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Abstract

We consider rather general operators mapping
valuations to (sets of) valuations in the con-
text of the semantics of logic programming lan-
guages. This notion generalizes several of the
standard operators encountered in this subject
and is inspired by earlier work of M.C. Fitting.
The fixed points of such operators play a funda-
mental role in logic programming semantics by
providing standard models of logic programs and
also in determining the computability properties
of these standard models. We discuss some of our
recent work employing topological ideas, in con-
junction with order theory, to establish methods
by which one can find the fixed points of the op-
erators arising in logic programming semantics.

Keywords: logic programming, operators, de-
notational semantics, fixed points, supported
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Introduction

A common strategy in studying the semantics of
logic programming systems is to associate with
each program P in the system an operator F
which maps valuations to (sets of) valuations and
to consider its fixed points. The latter may fre-
quently be identified with the various important
models of P, for suitably chosen F', such as the
supported model (given by the Clark completion
semantics), the stable model, the well-founded
model etc. Furthermore, since the fixed points of
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F' are usually found by iterating on some simple
valuation, one gains information about the com-
putability properties of the fixed point from the
behaviour of the (possibly transfinite) sequence
of iterates and in particular whether or not the
iterates close off before reaching the transfinite.

Often the operator F' is monotonic, relative to
some ordering on the space of valuations under
consideration, and the fixed points can be found
by applying the well-known Knaster-Tarski the-
orem or, better, Kleene’s theorem if one knows
that F' is actually continuous. However, there are
important exceptions to this which are brought
about by the introduction of negation into the
syntax of the programming system. A consider-
able amount of effort, some of it by the present
authors, has therefore been expended in study-
ing methods of a topological nature, to be used in
conjunction with order, which enable one to ob-
tain fixed points of non-monotonic operators. In-
deed, our purpose in this paper is two-fold. First,
we present a new and rather general formulation
of the sorts of operators which are important in
this subject, and show that it contains some of
the standard ones within it. Second, we give a
discussion and a brief review of the topological
methods we have developed and which can be
used to solve the problem of finding fixed points.
However, in describing these methods we present
some generalizations of our earlier results, and
also raise some natural questions which provide
the basis for ongoing and future investigations
into this subject.

Preliminaries

We consider (possibly infinite) sets II of



variable-free rules r of the following form
AV VA, < BpiiA- - -ABp A B 1A <A By,

where all the A;, B; are atoms in some first order
language L. For convenience, we may write such
rules simply as H, < body,, where H, denotes
the head A; V.-V A, of the rule and body, de-
notes Bpy1 A+ ABpy A—Bppg A+ A By ie.
its body. In practice, II might be the set of all
ground instantiations of the rules or clauses in a
deductive database or disjunctive logic program,
see [18], but at the moment is quite general ex-
cept that, as already noted, each atom in each
rule contains only constant symbols and func-
tion symbols and no variable symbols. By By
we denote the Herbrand base of the underlying
language L, i.e. the set of all ground atoms in
L, although all we have to say here applies to
completely general sets of atoms in place of Br.
We assume we have given a set T of truth values
containing at least the two distinguished values
false and true, and also that we have truth ta-
bles for the usual connectives V, A, - and —. By
I7 we denote the set of all valuations or inter-
pretations I : By — T. As usual, any valuation
I can be extended, using the truth tables, to give
a truth value in 7 to any variable-free formula in
L. It will also be convenient at times to add to
the language £ two atoms denoted by false and
true, and this notation should not cause con-
fusion with that used for truth values. Finally,
we make one standing condition concerning the
given truth table for the connective < in that a
formula of the form ¢; < t; must always evaluate
to true for any truth value t; € 7.

Consequence Operators

Given two rules r; and 79 in II, we shall
say that their heads H,, and H,, are equal if
they contain the same atoms (the order of the
disjuncts is irrelevant). Given the head H, of
some rule r, we form the collection of all rules
H, + C; with that head and form the corre-
sponding pseudo-rule H, < C1V Cy V..., where
the C; denote the bodies of the corresponding
rules; by an abuse of notation we refer to this as
a pseudo-rule in II. Finally, we assume that each

valuation [ in I is extended to give truth values
to the (possibly infinite) disjunction C; VCy V...
of the bodies. We are now in a position to define
the notion of a consequence operator, which is a
mapping F : It — P(I;) mapping valuations to
sets of valuations (P(I11) denotes the power set
of IH)

Definition 1 A mapping F : Iy — P(I) is
called a consequence operator if for any given I €
Ity and J € F(I) we have

(1) for each pseudo-rule H, + C; VCy V... in
II, J(H,) < I(Cy vV Cy V ...) evaluates to true.

