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Abstract

We study a generalized notion of topology which evolved out of applications in the
area of logic programming semantics. The generalization is obtained by relaxing the
requirement that a neighbourhood of a point includes the point itself, and by allowing
neighbourhoods of points to be empty. The corresponding generalized notion of metric
is obtained by allowing points to have non-zero distance to themselves. We further
show that it is meaningful to discuss neighbourhoods, convergence, and continuity in
these spaces. A generalized version of the Banach contraction mapping theorem can
also be established. We show finally how the generalized metrics studied here can be
obtained from conventional metrics.
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1 Introduction

In recent years, the role of topology in Logic Programming has come to be recognized
(see e.g. [BS89, BDJRS99, Fit94, HS99, HS00, HSK99, KKM93, PR00, Sed95, Sed97,
SH97, SH98|). In particular, topological methods are employed in order to obtain fixed-
point semantics for logic programs. The dislocated metric spaces which we discuss in this
paper are motivated by such considerations. Whilst the main part of the paper consists
of an analysis of these spaces, we find it convenient to first bring to the attention of the
reader the general perspective from which they emerge. The reader who is not interested
in the motivational background from the theory of logic programming may go directly
to Section 2.1 and then on to Section 3.

In the classical approach to logic programmming semantics in which definite or pos-
itive programs P are considered (those in which negation does not occur), we associate
an operator Tp, called the single-step or immediate consequence operator, see [L1088]
and also Section 2.2. This operator turns out to be continuous with respect to the Scott
topology on the complete lattice of all interpretations. Applying the Knaster-Tarski
fixed-point theorem! then yields a least fixed point of T, which is often understood to
be the denotational semantics or meaning of the program in question. As it turns out,
this semantics also agrees very well with the operational and the logical readings of the
program, see [L1088] again.

However, when the syntax is enhanced in the sense that negation is allowed, re-
sulting in the class of normal logic programs, then the single-step operator is no longer
monotonic and therefore cannot be continuous in the Scott topology?. Hence, the ap-
proach mentioned above using the Knaster-Tarski theorem is invalid and other methods
have to be sought. These include (1) restricting the syntax of the programs in ques-
tion (e.g. in [ABWS88, Cav89, Prz88, SHI7|), (2) using alternative operators (e.g. in
[Fit85, GRS91, GL88, HS99]), and (3) applying alternative fixed-point theorems in or-
der to analyse non-monotonic operators. It is this latter point (3) which provides the
motivation for the results presented in this paper.

The main alternative to the Knaster-Tarski theorem is the Banach contraction map-
ping theorem for complete metric spaces. In some cases, e.g. for acyclic® programs, the

1See [SLGY4] for domain theoretic background.

2In fact, the appropriate topology for normal logic programs appears to be the atomic topology of
[Sed95], which is a Cantor topology and a generalization of the query topology presented in [BS89].

3Called w-locally hierarchical in [Cav89).



Banach theorem can indeed be applied, cf. [SHI8, HSK99]. Acyclic programs, however,
are a rather restrictive class and, furthermore, the topological spaces which arise in
the area of denotational semantics are often not Hausdorff. It is therefore of interest
to find fixed-point theorems for spaces which are weaker than metric spaces in a topo-
logical sense. The alternatives include (a) quasi-metrics, where the symmetry axiom is
dropped (cf. [Sed97]), which in fact have recently been studied extensively in domain
theory, and (b) generalized metric spaces, generalized in the sense that the target space
of the distance function is a partially ordered set, cf. [KKM93, SH97, PR00]. We wish
to put forward a third alternative (c¢) which we call dislocated metrics, and which are
obtained by omitting the requirement that the distance from a point to itself must be
zero. This idea is not new and has been studied in the context of domain theory in
[Mat86, Mat92a, Mat92b], where the latter two references focus on slightly stronger
spaces, cf. Section 3, and dislocated metrics were called metric domains in the first.
Our motivation for studying these spaces is that a generalization of the Banach con-
traction mapping theorem can indeed be established [Mat86] and applications to logic
programming semantics can be found (see Section 2.2).

The plan of the paper is as follows. In Section 2, we will first define dislocated metrics
and state the generalization of the Banach contraction mapping theorem we require; then
we will review one of the applications of these notions to logic programming semantics.
In Section 3, we will study dislocated topologies which generalize conventional topologies
and can be thought of as underlying the notion of dislocated metric. In particular, we
will see that it is meaningful to talk about neighbourhoods, convergence, and continuity
in these spaces. In Section 4, we will further investigate dislocated metrics and their
relationships with the notions from Section 3 and with conventional metrics. Finally, in
Section 5, we will conclude with a short discussion.

2 Motivation: A Fixed Point Application in Logic
Programming

We will define dislocated metrics, and present a generalization of the Banach contraction
mapping theorem, Theorem 2.7, for these spaces. Then we will discuss acceptable logic
programs and apply Theorem 2.7 in order to obtain a unique supported model for these
programs.

