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Abstract

We study strictly level-decreasing logic programs (sld-programs) as defined earlier by the present authors. It will
be seen that sld-programs, unlike most other classes of logic programs, have both a highly intuitive declarative
semantics, given as a unique supported model, and are computationally adequate in the sense that every partial
recursive function can be represented by some sld-program P . Allowing for a safe use of cuts, an interpreter based
on SLDNF-resolution, as implemented for example in standard Prolog systems, is shown to be sound and complete
with respect to this class of programs. Furthermore, we study connections between topological dynamics and logic
programming which are suggested by our approach to the declarative semantics of sld-programs.

1 Introduction

A programming paradigm consists of a syntax or formal language and an interpreter which assigns a pro-
cedural semantics to any program satisfying the given syntactical conditions. The procedural semantics of
a given program therefore assigns to any allowed input value one or more output values.

Logic programming is distinguished from other programming paradigms by describing the syntax of a
logic program P as a set of clauses from first (or higher) order logic, satisfying some additional properties.
Viewing P as a set of axioms, a declarative semantics for P is given by a distinguished model M for P .
Ideally, M represents the meaning intended by the programmer implementing P .

The classical example of this is provided by definite or positive logic programs. In this case, the syntax
is simply the Horn-clause subset of first order predicate logic together with SLD-resolution as interpreter,
and the declarative semantics is taken to be the least Herbrand model for the given program.

Horn-clauses, however, do not allow negation symbols in their bodies and therefore lack expressiveness.
To overcome this, one usually considers normal logic programs, that is to say, programs which consist of a
(possibly infinite) set of clauses of the form A � A�� � � � � Ak� ��B�� � � � ��Bl� with k�� l� � �, where Ai

and Bj are atoms. For this class of programs the usual interpreter is SLDNF-resolution, see [5].
It turns out to be difficult to assign a declarative semantics to normal logic programs in full generality.

Therefore, various subclasses of logic programs have been proposed in attempts to resolve this issue. These
subclasses are often defined by conditions on their syntax, and they vary in relation to the difficulty of
assigning them a satisfactory declarative semantics. Indeed, it will be convenient next to briefly review
certain of these conditions and relate them to the main topic of this paper. In order to do this, we recall the
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standard notation BP for the Herbrand base of a logic program P and the notation ground�P � for the set of
all ground instances of clauses in P , see [5, 11].

1.1 Definition A normal logic program P is called (1) acyclic, (2) strictly level-decreasing (sld), (3) locally
stratified, respectively, if there exists some countable ordinal � and a mapping l � BP � �, called a level
mapping, such that for every clause A � A�� � � � � Ak� ��B�� � � � ��Bl� in ground�P � and for all i� j we
have (1) � � � and l�Ai�� l�Bj� � l�A�, (2) l�Ai�� l�Bj� � l�A�, (3) l�Ai� � l�A� and l�Bj� � l�A�,
respectively.

It is clear that every acyclic program is strictly level-decreasing and that every strictly level-decreasing
program is locally stratified. In fact, the terminology “semi-strictly level-decreasing” was used in place of
“locally stratified” in [11], but will not be used here.

Every acyclic program P has a unique supported model M (see [3]). Moreover, it was shown in [1] that
SLDNF-resolution as interpreter terminates on all input values. So for acyclic programs, declarative and
procedural semantics agree. But, since SLDNF-resolution always terminates, it is not possible to represent
every partial recursive function as an acyclic program. The class of all acyclic programs is therefore not
computationally adequate.

On the other hand, locally stratified programs do not have unique supported models, but each such
program does have a unique perfect model as defined and constructed in [8]. Furthermore, the class of
all locally stratified programs contains the class of all definite programs and is therefore computationally
adequate since the latter class has this property, see [13]. To elaborate a little further on the issues involved,
let P be the following (locally stratified) program

p��� � �q���

q��� � q���

Here, we have two minimal and supported models fp���g and fq���g for P , and it is natural to try to find
a way of showing that one is preferable to the other in some sense. In [8] it is argued that the perfect model
provides such a way, and in fact for the program in question the perfect model semantics coincides with the
first model, fp���g, which may therefore be viewed as preferable to the second model, fq���g. On the other
hand, both are models of the Clark-completion comp�P � of P , due to the second clause in the progam P .
It could in fact be argued that if a programmer explicitly implements this second clause, he intends to allow
fq���g as a model for the program, which is consistent with the view of comp�P � as a set of first-order
clauses. The perfect model semantics ignores this second clause and assumes that the programmer did not
intend the logical meaning underlying it. These points hint at some of the problems involved in finding
a satisfactory semantics for locally stratified programs. From the procedural point of view, a practically
implementable interpreter which can deal with the power of expressiveness of locally stratified programs
remains to be found. Nevertheless, it is safe to say that locally stratified programs form one of the most
important classes of programs in AI and in the study of disjunctive databases.

The class of all strictly level-decreasing programs, however, does not have the undesirable properties
of the other two classes of programs just discussed. Indeed, it was shown in [11] that every sld-program
has a unique supported model, i.e. the completion comp�P � of P has a unique model. Moreover, it was
shown how this model can be constructed by a transfinite sequence. It will be shown here that the class of
sld-programs is computationally adequate, and indeed the structure of the paper is as follows.

Section 2 of the present paper is devoted to the declarative and procedural semantics of sld-programs. We
briefly review the results already obtained in [11] and investigate in Section 2.1 simple methods to construct
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the unique supported model. In Section 2.2, we will allow the use of safe cuts in the syntax of sld-programs
and show that these together with an interpreter based on SLDNF-resolution, as implemented in standard
Prolog systems, can represent every partial recursive function.

Our approach to the declarative semantics of sld-programs employs methods which suggest connections
between logic programming and topological dynamics. In Section 3, we therefore investigate these and
connect them up with our previous observations on this topic presented in [11]. In particular, in Sections 3.1
and 3.2 we study the Vietoris space of BP and iterated function systems in the context of arbitrary normal
logic programs. These topics, i.e. Vietoris space and iterated function systems, have both been brought into
prominence by the work of Abbas Edalat, see [2]. Finally, we conclude with some further observations on
sld-programs which relate them yet more closely to topological dynamics. Our overall claim is that the class
of strictly level-decreasing programs is particularly interesting, both computationally and mathematically,
and the objective of this paper is to substantiate this claim.

2 Semantics of Strictly Level-Decreasing Logic Programs

It will be convenient to recall first some basic notions used in the sequel. Details and further background can
be found in [5].

Let P denote a normal logic program with underlying first order language L. As usual, UP and BP will
denote respectively the Herbrand universe and Herbrand base of P , and IP or P�BP � will denote the set of
all Herbrand interpretations for L (or for P ). We let TP � IP � IP denote the usual immediate consequence
operator associated with P . Throughout, l will denote a level mapping; thus l is simply a mapping l � B � �,
where B is a set and � is an arbitrary countable ordinal (usually, B will be the Herbrand base BP ). For any
such mapping, we set L� � fa � B� l�a� � �g and let �� be the set of symbols f����� � �g ordered
by ��� � ��� if and only if � � �. (In the case B � BP , we will denote a typical element of BP , i.e. a
ground atom, by A rather than by the lower case a).

