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Abstract

Many questions concerning the semantics of disjunctive databases and of logic pro�
gramming systems depend on the �xed points of various multivalued mappings and
operators determined by the database or program� We discuss known versions� for mul�
tivalued mappings� of the Knaster�Tarski theorem and of the Banach contraction map�
ping theorem� and formulate a version of the classical �xed�point theorem �sometimes
attributed to Kleene� which is new� All these results have applications to the semantics
of disjunctive logic programs� and we will describe a class of programs to which the new
theorem can be applied� We also show that a uni�cation of the latter two theorems is
possible� using quasi�metrics� which parallels the well�known uni�cation of Rutten and
Smyth in the case of conventional programming language semantics�
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� Introduction

In �GL���� Gelfond and Lifschitz dened the stable model semantics or answer set se�
mantics of a disjunctive logic program or database �� displaying the stable model as
a xed point of a certain multivalued mapping GL� see Section �� Earlier� in �Prz

��
Przymusinski dened the perfect model semantics for non�disjunctive programs and
databases� Although not initially formulated in terms of xed points of mappings T � the
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stable and the perfect model can be viewed in these terms� see �BMP��� KKM��� SH����
In �HS��a�� the usual immediate consequence operator associated with a normal logic
program P was extended to disjunctive programs �� obtaining a multivalued operator
T�� This extension is rather satisfactory in that it was further shown in �HS��a� that an
interpretation is a supported model of �� in a very natural sense� if and only if it is a
xed point of T��

Thus� multivalued mappings T and their xed points inevitably arise in connection
with the semantics of disjunctive logic programs� It follows of course that xed�point
theorems must also be important in this same context� In �KM���� Khamsi and Mis�
ane established a version of the Knaster�Tarski theorem� for multivalued mappings� see
Theorem ��� herein� and applied it to obtain the stable model of a class of signed disjunc�
tive programs� see Theorem ���� This result employs monotonicity of T as formulated in
Section � and a condition ��� on T � also discussed in Section �� which is automatically
fullled in the case that T is single�valued� The condition ��� allows one to carry out
a standard transnite induction argument to prove Theorem ���� However� as shown
in Examples ��
 and ���� it sometimes really is necessary to work transnitely even
in the case of non�disjunctive programs� The same sort of problem arises� incidentally�
when dealing with operators in three�valued logic� see �Fit
�� HS��b�� Thus� the name
�Knaster�Tarski Theorem� for Theorem ��� is appropriate in that the iterations involved
need not �cut o�� at the rst limit ordinal� �� On the other hand� in �KKM���� Khamsi
et al� established a version of the Banach contraction mapping theorem for multivalued
mappings� see Corollary ��	 below� and applied it to obtain the stable model of a count�
ably stratied disjunctive program� In this case� needless to say� the iterates involved do
cut o� at ��

Of course� in the context of partially ordered sets and single�valued mappings� the
question of when the iterates just mentioned do cut o� at � is the question of continuity
embraced by what is often referred to as the xed�point theorem for complete partial
orders or Kleene�s theorem� and is the mainstay of conventional programming language
semantics� Nevertheless� applications of the Banach contraction mapping theorem are
made in this context� too� see �Rut�	� for a discussion and references� Therefore� it
has been a question of some considerable interest in the recent past to unify the order�
theoretic and metric approaches to the semantics of imperative programming languages�
see �Rut�	� Smy
��� This work culminates� perhaps� in the quasi�metric xed�point the�
orem of Rutten �Rut�	�� earlier formulated in terms of quasi�uniformities by Smyth
�Smy
��� which contains the Kleene and Banach theorems as special cases�

This paper has two main objectives� and the rst of these is as follows� For com�
putability purposes� it is desirable to eliminate where possible the need to work trans�
nitely in obtaining models of disjunctive programs such as the stable model� This
ultimately depends on nding an appropriate form of continuity� which in itself raises

�The form we have in mind of the conventional Knaster�Tarski theorem is as follows� suppose that
T is de
ned and monotonic on a complete partial order X� Then T has a least 
xed point� which is also
the least pre�
xed point of T � given by considering the supremum of the set of iterates T����� where �
ranges over the ordinals and � denotes the bottom element of X� If� further� T is continuous� then the
least 
xed point of T is the supremum of the set of iterates Tn���� where n denotes a 
nite ordinal� see
�SLG���� In fact� the latter statement is an abstract form of the First Recursion theorem� and is usually
attributed to Kleene�
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two further questions which are interconnected� The rst of these is the problem of estab�
lishing a satisfactory form of Kleene�s theorem employing as weak a form of continuity
as is practicable� the second is the identication of syntactic conditions on classes of
programs which meet the continuity requirement and thereby make it possible to apply
one�s theorem� In answer to the rst of these questions� we put forward Theorem ���
as a version of Kleene�s theorem employing a natural and weak notion of continuity� In
answer to the second question� and in showing that Theorem ��� is well�formulated� we
show� in Section �� how Theorem ��� may be applied to a natural and large class of
programs� This class is a subclass of the programs to which Theorem ��� was applied in
�KM���� but the extra information we gain is the knowledge that the process of iteration
involved is not transnite for these programs�

Our second main objective here is to carry out a unication in the context of multival�
ued mappings� see Theorem ���� of the Banach contraction mapping theorem established
in �KKM��� and of our version of Kleene�s theorem� Theorem ���� Quasi�metrics will be
employed here also� as in the theorem of Rutten mentioned above� to obtain the unica�
tion� but the main point is� again� the identication in Denition ��� of an appropriate
notion of continuity� The condition we propose is a rather weak continuity condition
on orbits which are forward Cauchy sequences� but is strong enough to imply both the
Banach theorem of �KKM��� and Theorem ����

Thus� from the point of view of applications to computational logic� the broad picture
for multivalued mappings closely parallels the situation for single�valued mappings� one
has a version of the Knaster�Tarski theorem� Theorem ���� which essentially involves the
transnite� However� one also has a version of Kleene�s theorem� Theorem ���� employing
continuity �so that iterates close o� at ��� and a version of the Banach contraction
mapping theorem as in �KKM���� see Corollary ��	� These two latter theorems� in turn�
can be unied by a theorem employing quasi�metrics� see Theorem ���� We note� nally�
that the full extent of the applicability of Theorem ��� to disjunctive programs is under
investigation� and the results will be presented elsewhere�

Acknowledgement The authors wish to thank one of the editors� Reinhold Heckmann� for
drawing their attention to some points in the rst version of this paper which were in need
of clarication� They also wish to thank an anonymous referee for alerting them to several
signicant points of contact between their discussion of stable models for disjunctive
programs and extensions in default logic� and between the use of multivalued mappings
and powerdomains� In particular� the referee brought to their attention the work of
Klavins� Rounds and Zhang and the many papers of Rounds and Zhang� see for example
�KRZ�
� RZ�
� ZR��a� ZR��b� ZR�
�� which approach some of the issues discussed here
from a domain�theoretic point of view� These points of contact are discussed at the end
of the paper in Section ��

� Multivalued Mappings and Monotonicity

In this section� we will establish some notation and make some preliminary observations
concerning an extension of the notion of monotonicity from single�valued mappings to
multivalued mappings which is suitable for the applications to computational logic that
we have just discussed�
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Let T � X � �X denote a multivalued mapping dened on a set X � we assume
throughout that T is non�empty in that T �x� is a non�empty set for all x � X � A �xed
point of T is a point x � X such that x � T �x�� As usual� given a net �xi�i�� in X and
an element � of the directed set �� we call the subnet �xi���i of �xi�i�� a tail of �xi�i���

��� De�nition Let T � X � �X be a multivalued mapping dened on X � An orbit of
T is a net �xi�i��� or just �xi�� in X � where � denotes an ordinal� such that xi�� � T �xi�
for all i � �� An orbit �xi�i�� of T is called an ��orbit if � is the rst limit ordinal� ��
An orbit �xi�i�� of T will be said to be eventually constant if there is a tail �xi���i of
�xi�i�� which is constant in that xi � xj for all i� j � � satisfying � � i� j�

If T � X � �X is a multivalued mapping and x is a xed point of T � then we obtain
an orbit of T which is eventually constant by setting x � x� � x� � x� � � � � Conversely�
suppose that �xi�i�� is an orbit of T with the property that xi�� � xi for all i � �

satisfying � � i� for some ordinal � � �� Then x� � x��� � T �x�� and we have a
xed point x� of T � Thus� having a xed point and having an orbit which is eventually
constant are equivalent conditions on T �

��� De�nition A multivalued mapping T dened on a partially ordered set X will be
said to be monotonic if� for all x� y � X satisfying x � y and for all a � T �x�� there
exists b � T �y� such that a � b�

For the rest of this section� �X��� will denote a complete partial order �cpo��

��� De�nition An orbit �xi�i�� of T is said to be increasing if we have xi � xj for all
i� j � � satisfying i � j� and is said to be eventually increasing if some tail of the orbit
is increasing� Finally� an increasing orbit �xi�i�� of T is said to be tight if� for all limit
ordinals � � �� we have x� � supfxi� i � �g�

Suppose that �xi�i�� is an increasing orbit of T and that � � � is a limit ordinal�
Then x��� is an element of T �x�� such that xi � x��� for all i � �� and of course
supfxi� i � �g � x� � x���� In particular� any increasing orbit �xi�i�� which is tight �if
such exists� must satisfy the following condition�
��� for any limit ordinal �� there exists x �� x���� � T �supfxi� i � �g� such that
supfxi� i � �g � x�

This condition is a slight variant of a condition which was identied by Khamsi and
Misane in �KM��� as a su�cient condition for the existence of xed points of monotonic
multivalued mappings� In fact� the following result was established in �KM���� except
that it was formulated for decreasing orbits and inma and we have chosen to work with
the dual notions instead� to maintain consistency� at least until we reach Section ��

��� Theorem Let X be a complete partial order and let T � X � �X be a multivalued
mapping which is non�empty� monotonic and satises ���� Then T has a xed point�

We omit details of the proof of this result except to observe that� starting with the
bottom element x� � � of X � the condition ��� permits the construction� transnitely�
of a tight orbit �xi� of T � Since this can be carried out for ordinals whose underlying
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cardinal is greater than that of X � we are forced to conclude that �xi� is eventually
constant and therefore that T has a xed point�

Noting that supfxi� i � �g � supfxi��� i � �g� one can view ��� schematically as
the statement �supfT �xi�� i � �g � T �supfxi� i � �g�� and it can therefore be thought
of as a rather natural� weak continuity condition on T which is automatically satised
by any monotonic single�valued mapping T on a cpo� As already noted� the question of
when the orbit constructed in the previous paragraph becomes constant in � steps is a
question of continuity and will be taken up in the next section�

Theorem ��� was established in �KM��� in order to show the existence of �consistent�
answer sets for a class of disjunctive programs called signed programs� see Section ��
a class of programs which includes examples related to the well�known Yale Shooting
Domain� At the end of Section �� we will give examples which show that it sometimes is
necessary to work transnitely in practice� a point which justies the name �Knaster�
Tarski theorem� applied to Theorem ����

Thus� to summarize� monotonicity of T together with ��� appears to give� for multi�
valued mappings� an exact analogue of the xed�point theory for monotonic single�valued
mappings due to Knaster and Tarski� Moreover� there are applications to the semantics
of disjunctive programs which parallel those made in the standard� non�disjunctive case�
In the next section� we take up the issue of establishing a corresponding Kleene theorem
for multivalued mappings� and in Section � we will illustrate its use by applying it to a
class of examples�

� Quasi�Metrics and Multivalued Mappings

Our main objective in this section is to use quasi�metrics to obtain the unied approach
we promised earlier to the Banach and Knaster�Tarski xed�point theorems for multival�
ued mappings� We begin by recalling some basic denitions which are made in relation
to quasi�metric spaces� see �Rut�	� Sed���� and by making some new ones in relation to
multivalued mappings dened on quasi�metric spaces�

��� De�nition A set X together with a function d � X �X � R� f��g is called a
quasi�metric space if for all x� y� z � X the following conditions hold�

��� d�x� y� � d�y� x� � � if and only if x � y�

��� d�x� z� � d�x� y� � d�y� z��

A quasi�metric space satisfying d�x� y� � maxfd�x� z�� d�z� y�g for all x� y� z � X �the
strong triangle inequality� is called a quasi�ultrametric space�

A sequence �xn� in X is a �forward� Cauchy sequence if� for all � 	 �� there exists
n� � N such that� whenever n� � m � n� we have d�xm� xn� � �� A Cauchy sequence
�xn� converges to x � X �written xn � x� or lim xn � x� if� for all y � X � d�x� y� �
lim d�xn� y�� Finally� X is called Cauchy sequence complete or simply complete if every
Cauchy sequence in X converges�

Notice that it is a standard fact that limits in quasi�metric spaces are unique�
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��� De�nition Let �X� d� be a quasi�metric space� A multivalued mapping T � X � �X

is called a contraction if there exists a real number k in the interval ��� �� such that�
for all x� y � X and for all a � T �x�� there exists b � T �y� satisfying d�a� b� � kd�x� y��
We say that T is non�expanding if� for all x� y � X and for all a � T �x�� there exists
b � T �y� satisfying d�a� b� � d�x� y��

These denitions are clearly extensions of well�known denitions made for single�
valued mappings� and indeed collapse to them in the case that T is single�valued� An
obvious and natural denition of continuity of T is the following� for every Cauchy
sequence �xn� in X with limit x and for every choice of yn � T �xn�� we have that �yn�
is a Cauchy sequence and lim yn � T �x�� In fact� the weaker denition following� which
is implied by the one just given� su�ces for our purposes and will be used throughout�

��� De�nition Let T � X � �X be a multivalued mapping dened on a quasi�metric
space �X� d�� We say that T is continuous if we have lim xn � T �lim xn� for every ��orbit
�xn� of T which is a Cauchy sequence�

Again� this denition collapses to a natural one in the case that T is single�valued�
In fact� if T is single�valued� it simply states the condition that limT �xn� � lim xn�� �
lim xn � T �lim xn� for every ��orbit which is a Cauchy sequence�

Finally� if �X� d� is a quasi�metric space� we dene the associated partial order �d

on X by x �d y i� d�x� y� � ��
The main result of this section is the following theorem�

��� Theorem Let �X� d� be a complete quasi�metric space and let T � X � �X denote
a non�empty and continuous multivalued mapping on X � Then T has a xed point if
either of the following two conditions holds�
�a� T is a contraction�
�b� T is non�expanding and there is x� � X and x� � T �x�� such that d�x�� x�� � � i�e�
x� �d x��

Proof� �a� Let x� � X � Since T �x�� 	� 
� we can choose x� � T �x��� Since T is a
contraction� there is x� � T �x�� such that d�x�� x�� � kd�x�� x��� Applying this argument
repeatedly� we obtain a sequence �xn� such that for all n � � we have xn�� � T �xn� and
d�xn��� xn��� � kd�xn� xn���� Thus� �xn� is an ��orbit� Using the triangle inequality�
we obtain

d�xn� xn�m� �
m��X
i��

d�xn�i� xn�i��� �
m��X
i��

kn�id�x�� x�� �
kn

�� k
d�x�� x���

Thus� �xn� is a �forward� Cauchy sequence in X and therefore is an ��orbit of T which
is Cauchy� Since X is complete� �xn� has a limit x�� Now� by continuity of T � we obtain
x� � T �x�� and x� is a xed point of T � as required�
�b� Let x� and x� � T �x�� satisfy d�x�� x�� � �� Since T is non�expanding� there is
x� � T �x�� with d�x�� x�� � d�x�� x�� � �� Inductively� we obtain a sequence �xn� such
that xn�� � T �xn� and d�xn� xn�k� �

Pk��
i�� d�xn�i� xn�i��� � �� Hence� �xn� is an orbit

of T which is forward Cauchy and therefore has a limit x�� By continuity of T again�
we see that x� is a xed point of T � �

	



��� Remark The proof given here of Part �a� of Theorem ��� is� up to the last step�
exactly the same as the rst half of the proof of the multivalued contraction mapping
theorem established by Khamsi et al� in �KKM���� except that we are working with a
quasi�metric rather than with a metric and therefore care needs to be taken that no
use is made of symmetry� However� we have included the details in order to make this
paper self�contained� On the other hand� the proof we give next of Corollary ��	� which
roughly corresponds to the second half of the proof given in �KKM���� is shorter and
technically somewhat simpler than the proof given in �KKM����

We show next that Theorem ��� includes both the theorem of Khamsi et al� just
mentioned� and also a natural extension of Kleene�s theorem to multivalued mappings�
see Theorem ���� As stated earlier� this unication is in direct analogy with the single�
valued case and is the main goal of this section�

��	 Corollary Suppose that �M� d� is a complete metric space� and that T is a non�
empty multivalued contraction on M with the property that the set T �x� is closed for
every x �M � Then T has a xed point�

Proof� We show that the condition that T �x� is closed for every x together with that
of T being a contraction implies that T is continuous� and the result then follows from
Part �a� of Theorem ����

First note that �M� d� being a complete metric space means that �M� d� is complete
as a quasi�metric space� and obviously T satises �a�� Now suppose that �xn� is an orbit
of T which is a forward Cauchy sequence and hence a Cauchy sequence� we want to
show that x� � T �x��� where x� is the limit of �xn��

Since T is a contraction� for every n there exists yn � T �x�� such that d�xn��� yn� �
kd�xn� x��� Therefore� d�yn� x�� � d�yn� xn����d�xn��� x�� � kd�xn� x���d�xn��� x���
Hence� we have yn � x� � But each yn � T �x��� and T �x� is closed for every x� Conse�
quently� the limit x� of the sequence yn also belongs to T �x��� So� x� � T �x��� and it
follows that T is continuous as required� �

We next turn our attention to demonstrating that Theorem ��� contains a version of
Kleene�s theorem for multivalued mappings� It will be necessary to make some prelim�
inary observations� as follows� concerning partially ordered sets and the quasi�metrics
they carry�

Let �X��� be a partial order� Dene a function d� � X �X � R by

d��x� y� �

�
� if x � y�

� otherwise�

Then �X� d�� is a quasi�ultrametric space and d� is called the discrete quasi�metric on
X � see �Rut�	�� or the quasi�metric associated with �� Note that �d� and � always
coincide�

We say that a partial order �X��� is ��complete if each increasing sequence �xn� in
X has a least upper bound or supremum sup�xn�� Thus� �X��� is an ��complete partial
order in the usual sense �an ��cpo� if it is ��complete and has a bottom element ��
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The following elementary result collects together the basic facts concerning the re�
lationship between a partially ordered set �X��� and its associated quasi�metric space
�X� d���

��
 Proposition Let �X��� be a partial order and let �X� d� denote the associated
quasi�metric space� Then the following hold�
�i� A non�empty multivalued mapping T � X � �X is monotonic if and only if it is
non�expanding�
�ii� A sequence �xn� in X is eventually increasing in �X��� if and only if it is a Cauchy
sequence in �X� d��
�iii� The partially ordered set �X��� is ��complete if and only if �X� d� is complete
as a quasi�metric space� Furthermore� in the presence of either form of completeness�
the limit of any Cauchy sequence is the least upper bound of any increasing tail of the
sequence�

Notice that neither Part �iii� of this result nor the next denition assumes the pres�
ence of a bottom element�

��� De�nition Let the partial order �X��� be ��complete and let T � X � �X

be a non�empty multivalued mapping on X � We say that T is ��continuous if T
is monotonic and� for any ��orbit �xn� of T which is eventually increasing� we have
sup�xn� � T �sup�xn��� where the supremum is taken over any increasing tail of �xn��

We obtain nally the following version of Kleene�s theorem for multivalued mappings
as an easy corollary of our main result� Some of its applications will be discussed below
in Section ��

��� Theorem Second Corollary of Theorem ���� Let �X��� be an ��complete
partial order �with bottom element� and let T � X � �X be a non�empty� ��continuous
multivalued mapping on X � Then T has a xed point�

Proof� Since �X��� is ��complete� the associated quasi�metric space �X� d� is complete
by Proposition ���� Furthermore� T is monotonic� since it is ��continuous� and is therefore
non�expanding by Proposition ��� again� On taking x� � � and x� � T �x�� arbitrarily�
we have x� and x� satisfying d�x�� x�� � �� The result will therefore follow from Part
�b� of Theorem ��� as soon as we have established that T is continuous in the sense of
Denition ����

Let �xn� be any ��orbit of T which is a Cauchy sequence� Then �xn� is eventually in�
creasing and� by ��continuity of T � we have sup�xn� � T �sup�xn��� where the supremum
is taken over any increasing tail of �xn�� In other words� we have lim xn � T �lim xn� and
hence we have the continuity of T that we require� �

���� Remark The Knaster�Tarski theorem for single�valued mappings T asserts that
the xed point produced by the usual proof is the least xed point of T � This assertion
does not immediately carry over to the case of multivalued mappings T without addi�
tional assumptions� One such simple� though rather strong� condition is the following�
for each x � X � assume that T �x� has a least element Mx and that Mx �My whenever






x � y� To see that this su�ces� suppose that x is any xed point of T � and construct
the orbit �xn� of T by setting x� � � and xn�� �Mxn for each n� Then �xn� converges
to a xed point x� Noting that � � x and that Mx � x� we see that xn � x for all n�
Hence� x � x�

� An Application of Theorem ���

As already mentioned� Theorem ��� was applied in �KM��� in order to nd answer
sets for a certain class of extended disjunctive programs� see Lemma ��� and Theorem
��� below� In this section� we will dene a subclass of these programs to which the
multivalued Kleene theorem� Theorem ���� can be applied instead�

We will rst give some preliminary denitions and results that will be needed in
presenting our own results� they can all be found in �KM����

��� De�nition Let Lit denote the set of all ground literals in a rst�order language
L� Thus� Lit contains all ground atoms A in L �the positive literals� together with all
negated atoms A �the negative literals�� A rule r is an expression of the form

��L� � � � � � Ln � Ln�� � � � � � Lm � not Lm�� � � � � � not Lk�

where Li � Lit for each i� Rules are usually written as

L�� � � � � Ln � Ln��� � � � � Lm� not Lm��� � � � � not Lk�

As is customary in this subject� we utilize here both the classical negation  men�
tioned earlier in dening negative literals� and the negation not� The latter negation�
not� is usually interpreted to mean negation as failure� which is the standard way of
implementing �not� in practice� Employing these two forms of negation in conjunction
results in a signicant increase in expressiveness� We refer the reader to �GL��� for a
discussion of this point and note here that current answer set programming systems
�Lif��a� usually include both kinds of negation�

Given a rule r� we set Head�r� � fL�� � � � � Lng� Pos�r� � fLn��� � � � � Lmg and
Neg�r� � fLm��� � � � � Lkg� A rule r is said to be disjunctive if n � �� and non�disjunctive
otherwise� An extended disjunctive program is a countable set of disjunctive rules� If all
the rules are non�disjunctive� the program is said to be non�disjunctive�

In order to describe the answer set semantics� or stable model semantics� for extended
disjunctive programs� we rst consider programs without negation� not� Thus� let �
denote a disjunctive program in which Neg�r� is empty for each rule r � �� A subset
X of Lit� i�e� X � �Lit� is said to be closed by rules in � if� for every r � � such that
Pos�r� � X � we have that Head�r� �X 	� 
� The set X � �Lit is called an answer set
for � if it is a minimal set which satises�

�� If X contains complementary literals� then X � Lit�

�� X is closed by rules in ��

�



We denote the set of answer sets of � by ����� If � is non�disjunctive� then ����
is a singleton set� However� if � is disjunctive� then ���� may contain more than one
element�

Now suppose that � is a disjunctive program that may contain not� For a set X �
�Lit� consider the program �X dened as follows�

�� If r � � is such that Neg�r� �X is not empty� then we remove r i�e� r 	� �X �

�� If r � � is such that Neg�r��X is empty� then the rule r� belongs to �X � where
r� is dened by Head�r�� � Head�r�� Pos�r�� � Pos�r� and Neg�r�� � 
�

It is clear that the program �X does not contain not and therefore �
�
�X
�
is dened�

We say that X is an answer set or stable model of � if X � �
�
�X
�
� So� answer sets are

xed points of the operator GL introduced by Gelfond and Lifschitz in �GL���� where
GL�X� � �

�
�X
�
� The operator GL is in general not monotonic� However� for non�

disjunctive programs it is antimonotonic in that we have GL�X� � GL�Y � whenever
X � Y � This fact is used in order to obtain a monotonic operator by applying the
operator GL twice� For this purpose� we partition a given program� if possible� into two
suitable subprograms as follows�

��� De�nition An extended disjunctive logic program � is said to be signed if there
exists S � �Lit� called a signing� such that every rule r � � satises one or other of the
following conditions�

�� If Neg�r��S is empty� then Head�r� � S and Pos�r� � S� Let �S be the subprogram
of � consisting of those rules which satisfy this condition�

�� If Neg�r��S is not empty� then Head�r��S � Pos�r��S � 
 and Neg�r� � S� Let
� �S be the subprogram of � consisting of those rules which satisfy this condition�
where �S denotes the set Lit n S�

Clearly� the programs �S and � �S are disjoint and � � �S�� �S � A signed program �
is said to be semi�disjunctive if there exists a signing S such that �S is non�disjunctive�

It turns out that� for signed semi�disjunctive programs� the operator T � �
�S � ��

�S

dened by

T �X� � �

�
�
���XS �
�S

�
is monotonic with respect to the ordering � which is the dual of the order of subset in�
clusion� �� In fact� for the remainder of this section we will be concerned with decreasing
orbits� and ��continuity with respect to decreasing orbits etc� So� let us note that �Lit

is a complete lattice with respect to �� and therefore the ordering � on �Lit turns this
set into an ��cpo �with bottom element�� Since it is natural to think of the ordering �
on �Lit� rather than its dual� the notions and results of this section will be formulated
with respect to �� But� in fact� we will later on apply the dual version of Theorem ����
where the notions of monotonicity� ��continuity and ��cpo will be taken to mean the
duals of the corresponding notions introduced in Section �� see for example Lemma ����

The following lemma� �KM��� Lemma ��� establishes the dual of the hypothesis ���
on T which was used in Theorem ����

��



��� Lemma With the notation already established� let � be a signed semi�disjunctive
program� let �X�� be a decreasing orbit of T in �

�S and let X denote
T
�X�� Then there

exists Z � �S such that Z � T �X� and Z � X �

From this lemma� it follows by Theorem ��� that the operator T has a xed point�
The proof of the next theorem was based on this observation�

��� Theorem Let � be a signed semi�disjunctive program which is safe� with respect to
the partition ��S �� �S�� where S is a signing for which �S is non�disjunctive� Then � has
a consistent answer set� that is� an answer set which does not contain any complementary
literals�

The proof of this result utilizes only the single fact from Lemma ��� that a xed
point of T can be found �by applying Theorem ����� So� if a xed point of T can be
found by other means� the proof of Theorem ���� as given in �KM���� is still valid�

Now� if � is a program as in Theorem ��� and� in addition to this� T is ��continuous
�using the notion dual to the one dened in Section ��� then we obtain the xed point
of T using no more than � iterations� We will see that a niteness condition together
with an acyclicity condition su�ces to achieve this�

��� De�nition A program � is said to be of �nite type if� for each L � Lit� the set
of rules in � with L in their head is nite�� A program � is called acyclic if there is a
mapping l � Lit � N� called a level mapping� such that l�L� � l�L� for each literal L
and� for every rule r in � and for all L in Head�r� and all L� in Pos�r��Neg�r�� we have
l�L� 	 l�L���

The condition on a program that it is of nite type was used in �Sed��� in order to
establish the continuity� in the Cantor topology� of the immediate consequence operator
of a normal logic program� that is� of a non�disjunctive program� Later on it was shown
in �Sed��� that continuity in the Cantor topology is closely related to continuity in quasi�
metric spaces� Thus� in the light of Section �� it is not surprising that programs of nite
type make an appearance again in our present setting�

Acyclic normal logic programs were studied in the context of termination analysis� see
�Bez
�� Cav���� In �SH�
�� the larger class of locally hierarchical programs was studied
from a topological point of view� Our Denition ��� gives us a natural extension of these
concepts to the disjunctive case�

We now inductively dene the following sets for a signed semi�disjunctive program

�This concept is de
ned in �KM���� but it will not be needed here�
�When working with non�ground programs� a su�cient condition to obtain this for the ground in�

stantiation of the program is the absence of local variables� See also Example ����

��



with signing S�

X� � Lit�

Yi � �
�
�Xi

S

�
�

Xi�� � �
�
�Yi�S

�
with Xi�� � Xi�

X �
	
i�N

Xi�

Y �


i�N

Yi�

Indeed� these sets are well�dened since �S � and therefore �
Xi

S
� is non�disjunctive for

each i� and since the operator T � where T �Xi� � �

�
�
�

�
�
Xi
S

�

�S

�
as above� is monotonic�

With this notation� we have the following lemma�

��	 Lemma Let � be a signed semi�disjunctive program with signing S such that � �S

is of nite type� Then the following hold with respect to the ordering � on �Lit�

�i� The sequence Xi is decreasing�

�ii� The sequence �Xi

S
of programs is increasing with respect to set�inclusion� andS

�Xi

S � �XS �

�iii� The sequence Yi is increasing�

�iv� The sequence �Yi�S of programs is decreasing with respect to set�inclusion� andT
�Yi�S � �Y�S �

�v� Y � �
�
�XS
�
�

�vi� X is closed by rules in �Y�S �

�vii� For each L in X � there is a rule r in �Y�S with L � Head�r� such that the following
two conditions are satised�

�vii��� Pos�r� � X �

�vii��� For any literal L� � Head�r� with L� 	� L� we have L� 	� X �

Proof� �i� This follows immediately from the denition of the Xi�
�ii� This follows from �i�� �iii� follows from �ii�� and �iv� follows from �iii��

�v� If L � Y � then there is i� � N such that L � Yi � �
�
�Xi

S

�
for all i � i�� Since

the sequence �Xi

S of programs is increasing with respect to set�inclusion and �Xi

S � �XS
for each i� we obtain L � �

�
�XS
�
and therefore Y � �

�
�XS
�
� Now let r be a clause in

�XS � If Pos�r� � Y � then there is i � N such that Pos�r� � Yi� But each Yi is closed by

rules in �Xi

S and �Xi

S is non�disjunctive for each i� hence we obtain that Head�r� � Yi�
So Head�r� � Y and it follows that Y is closed by rules in �XS � Since answer sets of �

X
S

��



are sets which are minimally closed by rules in �XS and since Y � �
�
�XS
�
� we obtain

that Y � �
�
�XS
�
�

�vi� This was shown in �KM����
�vii��� Let L � X be a literal� We know that L � Xn for all n� But Xn is minimally
closed by rules in �Yn�S � therefore we also know that� for each n� there must be a rule r

in �Yn�S with L � Head�r� and Pos�r� � Xn� Since � �S is of nite type� we also know that

there are only nitely many rules r in �Yn�S with L � Head�r�� But �Yi���S
� �Yi�S for all i�

so it follows that there must be a rule r in �Y�S with L � Head�r� such that Pos�r� � Xi

for all i� Hence Pos�r� � X �
�vii��� Let r�� � � � � rn be all the rules in �

Y
�S
with L � Head�ri� and Pos�ri� � X � noting

that �Y�S is of nite type so that there exist only nitely many such rules� There must

now be a j� � N such that� for all j � j�� we have that each ri is a rule in �
Yj
�S
with

Pos�ri� � Xj � Now� for each i � �� � � � � n� suppose that there is a literal Li 	� L in
Head�ri� with Li � X � Then we have Li � Xj for all j � j�� It is now easy to see that

Xj nfLg is closed by rules in �
Yj
�S
� which contradicts the fact that Xj is minimally closed

by rules in �
Yj
�S
� �

If the program � �S additionally satises the acyclicity condition� then X is already
a xed point of T � as we show next�

��
 Theorem Let � be a signed semi�disjunctive program with signing S such that
� �S is of nite type and is acyclic� Let �Xn� be a decreasing ��orbit of T in �

�S and let
X �

T
iXn� Then X � T �X��

Proof� We know from Lemma ��� that there is Z � X with Z � T �X�� Assume
Z� � X n Z 	� 
� Since �Y�S is acyclic� there must be an L � Z� of minimal level� But
L � X so� by Lemma ��	 �vii�� there must be a rule r which satises Conditions �vii���
and �vii���� By �vii��� and minimality of the level of L� we obtain Pos�r� � Z and since
Z is closed by rules in �Y�S � there must be a literal L

� � Head�r� with L� � Z� But Z � X �
and� by �vii��� of Lemma ��	� we obtain L � Z� which contradicts the assumption L � Z ��

�

As already mentioned above� the proof of Theorem ��� now carries over directly
from �KM���� so that each signed semi�disjunctive program which is safe with respect
to the partition ��S �� �S�� where S is a signing for which �S is non�disjunctive and � �S

is of nite type and acyclic� has a consistent answer set� From the proof of Theorem
��� together with Theorem ���� this answer set turns out to be Y �X � with notation as
dened in the paragraph preceding Lemma ��	� The novelty of this theorem lies in the
fact that the answer set can be found by applying the operator T no more than � times�

We conclude with two examples which show that the conditions of being of nite
type and acyclic are indeed necessary� We will use the notation from Lemma ��	�

��� Example Let � be the ground instantiation of the following program� where x

��



denotes a variable and � a constant�

p�x�� not q�x�

q�s�x��� not p�x�

r���� q�x�� not p�x�

The program � is signed with signing S � fp�sn�����n � Ng and is trivially semi�
disjunctive� Note� however� that � �S is not of nite type� We now make the following
calculations�

X� � Lit�

Y� � 
�

Xi � fr���g � fq�sn�����n � ig for i � ��

Yi � fp�sn�����n � �� � � � � ig for i � ��

As expected� the set X� �
T
iXi � fr���g is not a xed point of T nor is X� �

S
i Yi �

fr���g � fp�sn�����n � Ng an answer set of �� However� taking X��� � T �X�� � 
�
which is a xed point of T � we obtain fp�sn�����n � Ng as answer set of ��

The following example shows that the acyclicity condition on � �S cannot be dropped�

��� Example Let � be the ground instantiation of the following program� where x is
a variable and a constant symbol � is added to the language underlying ��

t�x�� t�x�

p�x�� not q�x�

q�s�x��� not p�x�

r�x�� q�x�� not p�x�

r�x�� r�s�x��� not t�x�

The program � is signed with respect to the signing S � fp�sn����� t�sn�����n � Ng and
is trivially semi�disjunctive� Note� however� that this program is never acyclic relative
to any level mapping� We now make the following calculations�

X� � Lit�

Y� � 
�

Xi � fq�sn�����n � ig � fr�sn�����n � Ng for i � ��

Yi � fp�sn�����n � �� � � � � ig for i � ��

As expected� the set X� �
T
iXi � fr�sn�����n � Ng is not an answer set of � �S nor is

X� �
S
i Yi � fr�sn�����n � Ng � fp�sn�����n � Ng an answer set of �� However� if we

keep on iterating and calculate

Y��� � �
�
�X�

S

�
� fp�sn�����n � Ng� and

X��� � T �X�� � 


we obtain X��� as xed point of T and fp�sn����g as answer set of ��

��



� Conclusions and Further Work

As already noted in the Introduction� we are indebted to an anonymous referee for calling
our attention to several points of contact between this work� default logic and domain
theory� and we close by discussing some of these and some of the lines of research which
appear to emerge from these points of contact�

First� logic programs of the form considered in this paper can be viewed� in a rather
simple way� as default theories in the sense of �Rei
��� Default theories constitute an
important formalism in the area of non�monotonic reasoning� and we refer the reader
to �BF��� GL��� Boc��� Lif��b� and the references contained therein for a discussion of
the relationship between default logic and logic programs� From this point of view� the
standard models of a disjunctive program �� such as the stable model� correspond to ex�
tensions in default logic� truth in a model corresponds to default theorem� Furthermore�
Rounds and Zhang �RZ�
� ZR��a� ZR��b� ZR�
� study a version of default reasoning
from a domain�theoretic point of view� In particular� they focus on the Smyth powerdo�
main noting that this can be used to model non�monotonicity� This results� for example�
in the implementation of a non�monotonic reasoning system� see �KRZ�
�� which bears
relationship to answer set programming systems which are currently under investigation�
see �Lif��a� MT���� It should therefore be of interest to relate the syntactic conditions
discussed in this paper� which provide stable models� to those used in the literature on
default theories to provide extensions �and vice versa�� and also to relate these to the
results of Rounds and Zhang� see in particular the Introduction of �ZR��b� where it is
noted that such connections are not at all obvious but need to be investigated�

In Chapter 	 of �ZR�
�� a treatment is given of the semantics of disjunctive logic
programs �as considered here� with the same overall objective as our own� Zhang and
Rounds base their treatment on the Smyth powerdomain� again� One feature of such
an approach is that� by using the right domain� the concept of multivalued function
is avoided and continuity can always be taken to be Scott continuity� On the other
hand� the approach followed here needs less formal� abstract theory and employs quite
simple syntactical conditions on programs� Once again� the interaction between these
various approaches �and between other standard approaches� see �LMR���� needs to be
investigated�

Finally� we note that in their approach� Rounds and Zhang have made extensive use
of Kleene�s strong three�valued logic� see also �Boc���� which was introduced to logic
programming in �Fit
��� and is also known as the Fitting semantics for logic programs�
The authors have investigated this in detail from a topological point of view in �HS��b�
HS��a� HS��b� HS��c�� again with the same intention of employing domain�theoretic�like
methods in logic programming semantics� This is� therefore� another point of contact�
amongst many� which should be interesting and fruitful to pursue�
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