2.1 A Generalized Banach Contraction Mapping Theorem

2.1 Definition Let X be a set and let 9 : X x X — R be a function, called a distance
function. Consider the following conditions:

(Mi) For all z € X, o(z,z) = 0.

(Mii) For all z,y € X, if o(z,y) = 0 then z = y.
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(Miii) For all z,y € X, o(z,y) = o(y, ).
(Miv) For all z,y,z € X, o(z,y) < o(x, 2) + o(z,y).
(Miv') For all z,y,z € X, o(x,y) < max{o(z, 2), o(2,y)}.

If o satisfies conditions (Mi) to (Miv), then it is called a metric. If it satisfies conditions
(Mi), (Miii) and (Miv), it is called a pseudo-metric. If it satisfies (Mii), (Miii) and (Miv),
we will call it a dislocated metric (or simply d-metric). This terminology will become
clearer later on. If a (pseudo-, d-) metric satisfies the strong triangle inequality (Miv'),
then it is called a (pseudo-, d-) ultrametric.

As already mentioned, dislocated metrics were studied under the notion of metric
domains in [Mat86]. We will take this up again in Section 3, but proceed now with
the definitions needed for stating the generalized Banach contraction mapping theorem,
that is, we will define convergence, Cauchy sequences and completeness for dislocated
metrics. As it turns out, these notions can be carried over directly from conventional
metrics.

2.2 Definition A sequence (z,) in a d-metric space (X, 0) converges with respect to o
(or in p) if there exists an x € X such that o(x,,z) converges to 0 as n — co. In this
case, x is called the limit of (z,) (in o) and we write z,, — x.

2.3 Proposition Limits in d-metric spaces are unique.

Proof: Let = and y be limits of the sequence (x,). By properties (Mii) and (Miii) of
Definition 2.1, it follows that o(x,y) < o(zn,z) + o(xn,y) — 0 as n — oo. Hence
o(z,y) = 0 and by property (Mii) of Definition 2.1 it follows that = = y. |

2.4 Definition A sequence (z,) in a d-metric space is called a Cauchy sequence if for
each ¢ > 0 there exists ng € N such that for all m,n > ng we have o(x,,, z,) < .

2.5 Proposition Every converging sequence in a d-metric space is a Cauchy sequence.

Proof: Let (z,,) be a sequence which converges to some x, and let € > 0 be arbitrarily
chosen. Then there exists nyg € N with o(x,,2) < § for all n. > ng. For m,n > ny we then
obtain o(xy,, z,) < 0(¥m, x) + o(z,2,) < 2-5 =¢c. Hence (z,,) is a Cauchy sequence. B

2.6 Definition A d-metric space (X, p) is called complete if every Cauchy sequence in
X converges with respect to o. A function f : X — X is called a contraction if there
exists 0 < A < 1 such that o(f(z), f(y)) < Ao(z,y) for all z,y € X.

2.7 Theorem Let (X, 0) be a complete d-metric space and let f : X — X be a
contraction. Then f has a unique fixed point.



A proof of this theorem was given in [Mat86]. We will give an alternative proof in
Section 4 which is more in the spirit of the proof of the original Banach contraction
mapping theorem, and proceed now with an application of it.

2.2 Acceptable Logic Programs

We sketch an application of Theorem 2.7 in the area of logic programming semantics.
Our main reference for logic programming is [L1088].
A logic program is a finite set of (universally quantified) clauses, from first order
logic, of the form
V(A LiA---NLy)

where A is an atom and Lq,..., L, are literals. Such clauses are usually written as
A(-Ll,...,Ln.

We call A the head of the clause, and L, ..., L, the body of the clause. Each L; is called
a body literal of the clause. If n = 0, then the clause is called a unit clause or a fact.

For a given logic program P, we denote the Herbrand base (i.e. the set of all ground
atoms in the underlying first order language) by Bp. As usual, (Herbrand-) interpreta-
tions of P can be identified with subsets of Bp, so that the set Ip of all interpretations
of P coincides with the power set P(Bp) of Bp.

The standard approach to logic programming semantics, that is, to assigning a rea-
sonable meaning to a given logic program, is to identify models of the program which
have certain additional properties. We will focus on the supported model semantics or
Clark completion semantics of P, cf. [Cla78, ABW88|. For this purpose, we define the
immediate consequence or single step operator Tp for a given logic program P as a map-
ping Tp : Ip — Ip of interpretations to interpretations as follows: Tp(I) is the set of all
A € Bp such that there exists a ground instance A < Lq,..., L, of a clause in P, with
head A, satisfying I = Ly A---A L,. Note that Tp is in general not monotonic but is so
if P is definite.

As it turns out, the models of P are exactly the pre-fixed points of Tp, that is,
those interpretations which satisfy Tp(I) C I. A supported model (or model of the Clark
completion [Cla78]) of P is a fixed point of Tp.

The following definition is taken from [AP93]. Acceptable programs play an impor-
tant role in termination analysis in logic programming.