It turns out that the notion of consequence
operator is very general, but it will nevertheless
enable us to establish a result, Theorem 6, con-
cerning the behaviour of these operators and of
models of the underlying programs. In fact, we
proceed next to show that several semantic op-
erators known in the literature are in fact conse-
quence operators as just defined.

Definition 2 We define an operator Fiy : Iyt —
P(In) as follows. For a given I € Iyj, a valuation
J belongs to Fi(I) iff it satisfies:

(1) for each pseudo-rule H, <~ C; VCs V... in
I1, we have J(H,) =I(C1 VCy V ...),

(2) whenever J(A) = true for an atom A, there
exists a pseudo-rule H, < C;VCy V... in II such
that A € H,.

This operator Fpy is indeed a consequence op-
erator by our standing condition on <, and fur-
thermore specializes to other known operators,
and we give next some examples to substantiate
this claim.

Example 3 Take 7 to contain just the two
truth values false and true and work in classi-
cal two-valued logic, with false as default value,
extending I to infinite disjunctions in the usual
way so that I(Cy VCyV...) = true iff I(C;) =
true for at least one 7. Then we can reformulate
(1) and (2) of Definition 2 as follows.

Proposition 4 With the choices just made, we
have J € Fr(I) iff J satisfies:

(a) for each rule H, < body, in II such that
I(body,) = true, there exists A € H, such that
J(A) = true,



(b) whenever J(A) = true, there exists a rule
H, < body, in II such that I(body,) = true
and A € H,.

Proof Suppose (1) and (2) hold, and that H, +
body, in II satisfies I(body,) = true. Let H, «
C1 VvV Cy V... be the corresponding pseudo-rule.
Then I(C1VCyV...) = true. Therefore, J(H,) =
true by (1) and hence there must be some A €
H, with J(A) = true, so that (a) holds. Now
suppose that A € By is arbitrary with J(A) =
true. By (2) there is a pseudo-rule H, < C; V
Cy V... in II such that A € H,. Thus, J(H,) =
true, whence I(C; V Cy V ...) = true so that
I(C;) = true for some i and we obtain a rule
H, + Cj in II satistying (b).

Conversely, suppose that (a) and (b) hold. For
(1), let H, <~ C; vV Cy V... be a pseudo-rule in
II. If every Cj is false in I, then C7 VCy V... is
false in I, and so is H, by default. So J(H,) =
I(C1 VvV CyV...). If some Cj is true in I, then by
(a) there is A € H, with J(A) = true. But then
I(C1VCyV...) = true = J(A), and so (1) holds.
Finally, (2) is immediate from (b).

Continuing with this example, we note that, in
general, a fized point of a multivalued mapping
F: X — P(X) is an element z € X such that
x € F(x); of course, if F' is single-valued, this def-
inition gives the usual meaning of a fixed point
in that F(z) = z. Therefore, the significance of
Proposition 4 is that it now follows from [8, The-
orem 3.4] that I € Fi(I), i.e. is a fixed point of
Frp, iff I is a supported model of II in that (i) I is
a model for II, i.e. for every rule H, < body, in
IT such that body, is true with respect to I, we
have that H, is also true with respect to I, and
(ii) for every A € I, there is a rule H, < body,
in II such that body, is true with respect to I
and A € H,. Thus, any supported model of a
deductive database or disjunctive program, such
as the stable model of Gelfond and Lifschitz [7],
can be thought of as a fixed point of Fpj. Note
also that if all the rules in II are non-disjunctive,
so that we are in the context of normal logic pro-
grams P, then the operator Fpy collapses to the
usual singe-step operator Tp, see [15]. m