Given the set B, the Cantor topology Q on D � �B is characterized via convergence as follows: a net
I� converges in Q if and only if every a � B is either eventually in I� or eventually not in I�. In particular,
this is so when B is countable (for example when B � BP ), in which case sequences suffice to describe
topological concepts and the stated convergence criterion still applies. This fact, which we will refer to as
the convergence criterion, will be used in several places and is recorded as Proposition 4 in [9]. Finally, for
a net I�, let gl�I�� denote the greatest limit of I� in the Scott topology on D, see [9]. It was shown in [10]
that if I� � I in Q, then I � gl�I�� and that gl�I�� � fa � B� a � I� eventuallyg. The Cantor topology
and its rôle in logic programming was studied in [9, 10] and in [11, 12].

In [11], it was shown that every sld-program P has a unique supported model MP which can therefore
be understood to be the standard semantics for P . In order to make this paper relatively self-contained, we
briefly review the main points of our construction of MP in [11], and refer the reader to that paper for details.

Let P denote a normal logic program which is locally stratified with respect to a level mapping l � BP �
�, where � � 	. For each n satisfying � � n � �, let P�n� denote the set of all clauses in ground�P � in which
only atoms A with l�A� � n occur. We define T�n� � P�Ln� � P�Ln� by T�n��I� � TP�n�

�I�. Next, we
construct the transfinite sequence �In�n�� inductively as follows. For each m � N , we put I���m� � Tm

������

and set I� �
S
�

m��I���m�. If n � �, where n 	 	 is a successor ordinal, then for each m � N we put
I�n�m� � Tm

�n��In��� and set In �
S
�

m��I�n�m�. If n � � is a limit ordinal, we put In �
S
m�nIm. Finally,

we put I�P � � MP �
S
n��In.

Next, we recall a construction related to domain theory which we made in [11]. Let B be a countable

2nd Irish Workshop on Formal Methods (IWFM-98), EWIC, British Computer Society, 1999. 3



Strictly Level-Decreasing Logic Programs

set and let l � B � � be a level mapping. It is well-known that D � �B is a domain with respect to
set inclusion. The level mapping l induces a distance function dl � d � D � D � ���� via d�I� J� �
minf���� a � I if and only if a � J for all a � B with l�a� � �g. This distance function is in fact a
generalized ultrametric as defined in [6], i.e. it satisfies the following conditions, where we denote ��� by
�:
(1) d�I� I� � � for all I � D.
(2) d�I� J� � d�J� I� for all I� J � D.
(3) If d�I� J� � � and d�J�K� � �, then d�I�K� � �.

Now let P be a program which is strictly level-decreasing with respect to some level mapping l and
take B � BP . Then l induces a generalized ultrametric on IP , and TP is strictly contracting, i.e. it satisfies
d�TP �I�� TP �J�� � d�I� J� for all I� J � IP . Moreover, IP and TP satisfy the hypotheses of the theorem
of Priess-Crampe and Ribenboim (see [6, 7]) which therefore yields the existence of a unique fixed point of
TP and therefore of a unique supported model for P .

2.1 Declarative Semantics

We begin our study of sld-programs by showing how such a program P can be endowed with a canonical
level mapping lP which is smallest in a certain obvious sense.

2.1 Definition Let P be a program which is strictly level-decreasing with respect to a level mapping l.
We define a level mapping lP on BP as follows. For every A � BP which does not occur as a head in
ground�P �, let lP �A� � �. For every A � BP which occurs as the head of a unit clause but not as the head
of any non-unit clause, let lP �A� � �. Now let A � BP be such that A is the head of some clause(s) in
ground�P �. Let BA be the collection of body-literals occurring in these clauses. Note that BA is finite for
every A if P has no local variables. Now suppose that for every B � BA, lP �B� is already defined. Let
MA � supB�BA lP �B� and set lP �A� � MA
	, if MA is a successor ordinal, and set lP �A� � MA, if MA

is a limit ordinal. Then lP is obtained by transfinitely iterating this procedure. We will refer to lP , as defined
above, as the (canonical) level mapping of P and, further, �P will denote the smallest ordinal � such that
lP �A� � � for all A � BP .

2.2 Proposition Let P be a program which is strictly level-decreasing with respect to some level mapping
l. Then lP , as defined above, is a function on BP and P is strictly level-decreasing with respect to lP .
Moreover, if P has no local variables, then �P � � and hence P is acyclic1 and acceptable1.

Proof: First we show that dom�lP � � BP . Suppose there is A � BP ndom�lP �; we can further suppose that
l�A� is minimal for A with this property. Then there must be some B � BA with B 	� dom�lP �, otherwise
lP �A� is defined in the process given in Definition 2.1. Since P is an sld-program, we have l�B� � l�A�
which contradicts the choice of A with l�A� minimal. Therefore, lP is a level mapping, and obviously P is
strictly level-decreasing with respect to it. Finally, if P has no local variables, then the set BA is finite for
every A � BP , and so lP maps into �. Hence, �P � �. �

The construction above of the level mapping lP can be used to determine whether or not a given program
P is strictly level-decreasing, and the following corollary is immediate.

1See [1].
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2.3 Corollary Let P be an arbitrary normal logic program. Then P is strictly level-decreasing if and only
if dom�lP � � BP .

2.4 Proposition Let P be a program which is strictly level-decreasing with respect to a level mapping l.
Then for every A � BP , we have lP �A� � l�A�.

Proof: Suppose the conclusion is false. Thus, there is A � BP with l�A� � lP �A�, and such that l�A� is
minimal. Then, for all B � BA, we have l�B� � l�A� because P is strictly level-decreasing. Therefore,
by minimality of l�A�, we have l�B� � lP �B� for all B � BA. By definition of lP , we see that lP �A� �
minf��� 	 lP �B�� B � BAg � minf��� 	 l�B�� B � BAg � l�A�. From this we obtain lP �A� � l�A�,
giving the required contradiction. �

As stated in the introduction to this section, a procedure for finding the perfect model MP for locally
stratified programs P was given by us in [11]. Our approach shed light on the original construction made
by Przymusinski in [8], and involved studying convergence in Q of certain transfinite sequences of iterates
which were carefully controlled in relation to the level mapping associated with the local stratification. One
particular fact which emerged from that study, see [11, Theorem 5], was that for acyclic programs P , MP
can be realised as the limit in Q of the sequence TnP �I� for any choice of I � IP (in particular, the choice
of I � � is especially natural). The question arises as to whether or not this result can be generalized to
programs which are strictly level-decreasing relative to an arbitrary level mapping. The following example
shows that the answer to this question is negative.

2.5 Example Consider the following program P :

t��� � p�X�

p�s�X�� � r�X�

r�s�X�� � p�X�

p��� � �q���

q��� �

and define the level mapping l on BP by: q�sn���� 
� �� p�sn���� 
� n 
 	� r�sn���� 
� n 

	� and t�sn���� 
� �. Then it is clear that P is strictly level-decreasing with respect to l. However, on
computing the elements of the sequence TnP ���, we find that t��� belongs to infinitely many of the TnP ���
and does not belong to infinitely many others. Therefore, by the convergence criterion, the sequence TnP ���
does not converge in Q and we see that MP cannot be computed by simply iterating TP , by contrast with
the case of �-level mappings.