2.8 Definition Let P be a logic program and let p, ¢ be predicate symbols occurring
in P.

1. p refers to q if there is a clause in P with p in its head and ¢ in its body.

2. p depends on q if (p,q) is in the reflexive, transitive closure of the relation refers
to.



3. Negp denotes the set of predicate symbols in P which occur in a negative literal
in the body of a clause in P.

4. Negp denotes the set of all predicate symbols in P on which the predicate symbols
in Negp depend.

5. P~ denotes the set of clauses in P whose head contains a predicate symbol from
Negp.

Let P be a logic program, let [ : Bp — N be a level mapping and let I be a model of P
whose restriction to the predicate symbols in Neg}, is a supported model of P~. Then P
is called acceptable (with respect to [ and I) provided that the following condition holds.
For each ground instance A < Ly,..., L, of a clause in P and for all i € {1,...,n} we
have:

i—1
it Tk AL,  then  I(A)>I(L).
j=1

In the following, P is an acceptable program which satisfies the defining conditions
with respect to a model I and a level mapping /.

For J, K € Ip, we now define d(K, K) = 0 and d(J, K) = 27", where J and K differ
on some atom A € Bp of level n, but agree on all ground atoms of lower level. As was
shown in [Fit94], (Ip,d) is a complete metric space, in fact even an ultrametric space.
Next, we define a function f : Ip — Rby f(K)=0if K C Tand,if K ¢ I, f(K)=2"",
where n is the smallest integer such that there is an atom A € Bp with [(A) = n,
K E A and I (£ A. Finally, we define u : Ip — R by u(K) = max{f(K'),d(K',I)},
where K’ is K restricted to the predicate symbols which are not in Neg}p,, and we define
o : Ip X Ip —R by

o(J, K) = max{d(J, K),u(J),u(K)}.

As it turns out, see Proposition 4.11 and Lemma 4.12, g is a complete d-ultrametric
on Ip, but not a metric (contrary to [Fit94], see also [HS00] for a discussion of this).
Our definition of p also differs slightly from [Fit94], but pointwise equality can easily be
shown.

The following proposition was shown in [Fit94].

2.9 Proposition Let P be acceptable and let o be defined as above. Then the associated
immediate consequence operator Tp is a contraction on (Ip, o).

By Theorem 2.7 we can therefore conclude the following theorem.

2.10 Theorem Each acceptable program has a unique supported model.

We will further discuss this result in Section 4.



3 Dislocated Topologies

We are interested in investigating the topological point of view of dislocated metrics
following the outline of Section 2.1. Since constant sequences do not in general converge
in d-metric spaces, a conventional topological approach is not feasable, and notions of
neighbourhoods, convergence and continuity will have to be modified.

3.1 Neighbourhoods

3.1 Definition An (open £-)ball in a d-metric space (X, o) with centre x € X is a set
B.(z) ={y € X | o(z,y) < ¢} where ¢ > 0.

Note that balls may be empty in d-metric spaces. In fact, the above definition of ball
does not imply that the centre of a ball is contained in the ball itself: the point may be
dislocated from the ball, and hence our usage of the term “dislocated” in this paper.

3.2 Proposition Let (X, ) be a d-metric space.

a) The following three conditions are equivalent:

i) For all x € X, we have p(x,z) = 0.

ii) o is a metric.

iii) For all z € X and all ¢ > 0, we have B.(z) # (.

(b) The space (X', ), where X' = {z € X | o(x,z) = 0}, is a metric space.

(
(
(
(

Proof: (a) That (i) implies (ii) is obvious, as is (ii) implies (iii). We show (iii) implies (i).
Since B.(z) # 0 for all € > 0, there exists, for each £ > 0, some y € X with o(z,y) < .
But, for all y € X, we have o(z,z) < 2- o(z,y), and hence o(z,z) < ¢ for all € > 0.
Therefore, o(z,z) = 0.

(b) Obviously, (X', p) is a d-metric space. The assertion now follows immediately from
(a). |

We proceed next with the investigation of dislocated metrics from the topological
point of view.

3.3 Definition Let X be a set. A relation « C X x P(X) (written infix) is called a
d-membership relation (on X) if it satisfies the following property for all x € X and
A, BCX:

r<g A and A C B implies z< B. (1)
We say “x is below A” if x< A.

The “below”-relation is a generalization of the membership relation from set-theory,
which will allow us to define a suitable notion of neighbourhood.

3.4 Definition Let X be a set, let < be a d-membership relation on X and let U, # ()
be a collection of subsets of X for each x € X. We call (U, < ) a d-neighbourhood system
(d-nbhood system) for x if it satisfies the following conditions.
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(Ni) If U € U,, then z< U.
(Nii) I U,V € Uy, then UNV € U,.

(Niii) If U € U,, then there is a V' C U with V' € U, such that for all y< V' we have
Uel,.

(Niv) If U € U, and U C V, then V € U,.