Example 5 Take a normal logic program P and
form the set ground(P) of all the ground clauses

determined by P. For any ground atom A in £
which does not occur in ground(P), we add the
clause A < false. Taking II to be the set of
clauses which results from this process, we form
the set of all pseudo-clauses determined by II. We
will take first the truth set 7 to contain the truth
values false,true and L (undefined) and en-
dow this set with any one of several three-valued
logics such as Kleene’s strong and weak three-
valued logics considered in [4, 6, 9] noting that
we take disjunction in pseudo-clauses as specified
by the chosen three-valued logic. In the case of
Kleene’s strong three-valued logic, the operator
F11 as given by Definition 2 coincides with Fit-
ting’s operator @ p as defined in [4, 6]. Continuing
in this setting but now changing the truth set 7
to the four truth values false, true,none and
both which occur in Belnap’s four-valued logic
(with truth tables as defined in [6]), we obtain
this time the operator Up defined in [6]. It is
worth noting also that whenever one works with
non-disjunctive programs (i.e. with normal logic
programs), such as in this example, there is only
one valuation J satisfying Definition 2 and in-
deed it is uniquely determined by (1) of Defini-
tion 2 ((2) of this definition is redundant in this
case because every ground atom A in £ occurs
as the head of precisely one pseudo-clause). m

It should be noted that the advantage in work-
ing with pseudo-rules or pseudo-clauses rather
than with rules or clauses is that one can vary the
meaning of disjunction within the pseudo-rules
or pseudo-clauses according to the logic speci-
fied in 7 and thereby gain yet more flexibility.
Indeed, this observation was exploited by us in
[9] in order to characterize classes of programs
such as the acceptable programs of [1] by suit-
ably choosing the underlying logic. Thus, Defi-
nitions 1 and 2 give formulations ofvery general
semantic operators which unify several of the im-
portant operators considered in the semantics of
logic programming. The question arises, there-
fore, of finding the fixed points of such operators,
and we consider this next.

Models and Fixed Points

Normally the sets T of truth sets one requires
can be equipped with orderings < in which they



are complete partial orders or even Scott do-
mains. This is the case in all the specific log-
ics mentioned so far, and the following Hasse di-
agram indicates one (<) of the two orderings
used in Belnap’s logic, for example:

The corresponding structure is then inherited by
the set Ip of valuations when ordered pointwise
by I < J iff I(A) < J(A) for all A € By,
where P is a normal logic program. In the pres-
ence of such orderings on Ip, and assuming Fp
is single-valued, we can apply the usual Knaster-
Tarski resp. Kleene theorems to obtain (least)
fixed points provided that Fp is monotonic resp.
continuous. Indeed, an extension to multivalued
mappings, such as Fy, of the Knaster-Tarski the-
orem was given by M. Khamsi and D. Misane,
and an extension of Kleene’s theorem was given
by us, and both of these are discussed in [11].
Both extensions, of course, require monotonicity
in a suitable sense (see [11]) and are inapplicable
in the presence of negation. It is precisely for this
reason, as already mentioned, that one needs to
consider topological methods and we turn to this
issue next.

In theoretical considerations of conventional
imperative and functional programming lan-
guages the wuse of topology is quite well-
established. For example, abstract models of
computation lead to the topology of observable
properties of M.B. Smyth. The Scott topology
is of course widely-known for its role in solving
recursive domain equations and in recursive def-
initions of types. Also, Bukatin [2] has argued
strongly that the ideal of absolutely correct soft-
ware in software engineering is largely unattain-
able. Rather, one should work with continuous

approximations to the ideal, where continuity
prevents violent departure from the ideal (pro-
vided the problem at hand is not undecidable,
of course), and that such ideas should be part
of the software design process; to achieve this
one appears to need distance functions or gener-
alized distance functions measuring the distance
between two programs. On the other hand, in
logic programming such ideas are much less well-
developed and are largely confined to techniques
for finding fixed points and models, but see [3]
and [20] and related papers.