Nevertheless, considerable simplification does arise in constructing MP for sld-programs as distinct
from general locally stratified programs, and the remaining results of this section demonstrate this fact;
much of this simplification ultimately rests on the recursion equations in [11, Corollary 2]. For the rest of
this section, unless otherwise stated, P will denote an arbitrary sld-program with level mapping l, and T
will denote TP .

2.6 Lemma Suppose that P is a locally stratified normal logic program. Then for any ordinal n � 	 and
subset J � BP , we have:
(1) T�n��J � Ln� � T�n��J�, and
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(2) TP �n��J � Ln��� � TP �n��J�.
If, further, P is strictly level-decreasing, then we also have:
(3) T�n����J � Ln� � T�n����J�, and
(4) TP �n��J � Ln� � TP �n��J�.

Proof: (1) Suppose that A � T�n��J � Ln�. Then there is a clause in P�n� of the form A �
A�� � � � � Ak� ��B�� � � � ��Bl� such that A�� � � � � Ak� � J �Ln and B�� � � � � Bl� 	� J �Ln. Since l�A� � n,
we have l�Ai�� l�Bj� � n for all i� j and so A�� � � � � Ak� � B�� � � � � Bl� � Ln. Therefore, A�� � � � � Ak� � J
and B�� � � � � Bl� 	� J from which we obtain that A � T�n��J�.

Conversely, suppose that A � T�n��J�. Then there is a clause in P�n� of the form A �
A�� � � � � Ak� ��B�� � � � ��Bl� such that A�� � � � � Ak� � J and B�� � � � � Bl� 	� J . By level considerations
again, we have A�� � � � � Ak� � J � Ln and B�� � � � � Bl� 	� J � Ln. Therefore, A � T�n��J � Ln�.

The remaining statements are proved similarly taking note of the appropriate equalities and in-
equalities between the values l�A� and l�Ai�� l�Bj� for the atoms occurring in a typical clause A �
A�� � � � � Ak� ��B�� � � � ��Bl� in P�n� and in P �n�. �

It will be convenient to recall next a definition made in [4, Definition 7.11] for a normal logic program
P . Again writing T for TP , we define T �n� � P�Ln� � P�Ln� by T �n��I� � T �I� � Ln, where n is an
arbitrary ordinal satisfying 	 � n � �. In fact, this statement differs slightly from that given in [4] to the
extent that Ln as used here differs slightly from its meaning in [4].

2.7 Lemma Suppose that P is a locally stratified normal logic program. Then the following statements
hold.
(1) For any subset I � BP and any ordinal satisfying 	 � n � �, we have T�n��I� � T �n��I� �� T �I��Ln�.
(2) If, further, P is strictly level-decreasing, then for any ordinal n satisfying 	 � n � �, we have In�� �
In  TP �n��In� � T�n����In�.

Proof: Statement (1) is simply a reiteration of [4, Proposition 7.17] allowing for the difference, already
mentioned, between the meaning of Ln as used here and in [4].

For (2), we have In�� �
S
�

m��I�n���m� �
S
�

m��In  TP �n��In� by [11, Corollary 2]. Therefore,
In�� � In  TP �n��In� � T�n��In�  TP �n��In� � T�n����In�, using the fact that In is a fixed point of T�n�.

�

2.8 Theorem Suppose that P is a strictly level-decreasing normal logic program. Then for every limit
ordinal � and k � N we have Tk�I���L��k � I��k, and for � � �
� we have limn�N�T����

n�I�� � I�
in Q.

Proof: The first statement follows from Lemmas 2.6 and 2.7 by induction. Indeed, for k � �, the state-
ment obviously holds on noting that I� � L�. Now suppose the statement holds for some k � �.
Then by Lemma 2.7 (2), the induction hypothesis, Lemma 2.6 (1) and (4), and Lemma 2.7 (1) applied
in that order we have I��k�� � T���k����I��k� � T���k����T

k�I�� � L��k� � T���k��T
k�I�� �

L��k�  TP ���k��T
k�I�� � L��k�� � T���k��T

k�I���  TP ���k��T
k�I���� � T���k����T

k�I��� �

T �T k�I��� � L��k�� � T k���I�� � L��k���
For the second statement, we have �T����

n�I�� � L��n � I��n for all n � N by induction on n.
Indeed, the statement clearly holds for n � �. Now suppose it holds for some n � �. Then, using
Lemma 2.7 (1), Lemma 2.6 (3), the induction hypothesis and Lemma 2.7 (2), we have �T����

n���I�� �
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L��n�� � T�����T����
n�I��� �L��n�� � T ��T����

n�I��� �L� �L��n�� � T ��T����
n�I��� � L��n�� �

T���n�����T����
n�I��� � T���n�����T����

n�I�� � L��n� � T���n����I��n� � I��n��� Now let A � BP

be arbitrary. Then l�A� � � 
m� for some limit ordinal � � � and some m� � N . Thus, A � L��m���

for some � and m�. Now either A � MP or A 	� MP , where MP �
S
n��In. If A � MP , then we

must have A � I��m��� by [11, Lemma 1], otherwise A 	�MP . Hence, A � �T����
m����I�� and therefore

A � �T����
m�I�� eventually. If A 	�MP , then A is eventually not in �T����

m�I��. Hence, by the convergence
criterion, �T����

m�I�� converges in Q and obviously converges to I� . �

The result just obtained allows us to further simplify the calculation of MP , and to do this it will be
convenient to establish the following terminology.

2.9 Definition Let P be a strictly level decreasing-program. For every limit ordinal � � � � �P and
� � � 
 � the next limit ordinal, we define P� to be the set of all clauses in ground�P � with head A such
that � � l�A� � �. The usual order on the limit ordinals induces an order on the set of all P� . We call each
P� an �-component of P .

2.10 Lemma Suppose that P is a strictly level-decreasing program, let � � �P be a limit ordinal and let
� � �
 �. Then for every n � N , we have I� � T�����T����

n�I���.

Proof: We have to show that dl�I�� �T����
n�I��� � ��� which is obviously true for n � �.

Suppose it holds for some n � �. Since T��� � TP�  T��� and since I� is a fixed point
of T���, we have dl�I�� T����I��� � ���. Since T��� is strictly contracting with respect to dl,
we have dl�T����I��� �T����

n���I��� � dl�I�� �T����
n�I���. By the strong triangle inequality we

get dl�I�� �T����
�n����I��� � maxf���� dl�I�� �T����

n�I���g and inductively dl�I�� �T����
n���I��� �

dl�I�� I�� � ���. �

We have the following theorem, where we recall from [4, Definition 7.11] that T � n�I� is defined
inductively for any I � IP by setting T ���I� � I and T ��n
 	��I� � T �T �n�I��  I for n � �.

2.11 Theorem Let P be a strictly level-decreasing program. Then for every limit ordinal � � �P and
� � �
 �, we have I� � limn TP� �n�I�� in Q.