Each U € U, is called a d-neighbourhood (d-nbhood) of x. Finally, let X be a set, let < be
a d-membership relation on X and, for each x € X, let (U, < ) be a d-nbhood system for
x. Then (X,U, < ) (or simply X) is called a d-topological space, where U = {U, | v € X }.

Note that points may have empty d-nbhoods and that Definition 3.4 is exactly the
definition of a topological neighbourhood system if < is the membership relation €.
Proposition 3.5, next, shows that d-nbhood systems arise naturally from d-metrics.

3.5 Proposition Let (X, ) be a d-metric space. Define the d-membership relation <
as the relation {(z, A) | there exists ¢ > 0 for which B.(x) C A}. For each z € X let
U, be the collection of all subsets A of X such that x< A. Then (U, < ) is a d-nbhood
system for z for each x € X.

Proof: It is easy to see that < is indeed a d-membership relation.

(Ni) is obvious. Note that we also have the reverse property: if x< U, then U € U,.
(Nii) If z< U, V, then there are balls A, B with centre x such that A CU and B C V.
Without loss of generality let A be the smaller of the balls A and B. Then A =ANB C
unv.

(Niii) Let U € U,, that is, x< U. Then there is a ball B with centre x such that B C U
and B € U,. Now let y<< B be arbitrary. We have to show that y< U. But y< B implies
that there is a ball B’ with centre y such that yo B" C B C U. So y< U.

(Niv) This is obvious since x< U C V implies z< V. |

We note that if (X, g) is a metric space, then the above construction yields the usual
topology associated with a metric.

The set of balls of a d-metric does not in general yield a conventional topology. In
this respect, the axioms defining a dislocated metric are different from those defining a
partial metric in [Mat92a, Mat92b], which are as follows.

3.6 Definition Let X be a set and let p : X x X — Ry be a function. We call p a
partial metric on X if it satisfies the following axioms.

(Pi) For all z,y € X, v = y iff p(z,2) = p(z,y) = p(y, y)-
(Pii) For all z,y € X, p(x,z) < p(z,y).

(Piii) For all z,y € X, p(x,y) = p(y, x).



(Piv) For all z,y,z € X, p(z,2) < p(z,y) +ply,z) — p(y, y).

It is clear that any partial metric is a d-metric. Furthermore, the set of balls with
respect to a partial metric does indeed yield a topology, and strong relationships between
the topologies arising from partial metrics and topologies discussed in domain theory can
be established. We refer the reader to [Mat92a, Mat92b] for a comprehensive discussion
of these matters since our main concern here is with the more general notion of dislocated
metric.

3.7 Proposition Any d-ultrametric satisfies (Pii) and (Piv), but not necessarily (P1i).

Proof: Let (X, 0) be a d-ultrametric space and let x,y, z € X.
(Pii) By the strong triangle inequality, we obtain o(z, ) < max{o(z,y), o(y, )} and by
symmetry we obtain the desired inequality.
(Piv) By the strong triangle inequality, we obtain o(z, z) < max{o(z,y), o(y, z)}. With-
out loss of generality, we can assume that o(z,y) > o(y,z). Since by (Pii) we have
o(y,y) < oy, 2), we obtain o(z,2) < o(x,y) < o(x,y) + oy, 2) — 0o(y,¥).

Let X be a set and define p on X x X to be identically 1. Then p is a d-ultrametric
on X which does not satisfy (P1i). |

3.2 Convergence and Continuity

Once the notion of d-nbhood is defined, it is straightforward to adapt the notion of
convergence to d-topological spaces.

3.8 Definition Let (X,U, < ) be a d-topological space and let z € X. A (topological)
net (x,) d-converges to x € X if for each d-nbhood U of & we have that x, is eventually
in U, that is, there exists some )\ such that z, € U for each A > \,.

Note that if for some = € X we have () € U, then the constant sequence (z) does not
d-converge. In fact, if ) € U, then no net in X d-converges to z. Note also that the notion
of convergence obtained in Definition 3.8 is a natural generalization of convergence with
respect to a d-metric, and we investigate this next.

3.9 Proposition Let (X, g) be a d-metric space and let (X, U, < ) be the d-topological
space obtained from it via the construction in the proof of Proposition 3.5. Let (z,) be
a sequence in X. Then (x,) converges in p if and only if (z,) d-converges in (X, U, < ).

Proof: Let (z,,) be convergent in o to some z € X, so that o(z,,x) — 0 as n — oo,
and let U be a d-nbhood of z. Then there exists ¢ > 0 such that B.(z) C U. Since
o(zn, ) — 0, there exists ng such that z, € B C U for all n > ny and hence (z,)
d-converges to x.

Conversely, let (z,) be d-convergent to some z € X, that is, for each d-nbhood U of
x there exists ny such that x,, € U for each n > ngy. For each € > 0, B.(x) is a d-nbhood



of . Since ¢ can be chosen arbitrarily small, we must have o(z,,z) — 0 for n — oo, as
required. [ |

We proceed with defining continuity on d-topological spaces.

