bas)
always contains one of the elements a1, a2 or a3.

5 Domains with Negation

We introduce and investigate a notion of negation on domains, motivated by classical
negation as in Example 2.2.

5.1 Definition An atomic domain is called an atomic domain with negation if there ex-
ists an involutive and Scott-continuous negation function : D → D with the following
properties:

(i) maps A(D) onto A(D).

(ii) For all p, q ∈ A(D) we have p �↑ q if and only if q = p.

(iii) For every finite subset A ⊆ A(D) such that p ↑ q for all p, q ∈ A, the supremum⊔
A exists.

T
V from Example 2.2 is an example of an atomic domain with negation.

5.2 Proposition Let D be an atomic domain with negation. Then for all c ∈ K(D) we
have c =

⊔{a | a ∈ A(c)}.
Proof: Let c ∈ K(D). Then c =

⊔
A(c), hence A(c) is consistent. By (ii) of Definition

5.1, we obtain that every pair of elements from {a | a ∈ A(c)} is consistent, and by
(iii) the supremum d =

⊔{a | a ∈ A(c)} exists. From monotonicity of , we obtain first
d � c, and then d � c = c. But, again by monotonicity of , we know that d is an upper
bound of A(c), hence c � d, and consequently c = d and c = d =

⊔{a | a ∈ A(c)} as
required. �

The following result, an analogon to the resolution theorem mentioned in the intro-
duction, allows one to replace the search for derivations by search for contradiction.
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5.3 Theorem Let D be an atomic domain with negation. Let T be a theory and X be
an atomic clause. Then T |= X if and only if T ∪ {{ā} | a ∈ X} �∗ {}.
Proof: Assume T |= X. Then T �∗ X and {X} ∪ {{ā} | a ∈ X} �∗ {} follows easily by
repeated application of the resolution rule (r).

Conversely, assume T ∪ {{a} | a ∈ X} �∗ {}, i.e. T ∪ {{a} | a ∈ X} |= {}. If T |= {}
then T �∗ {} �∗ X. So assume that T �|= {}, i.e. there exists w ∈ D with w |= T . We
have to show that w |= X for every such w. Since w |= T but w �|= T ∪ {{a} | a ∈ X},
we have that there is a ∈ X with a �↑ w. Hence there exists x ∈ A(w) with x �↑ a. From
the hypothesis we obtain x = a. Hence a � w and therefore, by the weakening rule,
w �∗ X, i.e. w |= X. �

On atomic domains with negation, we can therefore establish the following sound
and complete proof principle.

5.4 Theorem Let T be a theory and X a clause. Consider T ′ = A(T ). For every
atomic clause A ∈ A(X) attempt to show T ′ ∪ {{a} | a ∈ A} �∗ {} using (axt) and
(mas). If this succeeds, then T |= X. Conversely, if T |= X then there exists a derivation
T ′ ∪ {{a} | a ∈ A} �∗ {} for each A ∈ A(X) using only the above mentioned rules.

Proof: If T ′ ∪ {{a} | a ∈ A} �∗ {}, then by Theorem 4.3 the derivation can be carried
out using only the mentioned rules and we obtain T ′∪{{a} | a ∈ A} |= {}. By Theorem
5.3 we obtain T ′ |= A, so T ′ |= A for all A ∈ A(X). By Theorem 4.2 this yields T ′ |= X
and finally we obtain T |= X by application of Theorem 4.2, noting that T ′ = A(T ) ∼ T .

Conversely, if T |= X then we have T ′ |= A for all A ∈ A(X), again by Theorems 4.2
and 4.2. Theorem 5.3 then yields T ′ ∪ {{a} | a ∈ A} �∗ {} for all A ∈ A(X), and finally
from Theorem 4.3 we obtain that this derivation can be done using only the designated
rules. �

5.5 Example We give an abstract example, again using notation from Example
2.2, which shows that reasoningin atomic domains with negation does not lead di-
rectly back to resoning in T

V . Consider the subcpo constituted by the elements
{⊥, p, q, r, p, q, r, pqr, pqr, pq, pr, qp, qr, rp, rq}, which is an atomic domain with nega-
tion. Then e.g. {{p}, {q}} |= {r}. Indeed, {{p}, {q}, {r}} � {} by (mas) because
mub{p, q, r} = {}.

6 Conclusions

We have shown that for certain domains logical consequence in the logic RZ can be
reduced to search for contradiction, a result which yields a proof mechanism similar
to that underlying the resolution principle used in resolution-based logic programming
systems. The result should be understood as foundational for establishing logic pro-
gramming systems on hierarchical knowledge — like e.g. in formal concept analysis —
built on a firm domain-theoretic background. Further research is being undertaken to
substantiate this.
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