Proof: The statement follows from Theorem 2.8 by the observation that

TP� �n�I�� � �T����
n�I�� (1)

for every n � N , which we will prove by induction on n. Indeed, Equation (1) holds for n � �. So suppose
it holds for some n � N. Then, by the induction hypothesis and the previous lemma, we have TP� �
�n
	��I�� � TP� �TP� �n�I��� I� � TP���T����

n�I��� I� � TP� ��T����
n�I��� T�����T����

n�I��� �
T�����T����

n�I��� � �T����
n���I�� which establishes Equation (1) for every n � N. �

If we put I� �
S
��� I� for every limit ordinal � which is not of the form used in the theorem, then we

obtain a method for calculating MP . Indeed, we will next give a proof of the fact that every sld-program has
a unique supported model. The proof is independent of the results in [11].

Let P be an sld-program. Let T� � P�L�� � P�L�� be defined by T� � TP� (= T���). Then, by
[11, Theorem 5], T� is a contraction with contractivity factor at most �	 with respect to Fitting’s complete
ultrametric, and therefore has a unique fixed point J� . (Fitting in [3] defined a complete ultrametric d
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determined by a level mapping l � BP � � as follows: if I� � I	, we set d�I�� I	� � �, otherwise we set
d�I�� I	� � ��n, where I� and I	 differ on some ground atom of level n but agree on all atoms of lower
level).

For every limit ordinal � 	 � and � � � 
 �, define inductively T� � P�L�� � P�L�� by T��I� �
TP��I� J�. We show next that T� is a contraction with contractivity factor at most �	 . To do this we define
the level mapping l� � L� � � by l��A� � � if l�A� � �, and l��A� � 	 
 �l�A� � �� if � � l�A� � �.
Now let d� denote Fitting’s ultrametric determined by l� . Notice that P� is strictly level-decreasing with
respect to l� but that P��� does not have this property.

2.12 Lemma With the notation just established, the mapping T� is a contraction with respect to d� .

Proof: Suppose that I� and I	 are arbitrary elements of P�L�� and that d��I�� I	� � ��n, where n � �.
Case 1. n � �.
In this case, I�� I	 differ on some element of L� of l�-level �. Let A � L� satisfy l��A� � �, but otherwise
be arbitrary; then A � L�. If A � J�, then A � T��I�� and A � T��I	�; if A 	� J�, then A 	� T��I�� and
A 	� T��I	�. Thus, T��I�� and T��I	� agree on all atoms of l�-level �. Therefore,

d��T��I��� T��I	�� �
	

�
�

	

�
d��I�� I	��

Case 2. n 	 �.
In this case, I� and I	 differ on some ground atom of l�-level n but agree on all ground atoms of lower
l�-level. Let A � L� be arbitrary with l��A� � n. Suppose further that A � T��I��. If l��A� � �, then
A � L� and hence A � J�. Therefore, A � T��I	� also. On the other hand, if l��A� 	 �, then there is a
clause A � A�� � � � � Ak� ��B�� � � � ��Bl� in P� , with k� � � and l� � �, which satisfies I� j� A� � � � � �
Ak���B��� � ���Bl� . If k� � � � l�, then the clause in question is a unit clause and immediately we have
A � T��I	�. If k� 	� � or l� 	� � or both, then I� and I	 agree on the atoms A�� � � � � Ak� � B�� � � � � Bl� since
their l�-levels are lower than n. Therefore, I	 j� A��� � ��Ak���B��� � ���Bl� and we have A � T��I	�.
The converse argument holds similarly and so we see that T��I�� and T��I	� agree on all ground atoms of
l�-level � n. Therefore,

d��T��I��� T��I	�� � ���n��� �
	

�
d��I�� I	�

as required. �

It follows from the previous lemma that T� has a unique fixed point J� . For every limit ordinal � which
is not of the form �
 � for any limit ordinal �, we set J� �

S
��� J�, where the � are limit ordinals. The

resulting transfinite sequence �J�� is increasing since for � � � 
 �, where � is some limit ordinal, J�
satisfies J� � T��J�� � TP��J��  J�, so that J� � J�. Finally, on taking � to be a limit ordinal such that
�P � �, we obtain J� � MP i.e. the unique fixed point of TP .

2.2 Procedural Semantics

For convenience, we establish the following notation for every sld-program P . For A � BP , we say that
P j� A if and only if A � MP . We say that P �SLDNF A if and only if there is an SLDNF-derivation for
P  f� Ag.
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2.13 Theorem Let P be a strictly level-decreasing program and A � BP with P �SLDNF A. Then P j� A.
If �P � �, then P �SLDNF A if and only if P j� A. In particular, if P is without local variables, then P j� A
if and only if P �SLDNF A.

Proof: By [5, Proposition 14.2], MP is the unique model of comp�P �. By [5, Theorem 15.4], the first
statement immediately holds. Now let �P � � and P j� A. Then, by [1, Corollay 4.11], all SLDNF-
derivations of P  f� Ag are finite and, therefore, P �SLDNF A which proves the second statement. If P
is without local variables, then P is acyclic by Proposition 2.2, which completes the proof using the second
statement. �

We establish next one of our main results: that every partial recursive function can be computed by an
sld-program with cuts. We take the point of view (following [5]) that a cut does not affect the declarative
semantics of a program. When talking about SLDNF-resolution for strictly level-decreasing programs with
cuts, we assume that the selection function always selects the leftmost literal and, as discussed in [5], that the
cut “prunes” the search tree. To obtain a well-defined procedural semantics of a given program, we assume
that the topmost clause whose head unifies with a current goal is always selected first, as implemented in
standard Prolog systems. So, for what follows, SLDNF-resolution is performed in the way just described.

For convenience, we will denote ground terms by lowercase letters and variables by uppercase letters
when refering to a predicate. Thus, p�x�� � � � � xn� Y � means that all xi are ground and Y is a variable. We
write �P�A� �SLDNF B if P  f� Ag has an answer substitution 
 (via SLDNF-resolution) such that
A
 � B.

2.14 Theorem Identify N with the set fsn����n � Ng by taking s to be the successor function. Let f be an
n-ary partial recursive function. Then there exists a strictly level-decreasing program Pf with cuts and an
�n
 	�-ary predicate symbol pf such that the following hold:

1. A call to Pf with goal pf �x�� � � � � xn� Y � or pf �x�� � � � � xn� y� terminates via SLDNF-resolution if
�x�� � � � � xn� � dom�f� and backtracking over the goal fails immediately.

2. �Pf � pf �x�� � � � � xn� Y �� �SLDNF pf �x�� � � � � xn� y� if and only if �x�� � � � � xn� � dom�f� and
f�x�� � � � � xn� � y.

3. For every pf �x�� � � � � xn� y� � BP the following are equivalent:

(a) P j� p�x�� � � � � xn� y�

(b) P �SLDNF p�x�� � � � � xn� y�

(c) f�x�� � � � � xn� � y.

Proof: We follow [13] and [5] with modifications where necessary. The proof is by induction on the number
q of applications of composition, primitive recursion, and minimalization needed to define f .