3.10 Definition Let X and Y be d-topological spaces and let f : X — Y be a function.
Then f is d-continuous at xo € X if for each d-nbhood V' of f(zy) in YV there is a d-
nbhood U of zy in X such that f(U) C V. We say f is d-continuous on X if f is
d-continuous at each g € X.

The following theorem shows that the notion of d-convergence can be characterized
via nets, by analogy with conventional topology.

3.11 Theorem Let X and Y be d-topological spaces and let f : X — Y be a function.
Then f is d-continuous if and only if for each net (z,) in X which d-converges to some
zo € X, (f(zy)) is a net in Y which d-converges to f(x) € Y.

Proof: Let f be d-continuous at xy and let £, be a net which d-converges to x,. Let
V' be a d-nbhood of f(zy). Then there exists a d-nbhood U of x, such that f(U) C V.
Since z, is eventually in U, we obtain that f(x,) is eventually in V', and hence f(x))
d-converges to f(xg).

Conversely, if f is not d-continuous at xg, then for some d-nbhood V' of f(z,) and
for all U € U,, we have f(U) € V. Thus for each U € U,, there is an xy € U with
f(zy) ¢ V. Then (zy) is a net in X which d-converges to x, whilst f(xy) does not
d-converge to f(zo). |

4 Dislocated Metrics

4.1 Continuity

In Section 3, we have generalized convergence from d-metrics to d-topologies. However,
we still lack a notion of continuity for d-metrics. We will investigate this next, and this
will enable us to give a proof of Theorem 2.7 which is analogous to the standard proof
of the Banach contraction mapping theorem.

4.1 Proposition Let (X, p) and (Y, ¢') be d-metric spaces, let f : X — Y be a func-
tion and let (X,U, < ) and (Y,V, < ') be the d-topological spaces optained from (X, p),
respectively (Y, ¢'), via the construction in Proposition 3.5. Then f is d-continuous at
xo € X if and only if for each £ > 0 there exists a 0 > 0 such that f(Bs(zo)) C B.(f(x0)).

Proof: Let f be d-continuous at zy € X and let € > 0. Then B.(f(zy)) is a d-nbhood
of f(xg). By definition of d-continuity, there exists a d-nbhood U of zy with f(U) C
B.(f(z0)). But since U is a d-nbhood of zy, there exists a ball Bs(xy) C U and therefore

f(Bs(x0)) € f(U) S Be(f(x0))-
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Conversely, assume that the e-d-condition on f holds and let V' be a d-nbhood of
f(xo). Then there exists ¢ > 0 with B.(f(x9)) € V and 6 > 0 with f(Bs(xg)) C
B.(f(xo)) C V. Since Bs(zg) is a d-nbhood of x5 we obtain d-continuity of f. |

4.2 Proposition Let (X, 0) be a d-metric space, let f: X — X be a contraction and
let (X,U, <) be the d-topological space optained from (X, p) via the construction in
the proof of Proposition 3.5. Then f is d-continuous.

Proof: Let 7o € X and let £ > 0 be arbitrarily chosen. For § = 5%, we obtain
d(f(z), f(zro)) < M(z,xp) < A= < ¢ for all x € Bs(xg), and therefore f(Bs(xg)) C

US|
B.(f(xg)) as required. |

Proof of Theorem 2.7: With our preparations, the proof follows the proof of the
Banach contraction mapping theorem on metric spaces, and we only sketch the details
here.

Let € X be arbitrarily chosen. Then the sequence (f"(x)), oy is a Cauchy sequence
and converges in (X, ¢) to some point y. Since f is a contraction, it is also d-continuous by
Proposition 4.2 from which we obtain y = lim f"(z) = f(lim f**(z)) = f(y) by Theo-
rem 3.11. Uniqueness follows since if z is a fixed point of f, then o(z, 2) = o(f(z), f(2)) <
Ao(z, z) and therefore o(x, z) = 0, and hence x = z by (Mii). [ |

It is a corollary of the proof just given that iterates of any point converge to the
unique fixed point of the function in question. In denotational semantics, this additional
feature of the fixed-point theorem is desirable since it yields a method of actually obtain-
ing the fixed point whose existence has been shown. In particular, from the discussion
in Section 2.2 we now obtain that the unique supported model for any acceptable pro-
gram P can be obtained as the limit of iterates of Tp for any starting interpretation.
Such a property might also prove to be useful for studying relationships between logic
programs and recurrent neural networks, as in [HSK99], and this is under investigation
by the authors.

4.2 Metrics and d-Metrics

In the remaining section, we will investigate relationships between conventional met-
rics and d-metrics. First note that if f is a contraction on a d-metric X, we have
o(f(x), f(x)) < Ao(x,x) for all x € X. Since the requirement o(z,z) =0 for all z € X
renders a d-metric to be a metric, we are interested in understanding the function
u, : X — R defined by u,(z) = o(z, ).