Given that I is a complete partial order, it
can always be endowed with the Scott topology.
Note that in the case that 7 is two-valued logic
this topology coincides with the product topol-
ogy 2P, where 2 = {0, 1} is identified with the
set {false,true} and endowed with the Scott
topology. This topology suffices where mono-
tonicity is present, such as the case of definite
programs (where negation is absent from rule
bodies). Nevertheless, one difference between
logic programming and the other paradigms is
clear: since non-monotonicity is common in logic
programming, the Scott topology will often not
suffice. For this reason, other topologies are
needed and one which the authors have found
useful, and which was studied in detail in [19], is
the topology @ consisting of the product space
281 where this time the set 2 = {0,1} is en-
dowed with the discrete topology. There are sev-
eral reasons why this topology has proved use-
ful. First, it is difficult to conceive of a topology
which reflects negation which is not somehow re-
lated to @, see the results below. Second, if a net
or sequence of valuations converges in any of the
distance functions we discuss briefly below, then
it converges in (). Third, if a sequence T3(I) of
iterates converges in (), where P is a normal logic
program, then its limit is a model of P. However,
in order to use these ideas in dealing with con-
sequence operators there is a need, as we have
seen by the examples, to generalize @) to allow
any finite number of truth values, not just the
two classical ones, and this we do next.

Let the set T of truth values be endowed with
the discrete topology and let II be a set of rules.
The generalized atomic topology Q is defined to
be the product topology on Iy = 751, We first



note some observations which follow immediately
from the fact that Q is the finite product of
discrete topologies. (i) The set {G(A,t) | A €
By, t € T}, where G(A,t) ={I € Iy | I(A) = t},
is a subbase of Q. (ii) A net I, in Ijj converges
in Q if and only if for every A € By there ex-
ists some \g such that I(A) is constant for all
A > Xg. In this case, the limit of such a net I is
the valuation I for which I(A), for each A € By,
is the truth value which is eventually obtained by
I\ (A). (iii) Q is a totally disconnected compact
Hausdorff topology. It is second countable if By
is countable.

In the following, let F' be a consequence oper-
ator for a non-disjunctive program and assume
that F' is indeed singlevalued, i.e. that F': Iy —
Ip. We define FO(I) = I for all I € I and re-
cursively F"t1(I) = F(F™(I)) for all n € N. We
show next that convergence of iterates of F' yields
models of II.

Theorem 6 Suppose that our chosen logic is
such that disjunction satisfies the following
(rather reasonable) condition for all I € Iy, for
all A € By and for all finite conjunctions C; of
literals in By: I(A < C1 vV Ca V ...) is true iff
I(A < () is true for all i. Then the following
statement holds: If F™(I) converges in Q to some
M € I, then any rule in II evaluates to true in
T . If, furthermore, F' is continuous in Q, then M
is a fixed point of T.

Proof For ease of notation, let I,, = F™(I) for
each n and let A € By with M(A) = t¢;. Then
we obtain I, (A) = ¢; for all K+ 1 > ko for
some kg € N by convergence in Q. Let A +
Cy VvV CyV ... be a pseudo rule in II. Since F
is a consequence operator, we obtain that for
any ko > ko, I, (C1 V Co V ...) must have some
value t; such that ?; < t; yields true. So for
any Cp, we have that Ix,(C,,) has some value
tj such that ¢; < t; yields true. Since Cy, is
a finite conjunction of ground atoms, and since
I, converges in Q, there must therefore exist
some [y € N, chosen large enough, such that
for all I > lp, we have that I;(C),) evaluates
to some ¢; which is independent of I and such
that ¢; < t; yields true. In particular, we obtain
that M (C),) evaluates to such a ¢;. Since m was
chosen arbitrarily, we obtain that M (C),), for all

m € N, evaluates to such a ¢; and consequently
that M (A« C1V CyV...) is true as required.

Now, if F' is continuous in Q, then we obtain
M = lim F**Y(I) = F(lim F*(I)) = F(M) as
required. m

Conclusion

Inspired by the paper [5], the authors have,
in several of their own papers (see [8, 9, 10,
11, 12, 13, 14]) investigated generalized metrics,
in various forms, and related fixed-point theo-
rems, see also [16, 20]. One underlying common
theme of this work is that convergence in any of
these generalized metrics implies convergence in
Q. Thus, Q is foundational. This work is part
is an initial attempt, building on [19], to inves-
tigate very general semantic operators in many
valued logics, and their foundations, in relation
to the denotational semantics of logic program-
ming systems, nonmonotonic reasoning and arti-
ficial intelligence. The focus of much of this work
is on the fixed points of various operators which
are associated with programs written in these
paradigms, since the former provide one with a
semantics (the fixed-point semantics) for the lat-
ter.
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