Suppose first that q � �. Thus f must be either the zero function, the successor function, or a projection
function.

Zero function
Suppose that f is the zero function defined by f�x� � �. Define Pf to be the program pf �X� �� � �
Successor function
Suppose that f is the successor function defined by f�x� � s�x�. Define Pf to be the program

pf �X� s�X�� � �
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Projection function
Suppose that f is the projection function defined by f�x�� � � � � xn� � xj for some j � f	� � � � � ng.

Define Pj to be the program pf �X�� � � � �Xn� Xj� � �
Clearly, for each of the basic functions, the program Pf , as defined, is an sld-program with the desired

properties.
Next, suppose that the partial recursive function f is defined by q 	 � applications of composition,

primitive recursion, and minimalization.
Composition
Suppose that f is defined by f�x�� � � � � xn� � h�g��x�� � � � � xn�� � � � � gm�x�� � � � � xn�� where g�� � � � � gm

and h are partial recursive functions. By the induction hypothesis, corresponding to each gi (or h), there is
an sld-program Pgi (Ph) with cuts and a predicate symbol pgi (ph) satisfying the conclusions of the theorem.
We can suppose that the programs Pg� � � � � � Pgm � Ph do not have any predicate symbols in common. Define
Pf to be the union of these programs together with the clause

pf �X�� � � � �Xn� Z� � pg��X�� � � � �Xn� Y��� � � � � pgm�X�� � � � � Xn� Ym�� h�Y�� � � � � Ym� Z�� ��

Obviously, Pf is an sld-program with cuts. Statement 1 is immediate under the assertion of the induction
hypothesis, as is the ‘if’-part of statement 2. The ‘only-if’ part is shown as in [5]. For statement 3, the
equivalence of 3a and 3c is immediate and the equivalence of 3b and 3c is shown in a manner analogous to
that employed in [13].

Primitive recursion
Suppose that f is defined by

f�x�� � � � � xn� �� � h�x�� � � � � xn�

f�x�� � � � � xn� y 
 	� � g�x�� � � � � xn� y� f�x�� � � � � xn� y��

where h and g are partial recursive functions. By the induction hypothesis, corresponding to h (resp. g), there
is an sld-program Ph (resp. Pg) with cuts and a predicate symbol ph (resp. pg) satisfying the conclusions of
the theorem. We can also suppose that Ph and Pg do not have any predicate symbols in common. Define Pf
to be the union of Ph and Pg together with the clauses

pf �X�� � � � �Xn� �� Z� � ph�X�� � � � �Xn� Z�� ��

pf �X�� � � � �Xn� s�Y �� Z� � pf �X�� � � � �Xn� Y� U�� pg�X�� � � � � Xn� Y� U� Z�� ��

Obviously, Pf is an sld-program with cuts. The desired properties are proven along the same lines as for
composition.

Minimalization
Suppose that f is defined by f�x�� � � � � xn� � �y�g�x�� � � � � xn� y� � �� where g is a partial recur-

sive function. By the induction hypothesis, corresponding to g there is an sld-program Pg with cuts and a
predicate symbol pg satisfying the conclusions of the theorem. Define Pf to be Pg together with the clauses

pf �X�� � � � �Xn� �� � pg�X�� � � � �Xn� �� ��� ��

pf �X�� � � � �Xn� s�Z�� � r�X�� � � � �Xn� Z�� pg�X�� � � � �Xn� s�Z�� ��� ��

r�X�� � � � �Xn� �� � �pg�X�� � � � �Xn� �� ���

r�X�� � � � �Xn� s�Z�� � r�X�� � � � �Xn� Z���pg�X�� � � � �Xn� s�Z�� ���
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Obviously, Pf is an sld-program with cuts. Again, statements 1 and 2 are proven along the same lines as for
composition by taking into account the fact that, if pg occurs in a subgoal of the computation, it is always
ground. Note that r�x�� � � � � xn� z� �MPf if and only if �x�� � � � � xn� k� � dom�g� and g�x�� � � � � xn� k� 	� �
for every k � z, and that the goal r�x�� � � � � xn� Z� subsequently yields all answer substitutions Z�z
(z � �� 	� �� � � � ) with �x�� � � � � xn� k� � dom�g� and g�x�� � � � � xn� k� 	� � for all k � z, which yields the
equivalence of 3b and 3c. To show the equivalence of 3a and 3c, note that P j� r�x�� � � � � xn� z� if and only
if P 	j� pg�x�� � � � � xn� k� �� for all k � z. So P j� pf �x�� � � � � xn� z� if and only if P j� pg�x�� � � � � xn� z� ��
and P 	j� pg�x�� � � � � xn� k� �� for all k � z. Now suppose f�x�� � � � � xn� � z. Then by the induction hy-
pothesis, the above yields that P j� pf �x�� � � � � xn� z�. Now suppose f�x�� � � � � xn� 	� z. We consider three
cases:
(1) g�x�� � � � � xn� z� 	� �. Then P 	j� pf �x�� � � � � xn� z� immediately.
(2) g�x�� � � � � xn� k� � � for some k � z. Again P 	j� pf �x�� � � � � xn� z� immediately.
(3) �x�� � � � � xn� k� 	� dom�g� for some k � z. Then r�x�� � � � � xn� k� occurs as a subgoal of the compu-
tation and, therefore, so does pg�x�� � � � � xn� k� ��. Note that g cannot be one of the basic functions since
they are total. For the same reason, g cannot be defined by using composition and primitive recursion on
the basic functions only. Consequently, at some point in the computation, a subgoal pf��x�� � � � � xn� y� or
pf��x�� � � � � xn� Y � occurs with f��x�� � � � � xn� � �v�g��x�� � � � � xn� y� � �� and �x�� � � � � xn� 	� dom�f��.
There are two subcases to consider:
(i) g�x�� � � � � xn�m� 	� � for all m � N . It is easily seen that in this case Pf� will not terminate on the
subgoal pf��x�� � � � � xn� Y � and will fail on the subgoal pf��x�� � � � � xn� y�.
(ii) �x�� � � � � xn�m� 	� dom�g�� for some m � N . The condition of this case is exactly as in case (3).
Thus, the argument can be repeated. Since every partial recursive function is defined by using minimalization
only finitely often, the conclusion follows by induction. �

Theorem 2.14 shows that sld-programs with cuts are computationally adequate with respect to SLDNF-
resolution as interpreter. It is ongoing work of the authors to investigate the possibilities of developing an
alternative interpreter for sld-programs without cuts, based on SLDNF-resolution, which applies inductive
methods where necessary.

3 Logic Programs and Dynamical Systems

In this part of the paper, we are going to explore in more detail certain remarks we made in [11] which relate
logic programming semantics and dynamical systems. In fact we start by considering, in the context of logic
programming, the use of the Hausdorff metric associated with a given metric and connections between logic
programming semantics and the Vietoris space of BP .