4.3 Definition Let (X, p) be a d-metric space. The function u, : X — R: z — p(z, z)
is called the dislocation function of o.

4.4 Lemma Let (X, 0) be a d-metric space. Then u, : X — R is d-continuous.
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Proof: Recalling the observations following Definition 3.8, let € X and let (x,) be
a net in X which d-converges to x, that is, for each ¢ > 0 there exist Ay such that
o(xy,x) < e for all A > Xg. Since u,(zy) = o(zy,7x) < 20(z), z) for all A\, we obtain
uy(xx) — 0 for increasing A. It remains to show that u,(x) = 0, and this follows from
uy(x) = o(x,x) < 20(xy, x), since the latter term tends to 0 for increasing A. |

The following is a general result which shows how d-metrics can be obtained from
conventional metrics.

4.5 Proposition Let (X, d) be a metric space, let u : X — R be a function and let
T :R xR — RS be a symmetric operator which satisfies the triangle inequality. Then
(X, 0) with

oz, y) :=d(z, y) + T(u(x), u(y))
is a d-metric space and u,(z) = T'(u(z), u(z)) for all x € X. In particular, if T'(z,z) =
for all x € R, then u, = u.

Proof: (Mii) If o(z,y) = 0, then d(z,y) + T(u(x),u(y)) = 0. Hence d(z,y) = 0 and
T =q.

(Miii) Obvious by symmetry of d and T'.

(Miv) Obvious since d and T satisfy the triangle inequality. [ |

Completeness also carries over if some continuity conditions are imposed.

4.6 Proposition Using the notation of Proposition 4.5, let u be continuous as a func-
tion from (X, d) to Rf (endowed with the usual topology), and let T be continuous as
a function from the topological product space R? to Ry, satisfying the additional prop-
erty T'(z,z) = x for all z. If (X, d) is a complete metric space, then (X, p) is a complete
d-metric space.

Proof: Let (r,,) be a Cauchy sequence in (X, p). Thus, for each ¢ > 0, there exists
no € N such that for all m,n > ng we have d(z,, ) < d(xp, v) + T(u(xp), u(x,)) =
0(Tm,x,) < e. So (z,) is also a Cauchy sequence in (X,d) and therefore has a unique
limit = in (X, d). In particular, we have z,, — z in (X, d) and also u(x,) — u(z) and
T(u(xy,),u(z)) = T(u(x),u(x)) = u(x). We have to show that o(z,, ) converges to 0 as
n — oo. For all n € N we obtain o(z,, ) = d(xn, ) + T (u(z,), u(r)) = u(x) = u,(z),
and it remains to show that o(z,z) = 0. But this follows from the fact that (z,) is a
Cauchy sequence, since this implies that w(z,) = u,(z,) = o(zn,zn) — 0 as n — oo,
hence by continuity of u we obtain u(x) = 0. |

We can also obtain a partial converse of Proposition 4.5.

4.7 Proposition Let (X, 0) be a d-metric space which satisfies condition (Piv) and let
T :RxR — R} be a symmetric operator such that T'(z,z) = z for all x € R and which
satisfies the inequality

T(x,y) >T(z,2) +T(z,y) —T(z, %)

12



for all z,y,z € R. Then (X, d) with
d(z,y) = o(z,y) — T (uy(2), uy(y))

is a pseudo-metric space.

Proof: (Mi) For all x € X we have d(x,x) = o(x, ) — u,(z) = 0.
(Miii) Obvious by symmetry of ¢ and T.

(Miv) For all z,y € X we obtain

d(z,y) = o(z,y) — T(up(z), u,s(y))

< o(w,2) + 0(2,y) = 02, 2) = (T(ug(x), ug(2)) + T (ug(2), ug(y)) — uy(2))
= 0(x,2) = T(uy(x),up(2)) + 0(2,y) = T(ue(2), uy(y))
=d(z,2z) +d(z,v)

An example of a natural operator 7" which satisfies the requirements of Propositions
4.5, 4.6 and 4.7 is

1
T:-RxR—=>R:(x,y) r—>§(x+y).
We discuss a few more examples of d-metrics which are partly taken from [Mat92b).
4.8 Example Let d be the metric d(z,y) = 3|z — y| on R, let u : Rj — RJ be the

identity function, and define T'(z,y) = (z +y). Then o as defined in Proposition 4.5 is
a d-metric and o(z,y) = 1|z — y| + 3(z + y) = max{z,y} for all z,y € R}

4.9 Example Let Z be the set of all closed intervals on R. Then d : ZxZ — R{ defined
by
o, ] e.d]) = 5 (Ja— e +[b— d)
is a metric on Z. Let v : Z — R" be defined by
u(la, b)) =b—a

and let T" be defined as in Example 4.8. Then the construction in the proof of Proposition
4.5 yields a d-metric p such that
Q([aa b]a [Ca d]) = ma‘X{ba d} - min{aa C}
for all [a, b], [c,d] € T.
Indeed, we obtain
(10,8, e d)) = d({a ] le,d]) + 5b— sa+ 5d 3

Q a7 Y C? - a7 Y C? 2 2a 2 26
1
§(|b—d|+b+d+|a—c| —a—c)
1 1
= S (b=dl+ @)+ (la—d - (a+0)
= max{b,d} — min{a, c}.
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4.10 Example (R, o) where o: (z,y) — z + y is a dislocated metric space.

The following proposition gives an alternative way of obtaining d-ultrametrics from
ultrametrics. This result is of importance in the area of denotational semantics where
ultrametric structures naturally appear, and the interested reader will note that we have
already applied it in Section 2.2.

4.11 Proposition Let (X, d) be an ultrametric space and let u : X — RJ be a function.
Then (X, p) with

oz, y) = max{d(z, y), u(z), u(y)}

is a d-ultrametric and o(z, z) = u(z) for all x € X. If u is continuous as a function from
(X, d), then completeness of (X, d) implies completeness of (X, o).

Proof: (Mii) and (Miii) are obvious.
(Miv') We obtain

For completeness, let (z,,) be a Cauchy sequence in (X, p). Then (z,) is a Cauchy
sequence in (X,d) and converges to some xz € X. We then obtain o(x,,z) =
max{d(x,, x),u(x,),u(r)} — u(zr) for n — oco. As in the proof of Proposition 4.6 we
obtain u(x) = 0 which completes the proof. |

Proposition 4.11 yields that the function p from Section 2.2 is a complete d-
ultrametric provided we are able to show that the function u as given there is continuous.

4.12 Lemma Using the notation of Section 2.2, the function u : Ip — R defined by
uw(K) = max{f(K"),d(K’',I)} is continuous as a function from (Ip,d) to R.

Proof: Let K,, be a sequence in Ip which converges in d to some K € Ip. We need to
show that d(K],, I) converges to d(K',I) and f(K] ) converges to f(K') for m — oc.
Since (K,,) converges to K with respect to the metric d, it follows that for each n € N
there is m,, € N such that K and K,,, for all m > m,,, agree on all atoms of level less
than or equal to n. So if f(K) = 27", say, that means that K], and K’ agree on all
atoms of level less than or equal to n if m > m,,, and hence f(K,,) = f(K) for all
m > My,. Also, if d(K',I) = 27", say, then d(K],,I)=d(K',I) for all m > m,, as
required. [ |
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5 Discussion

We have studied dislocated topological spaces and an underlying generalized notion of
topology, the dislocated topology. Whilst a few applications of dislocated metrics, and
in particular of the generalized Banach contraction mapping theorem, Theorem 2.7, are
known in Theoretical Computer Science, it is at this stage unclear (and worth investi-
gating) whether or not other applications can be found and where else in Mathematics
these spaces appear. The authors are currently developing applications of Theorem 2.7
to logic programs which are more general than acceptable programs. It may also be
possible to merge Theorem 2.7 and the fixed point theorem given in [PR00]. This is also
under investigation.

The application in Section 2.2 hints at interpreting the dislocation function u, as
a measure of undesirability. The interpretation I from the definition of acceptable pro-
gram could be understood as a first approximation to the desired model, and for each
interpretation J the value u,(J) would be a quantitative evaluation of the desirability
of J with respect to I. Whether or not this point of view can be carried over to other
settings remains to be seen.

Whilst we have been able to carry over the notions of neighbourhood, convergence
and continuity from conventional topologies to dislocated topologies in a way which cor-
responds to the relationships between these notions in elementary topology, the notion
of open set seems to be difficult to recover. On the other hand, with our knowledge
of dislocated neighbourhoods it appears to be straightforward to define, for example,
dislocated uniformities. If applications can be found in the future, further investigations
in these directions will be worth pursuing.

Acknowledgement The authors would like to thank Michel Schellekens for bringing
[Mat92a, Mat92b] to their attention.

References

[ABW88] K.R. Apt, H.A. Blair and A. Walker, Towards a Theory of Declarative Knowl-
edge. In: J. Minker (ed.), Foundations of Deductive Databases and Logic Program-
ming. Morgan Kaufmann, Los Altos, CA, 1988, pp. 89-148.

[AP93] K.R. Apt and D. Pedreschi, Reasoning about Termination of Pure Prolog Pro-
grams, Information and Computation 106 (1993), 109-157.

[BS89] A. Batarekh and V.S. Subrahmanian, Topological Model Set Deformations in
Logic Programming, Fundamenta Informaticae 12 (3) (1998), 357-400.

[BDJRS99] H.A. Blair, F. Dushin, D.W. Jakel, A.J. Rivera and M. Sezgin, Continu-
ous Models of Computation for Logic Programs. In: K.R. Apt, V.W. Marek, M.
Truszcynski and D.S. Warren (eds.), The Logic Programming Paradigm: A 25 Year
Perspective. Springer, Berlin, 1999, pp. 231-255.