3.1 Vietoris Space of BP

Let �M�� be a metric space. If E�F are subsets of M , see [16], we define the distance between E and
F to be �E�F � � inff�x� y��x � E� y � Fg � �F�E�; in case E has only one point x, say, we
write �x� F � for �fxg� F �, with a similar convention if F has only one point. Next, let F�M� denote the
set of all non-empty closed subsets of M . For A�B � F�M�, define dA�B� � maxf�A� y�� y � Bg �
maxfminf�x� y��x � Ag� y � Bg. Finally, we define the Hausdorff metric d on F�M� determined by 
by setting d�A�B� � maxfdA�B�� dB�A�g.
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For the duration of this subsection, we will suppose that L contains at least one function sym-
bol, so that BP is denumerable. This condition is not essential, but without it the following discussion
becomes rather trivial from the topological viewpoint. With this assumption, we may choose a listing
BP � fA�� A�� A	� � � � g, of BP . Now embed BP into the unit interval ��� 	 by defining i�A�� � � and
i�An� � ��n for n � 	. Thus, BP becomes a compact metric space relative to the metric  defined by
setting �An� Am� � j i�An�� i�Am� j. Let VP denote the subspace of IP consisting of all those elements
of IP which contain A�. Finally, we recall that the Vietoris space of a topological space X is the set of all
non-empty compact subsets of X endowed with the Vietoris (or finite) topology, see [2, 14], and is one of
the standard hyperspaces studied in domain theory. In fact, when X is a metric space, the Vietoris topology
on X coincides with the topology induced by the Hausdorff metric determined by the metric on X .

3.1 Theorem (1) A subset I of BP is closed iff it is finite or contains A�.
(2) The set VP is a closed, and therefore compact, subset of IP relative to the topology Q, and each element
of VP is a non-empty closed subset of BP .
(3) The topology of VP , as a subspace of IP endowed with the topology Q, coincides with that induced by
the Hausdorff metric determined by the metric  on BP . Therefore, VP is a closed subspace of the Vietoris
space of BP .

Proof: The details of (1) are elementary and are omitted. For (2), suppose that In � VP for each n � N and
that In � I in Q. Since A� � In for each n, A� is eventually in In. Therefore, A� � I by the convergence
criterion so that I � VP as required. That each element of VP is a closed subset of BP follows from (1).

To establish (3), consider the identity map j � V�
P � V 	

P , in which V �
P denotes VP endowed with the

subspace topology in Q, and V	
P denotes VP endowed with the Hausdorff metric d determined by . Since

V �
P is compact and V 	

P is Hausdorff, it suffices to show that j is continuous. To do this, suppose that In � VP
for all n � N and that In � I in Q, so that I � V �

P by (2) of the theorem. We need to show that d�In� I� � �
as n�� and hence we need to show that both dIn�I� � � and dI�In�� � as n��.

Consider dIn�I� � maxf�In� y�� y � Ig � maxfminf�x� y��x � Ing� y � Ig. Let � 	 � be given,
and choose n� � N so large that ��n� � �. From the fact that In � I in Q, by the convergence criterion and
by considering the finitely many elements A�� � � � � An� , there is k� � N so large that, for m � 	� � � � � n�,
we have:

if Am � I� then for all n � k�� Am � In (2)

and

if Am 	� I� then for all n � k�� Am 	� In (3)

By Equation (2), we now have that, for n � k�, minf�x� y��x � Ing � � for any y � I �
fA�� � � � � An�g. Hence, for n � k�, we have maxfminf�x� y��x � Ing� y � Ig � maxfminf�x� y��x �
Ing� y � I and y � An��m for some m � 	g. But minf�x� y��x � Ing � �A�� y� � i�y�, since A� � In
for every n. Hence, for n � k�, we have maxfminf�x� y��x � Ing� y � I and y � An��m for some m �
	g � maxfi�y�� y � I and y � An��m for some m � 	g � ���n���� � �. Therefore, as n � �,
dIn�I� � �, as required.

Now consider dI�In� � maxf�x� I��x � Ing � maxfminf�x� y�� y � Ig�x � Ing� Again, with
� 	 � given, and taking the meaning already established for n� and k�, let n � k�. Suppose that x � Am
, that x � In and that m is any one of the values 	� � � � � n�. Then y � x must also belong to I . Otherwise,
if Am 	� I , then by Equation (3) we see that, for all n � k�, we have x 	� In, which is contrary to
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the choice of x � In with n � k�. Hence, again we see that minf�x� y�� y � Ig � � for each x �
Am � In with m � 	� � � � � n� and n � k�. Thus, for n � k�, we have maxfminf�x� y�� y � Ig�x �
Ing � maxfminf�x� y�� y � Ig�x � In and x � An��m for some m � 	g. But minf�x� y�� y � Ig �
�x�A�� � i�x�, since A� � I . Thus, for n � k�, we have maxfminf�x� y�� y � Ig�x � In and x �
An��m for some m � 	g � maxfi�x��x � In and x � An��m for some m � 	g � ���n���� � �.
Therefore, as n��, we have dI�In� � �, as required. �

3.2 Remark In relation to (2) of Theorem 3.1 it is quite possible in general for a sequence In of closed sets
to converge in Q to a non-closed set. For example, the sequence in which In � fA�� � � � � Ang, for each n,
is a sequence of closed sets converging in Q to fA�� A	� A
� � � � g, which is not closed.

Suppose now that P satisfies the condition that it contains at least one unit clause, but is otherwise
arbitrary and, in particular, it is not required that TP be continuous in Q for what follows. This condition
just imposed is quite mild and it implies in particular that TP ��� 	� �. Moreover, it means that we can
arrange matters so that A� � TP �I� for every I � IP . Therefore, VP is an invariant set under TP in the
sense that TP �VP � � VP , and we obtain the following corollary to Theorem 3.1.

3.3 Corollary Suppose that P is any normal logic program which contains at least one unit clause, and that
A� is chosen so that A� � TP �I� for every I � IP . Then, TP � VP � VP . Moreover, since I� � TP �I�
belongs to VP for any I � IP , iterates of I enter and stay within VP . Therefore, any fixed point of TP can
be found within VP . �

In the sense that TP is not usually induced by a point map on BP , we see that TP � VP � VP is an
abstract dynamical system.

3.4 Example The question clearly arises of providing syntactic conditions under which TP is a contraction
mapping relative to the Hausdorff metric. For example, the “natural numbers” program P as follows:

p�o� �

p�s�x�� � p�x�

has the property that TP is such a contraction with the obvious listing of BP . Indeed, TP has contractivity
factor of ���, and we sketch the details of this next.