15



[Cav89] L. Cavedon, Continuity, Consistency, and Completeness Properties for Logic
Programs. In: G. Levi and M. Martelli (eds.), Proceedings of the 6th International
Conference on Logic Programming. MIT Press, Cambridge MA (1989), pp. 571-584.

[Cla78] K.L. Clark, Negation as Failure. In: H. Gallaire and J. Minker (eds.), Logic and
Data Bases. Plenum Press, New York (1978), pp. 293-322.

[Fit85] M. Fitting, A Kripke-Kleene-Semantics for General Logic Programs, Journal of
Logic Programming 2 (1985), 295-312.

[Fit94] M. Fitting, Metric Methods: Three Examples and a Theorem, Journal of Logic
Programming 21 (3) (1994), 113-127.

[GRS91] A. Van Gelder, K.A. Ross and J.S. Schlipf, The Well-Founded Semantics for
General Logic Programs, Journal of the ACM 38 (3) (1991), 620-650.

[GL88] G. Gelfond and V. Lifschitz, The Stable Model Semantics for Logic Program-
ming. In: R.A. Kowalski and K.A. Bowen (eds.), Logic Programming. Proceedings
of the 5th International Conference and Symposium on Logic Programming, MIT
Press, 1988, pp. 1070-1080.

[HS99] P. Hitzler and A.K. Seda, Characterizations of Classes of Programs by Three-
valued Operators. In: M. Gelfond, N. Leone and G. Pfeifer (eds.), Logic Program-
ming and Nonmonotonic Reasoning, Proceedings of the 5th International Confer-
ence on Logic Programming and Non-Monotonic Reasoning (LPNMR’99), El Paso,
Texas, USA, December 1999. Lecture Notes in Artificial Intelligence 1730, Springer,
Berlin, 1999, pp. 357-371.

[HS00] P. Hitzler and A.K. Seda, A Topological View of Acceptability. Preprint, Depart-
ment of Mathematics, University College Cork, Cork, 2000, pp. 1-12.

[HSK99] S. Hélldobler, H. Storr and Y. Kalinke, Approzimating the Semantics of Logic
Programs by Recurrent Neural Networks, Applied Intelligence 11 (1999), 45-58.

[KKM93] M.A. Khamsi, V. Kreinovich and D. Misane, A New Method of Proving the
Existence of Answer Sets for Disjunctive Logic Programs: A Metric Fized-Point
Theorem for Multivalued Mappings. In: C. Baral and M. Gelfond (eds.), Proceedings
of the Workshop on Logic Programming with Incomplete Information, Vancouver,
B.C., Canada, October 1993, pp. 58-73.

[L1088] J.W. Lloyd, Foundations of Logic Programming. Springer, Berlin, 1988.

[Mat86] S.G. Matthews, Metric Domains for Completeness. Ph.D. Thesis. Research
Report 76, Dept. of Computer Science, University of Warwick, UK, 1986, pp. 1-
127.

16



[Mat92a] S.G. Matthews, The Topology of Partial Metric Spaces. Research Report 222,
Dept. of Computer Science, University of Warwick, UK, 1992, pp. 1-19.

[Mat92b] S.G. Matthews, The Cycle Contraction Mapping Theorem. Research Report
228, Dept. of Computer Science, University of Warwick, UK, 1992, pp. 1-16.

[PROO] S. Priess-Crampe and P. Ribenboim, Ultrametric Spaces and Logic Program-
ming, Journal of Logic Programming 42 (2000), 59-70.

[Prz88] T.C. Przymusinski, On the Declarative Semantics of Deductive Databases and
Logic Programs. In: J. Minker (ed.), Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann, Los Altos, CA 1988, pp. 193-216.

[Sed95] A.K. Seda, Topology and the Semantics of Logic Programs, Fundamenta Infor-
maticae 24 (4) (1995), 359-386.

[Sed97] A.K. Seda, Quasi-metrics and the Semantics of Logic Programs, Fundamenta
Informaticae 29 (1) (1997), 97-117.

[SHI7] A.K. Seda and P. Hitzler, Topology and Iterates in Computational Logic. Pro-
ceedings of the 12th Summer Conference on Topology and its Applications: Special
Session on Topology in Computer Science, Ontario, August 1997. Topology Pro-
ceedings Vol. 22, Summer 1997, pp. 427-469.

[SH98] A.K. Seda and P. Hitzler, Strictly Level-decreasing Logic Programs. In: A. But-
terfield and S. Flynn (eds.), Proceedings of the Second Irish Workshop on For-
mal Methods (TIWFM’98), Cork, 1998, Electronic Workshops in Computing, British
Computer Society, 1999, pp. 1-18.

[SLGY94| V. Stoltenberg-Hansen, I. Lindstrom and R. Griffor, Mathematical Theory of
Domains. Cambridge University Press, 1994.

[Wil70] S. Willard, General Topology. Addison-Wesley, Reading MA, 1970.

17