Let I�� I	 � VP with I� 	� I	. Since I� and I	 contain p�o�, both TP �I�� and TP �I	� contain p�o�
and p�s�o��. Consider dTP �I���TP �I	�� � maxfminf�x� y��x � TP �I��g� y � TP �I	�g. If y is p�o� or
p�s�o��, then x � y � TP �I�� so that �x� y� � � in these cases and thus minf�x� y��x � TP �I��g � �.
So suppose y � p�sk�o�� � TP �I	� with k � �. Then minf�x� y��x � TP �I��g is achieved by some
x � TP �I�� and is either j ��l � ��k j for some l � 	 or is j � � ��k j. Suppose the former case holds.
Then there is x � p�sl�o�� � TP �I�� with l � k. But then p�sl���o�� � I�� p�s

k���o�� � I	 and
minf�x� y��x � TP �I��g � j ��l � ��k j � ��� j ���l��� � ���k��� j � ��� minf�x� y���x � I�g with
y� � p�sk���o�� � I	. The case when minf�x� y��x � TP �I��g � j����k j splits into two subcases each
of which gives equalities of the form just derived, and therefore we see that dTP �I���TP �I	�� � ���dI��I	�.
The same sort of argument shows that dTP �I���TP �I��� � ���dI��I�� and hence that d�TP �I��� TP �I	�� �
���d�I�� I	� as claimed.
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On the other hand, the “even numbers” program:

p�o� �

p�s�x�� � �p�x�

does not have this property. For example, taking I� � fp�o�� p�s	�o��� p�s��o��g and I	 � BP , we find
by direct calculation that d�I�� I	� � ��	 � d�TP �I��� TP �I	��. Thus, TP is not in this case a contraction
relative to the Hausdorff metric.

3.5 Remark Since IP is homeomorphic to the Cantor set, TP �VP � can be thought of as a subset of the
Cantor set and indeed is a compact subset if TP is continuous in Q. In view of the results of [15], which uses
results of Moore to characterize Turing machines as subsets of the Cantor set, one may consider the extent
to which TP �VP � determines P and the rôle, if any, of continuity of TP .

3.2 Iterated Function Systems

We begin with a definition.

3.6 Definition An iterated function system (ifs), fX� f�� � � � � fng, is given by a finite set of continuous
functions fi � X � X , for i � 	� � � � � n, on a complete metric space �X� d�. The ifs is hyperbolic if each of
the fi is a contraction mapping.

Now suppose that P is an arbitrary normal logic program and that P � P�  � � �  Pn is a partition
of P into n sub-programs in which the definition of each predicate symbol is contained in one of the Pi
(the definition of a predicate symbol p is the set of all clauses in P in which the predicate symbol p occurs
in the head). We can then write TP as the union �

Sn
i��TPi� in the sense that for all I � IP we have

TP �I� � �
Sn
i��TPi��I� �

Sn
i��TPi�I�. In this representation, each of the TPi is to be thought of as a

mapping of IP into itself rather than as a mapping of IPi into itself.

3.7 Theorem Suppose that P is partitioned as above. Then the following two statements hold.
(1) TP is continuous in Q at a point I � IP iff each of the TPi is continuous in Q at I .
(2) Suppose that each of the TPi in the representation above is a contraction relative to Fitting’s metric d with
contractivity factor ci � ��ni , say, where d is determined by the �-level mapping l. Then TP is a contraction
relative to d with contractivity factor c � maxfci� i � 	� � � � � ng. Conversely, if TP is a contraction with
factor of contractivity c relative to d, then each of the TPi is a contraction relative to d with contractivity
factor � c.
Note. In fact, the necessity of (1) and the first conclusion of (2) both hold relative to an arbitrary partition of
P , as the proofs given below demonstrate.

Proof: (1) Suppose that each of the TPi is continuous in Q at I , and that Im � I is an arbitrary sequence
converging in Q to I . Since TPi�Im� � TPi�I� for each i, it is an easy consequence of the convergence
criterion that

Sn
i��TPi�Im� �

Sn
i��TPi�I� i.e. that TP �Im� � TP �I�, and so TP is continuous in Q at I .

Conversely, suppose that TP is continuous in Q at I , that Im � I in Q and that k � f	� � � � � ng is fixed but
arbitrary; we show that TPk�Im� � TPk�I� i.e. that TPk is continuous in Q at I .

Suppose that A � TPk�I�. Then A �
Sn
i��TPi�I� and hence A � TP �I�. Since TP �Im� � TP �I�,

we see by the convergence criterion that eventually A belongs to TP �Im� and hence eventually belongs
to
Sn
i��TPi�Im�. By the nature of the partition A 	� TPi�J� for any J and any i 	� k. Therefore, A is
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eventually in TPk�Im�. Now suppose that A 	� TPk�I�. This case divides into two subcases, the first of
which is that A 	�

Sn
i��TPi�I� � TP �I�. Then immediately we have that A eventually not in TP �Im� and

so A eventually not in TPk�Im�. For the second subcase, suppose that A � TP �I�. Thus, A � TPj �I� with
j 	� k. But then immediately A 	� TPk�J� for any J by the nature of the partition. So A eventually not in
TPk�Im�. Therefore, TPk is continuous in Q at I by the convergence criterion, as required.
(2) Put c � maxfci� i � 	� � � � � ng � ��m, say, where m � 	. Let I�� I	 � IP be arbitrary with I� 	� I	,
and suppose d�I�� I	� � ��k. By hypothesis, we have d�TPi�I��� TPi�I	�� � cid�I�� I	�, for i � 	� � � � � n,
and so certainly we have, for each i, that d�TPi�I��� TPi�I	�� � cd�I�� I	� � ��m � ��k � ���m�k�. Thus,
for i � 	� � � � � n, TPi�I�� and TPi�I	� agree on all ground atoms of level � m 
 k. Consider TP �I�� �Sn
i��TPi�I�� and TP �I	� �

Sn
i��TPi�I	�. Suppose that A is an arbitrary ground atom with l�A� � m
 k.

If A � TP �I��, then A � TPj �I��, say. Hence, A � TPj �I	� and therefore A � TP �I	�. Conversely, if
A � TP �I	�, then A � TP �I�� and so TP �I�� and TP �I	� agree on all ground atoms A with l�A� � m
 k.
Therefore

d�TP �I��� TP �I	�� � ���m�k� � cd�I�� I	� (4)

and so TP is a contraction with contractivity factor � maxfci� i � 	� � � � � ng. Since c � cj for some j,
there is an atom A with l�A� � m
 k and a pair I�� I	 � IP such that TPj �I�� and TPj �I	� differ at A. But
then TP �I�� and TP �I	� differ at A, by the conditions on the partition of P , so that c cannot be reduced in
Equation (4). In other words, the contractivity factor equals c, as required.

Conversely, suppose that TP is a contraction with contractivity factor c � ��m. Suppose that I�� I	 � IP
are arbitrary and that d�I�� I	� � ��k. Then d�TP �I��� TP �I	�� � cd�I�� I	� � ���m�k�. Thus, TP �I�� and
TP �I	� agree on all ground atoms of level � m 
 k. Fix i � j � f	� � � � � ng. Suppose that A is an
arbitrary ground atom with l�A� � m 
 k. If A � TPj �I��, then A � TP �I�� and hence A � TP �I	�.
Again, by the conditions on the partition of P , this means that A � TPj �I	�. Since the converse also
holds, we now see that TPj �I�� and TPj �I	� agree on all ground atoms of level � m 
 k. Therefore,
d�TPj �I��� TPj �I	�� � ���m�k� � cd�I�� I	�. It follows that TPj is a contraction with contractivity factor
� c, as required. �

Thus, whenever TP is continuous in Q, fIP �TP� � � � � � TPng is an iterated function system which is in
fact hyperbolic under the conditions of Theorem 3.7 (2).

3.8 Example In the program P :

q�o��

q�s
�x�� � p�x�

p�o��

p�s	�x�� � �p�x�

the definition of q has contractivity factor �
� , and the definition of p has contractivity factor � . Therefore, P

determines a hyperbolic iterated function system with contractivity factor� .

Supposing, finally, that TP is continuous in Q, let F �IP � denote the set of non-empty compact subsets
of IP endowed with the Hausdorff metric dh induced by d, where d is the metric determined by a finite �-
level mapping l. Then, in the standard way, TP induces a map FP � F �IP � � F �IP � defined by FP �A� �
fTP �I�� I � Ag which is a contraction with contractivity factor c if TP is such on IP . Thus, F �IP � is the
space of fractals over IP and FP is induced from the iterated function system fIP �TP� � � � � � TPng.
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3.3 Generalized Iterated Function Systems

In this final section, we show how the results of the previous section can be extended to arbitrary level
mappings l by using the generalized ultrametric dl in place of Fitting’s ultrametric d. We let B denote a
countable set, let D � �B as defined in Section 2.1 and let l � B � � be a level mapping where � 	 � is a
successor ordinal.

3.9 Definition The orbit of I � D under a function f � D � D is defined to be the transfinite sequence
�f��I����� , where f��I� � I , f��I� � f�f����I�� for every successor ordinal � � � and f��I� �
gl��f��I������ for every limit ordinal � � �.

3.10 Proposition With the notation just established, the following statements hold.
(1) �f��I�� converges in Q iff there exists some ordinal �� such that f��I� � f��I� for all �� � � ��.
(2) In the situation of (1), f���I� is a fixed point of f .

Proof: Suppose �f��I�� converges in Q. Then its limit is the set J � fa �
B� a eventually belongs to f��I��g. Let a � B be arbitrary. If a � J , then there is an ordinal �a � � such
that, for all � � �a, we have a � f��I�. If a 	� J , then there is an ordinal �a � � such that, for all � � �a,
we have a 	� f��I�. Set �� � supf�a� �a� a � Bg � �. Then it is easy to see that J � f���I� � f��I� for
all � � ��, from which the necessity of (1) follows and also (2).

Conversely, suppose �� is an ordinal with the property stated in (1), and let J denote the common value
of the f��I� for all � � ��. Then it is immediate that �f��I�� � J in Q. �

3.11 Definition In the situation of Proposition 3.10 (1), we call �D� l� f� a fixed-point triple relative to I .

3.12 Lemma Let f � D � D be strictly contracting with respect to dl. Then the following statements hold.
(1) For every ordinal �, we have dl�f��I�� f����I�� � ���.
(2) Let a � B with l�a� � �. Then either (i) for all � 	 �, we have a � f��I�, or (ii) for all � 	 �, we
have a 	� f��I�.

Proof: (1) We establish the assertion via transfinite induction. We may suppose that f��I� is not a
fixed point of f , for that case is trivial. Also, for � � � the proposition trivially holds. So sup-
pose the proposition holds for all ordinals less than �. If � � � 
 	 is a successor ordinal, we
have dl�f

��I�� f����I�� � dl�f
��I�� f����I�� � ��� . Therefore, dl�f��I�� f����I�� � �������

and hence dl�f
��I�� f����I�� � ��� as required. If � is a limit ordinal, we have to show that

dl�gl��f��I������� f�gl��f��I�������� � ���. By construction of the greatest limit and the induction
hypothesis, we have dl�gl��f��I������� f���I�� � ���� for all �� � �. Hence, for every successor ordinal
�� � �� 
 	 � �, we have dl�f�gl��f��I�������� f���I�� � dl�gl��f��I������� f���I�� � ���� � ���� .
Since dl is an ultrametric, we get dl�gl��f��I������� f�gl��f��I�������� � ���� for all �� � �, which
suffices.
(2) The proof is by transfinite induction on �. We consider the case a � f����I�, and the case a 	� f����I�
is analogous. We have to show that a � f��I� for all � 	 �. Suppose this is true for all � with � � � � ��.
If �� � ��
	 is a successor ordinal, then dl�f���I�� f���I�� � ���� and therefore a � f���I� in this case.
If �� is a limit ordinal, then a � f���I� by definition of greatest limit. �
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3.13 Theorem Let the function f � D � D be strictly contracting with respect to dl. Then �D� l� f� is a
fixed-point triple relative to every I � D.

Proof: By the previous lemma, f��I� converges in Q for every I � D. �

The following corollary is immediate.

3.14 Corollary For every strictly level-decreasing program P , �IP � l� TP � is a fixed-point triple relative to
every I � IP .

For an injective level mapping, D can be identified with the space of all transfinite sequences �a����� ,
where a� � � for every � and � denotes the set f�� 	g.

3.15 Proposition For every strictly level-decreasing program P there exists an injective level mapping.

Proof: The construction from Defintion 2.1 easily adapts and we omit the details. �

The following result gives a straightforward generalization of Theorem 3.7 (2).

3.16 Theorem Let P be an arbitrary normal logic program, let l � BP � � be a level mapping and let
P �

S
	�K P	 be a partition of P into subprograms. Then the following statements hold.

(1) If every TP� is strictly contracting with respect to dl, then TP is strictly contracting with respect to dl.
(2) If the partition of P has the property that the definition of each predicate symbol is contained in one of
the P	, then the converse of (1) holds.
(3) In the situation of (1) or (2), �IP � l� TP � is a fixed-point triple relative to every I � IP .

Proof: (1) Let I�� I	 � IP with dl�I�� I	� � ���, say. We have to show that TP �I�� and TP �I	� agree on
all ground atoms with level � �. Let A � BP with l�A� � �. If A � TP �I��, then A � TP��I��, say. By
the hypothesis on TP� we have A � TP��I�� and therefore A � TP �I��. Conversely, if A � TP �I	�, then
A � TP �I�� and so TP �I�� and TP �I	� agree on all ground atoms A with l�A� � �.
(2) Let I�� I	 � IP with dl�I�� I	� � ���. Then TP �I�� and TP �I	� agree on all ground atoms of level � �.
Let A � BP with l�A� � �. If A � TP��I��, then A � TP �I�� and hence A � TP �I	�. By the hypothesis
concerning the partition we get A � TP��I	�. Since the converse also holds, we now see that TP��I�� and
TP��I	� agree on all ground atoms of level � �, which suffices.
(3) This follows immediately from Theorem 3.13. �

Conclusions
We have shown that the class of strictly level-decreasing logic programs is of special interest amongst

all logic programs in that it has several rather pleasing properties, as follows. First, each program in this
class has a unique supported model and therefore there is no argument about which model is “best” since all
the standard models (perfect model, weakly perfect model, stable model etc.) coincide. Second, this class is
computationally adequate in that there is a rather simple interpreter relative to which it can compute all the
partial recursive functions. Finally, we have shown that there are interesting aspects of this class of programs
which relate it to ideas of current interest in dynamical systems. Such ideas are actively being pursued in the
context of domain theory and in real number computation by Edalat in [2] and in more recent work of his.
The full extent of the connections between logic programming and these other areas just mentioned remains
to be determined, and is actively under investigation by the present authors.
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