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Abstract

We consider the problem of �nding models for logic programs P via �xed
points of immediate consequence operators� TP � Certain extensions of syntax
invalidate the classical approach� adopted in the case of de�nite programs� using
iterates of TP and the Knaster�Tarski theorem� We discuss alternatives to the
use of this theorem based on elementary notions from topological dynamics� This
leads us to consider simple syntactic conditions on P � employing level mappings
taking values in a countable ordinal �� which ensure convergence �to models and
�xed points� of the requisite sequences of iterates� We obtain� as a result� a
constructive approach to the perfect model semantics of Przymusinski for locally
strati�ed programs� somewhat along the lines of the approach adopted by Apt�
Blair and Walker for strati�ed programs� In particular� when certain inequalities
are sharp� we show the existence of unique supported models� which improves
Przymusinski�s results for perfect models� This result is obtained by viewing
a Scott domain as a generalized ultrametric space� and applying a �xed�point
theorem due to Priess�Crampe and Ribenboim� When � happens to be �� these
results extend Fitting�s treatment by metric methods of certain non�strati�ed
programs discussed by Apt and Pedreschi in termination problems�
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� Introduction

Computational logic is concerned with the use of logic as a programming language� and
broadly consists of the following three components� �� A syntax� or knowledge repre�
sentation language� together with a theorem prover or interpreter� In this paradigm�
program statements are viewed as axioms� and computation is viewed as deduction
from the axioms via the theorem prover� �� A distinguished minimal model M a se�
mantics� the purpose of which is to provide any program with its �intended meaning��
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�� An operator T with the property that M is a �xed point of T perhaps the least
�xed point or a minimal �xed point of T �� Furthermore� one expects ��� �� and ��
to be connected by a result expressing� on the one hand� completeness and soundness
of the theorem prover and� on the other hand� expressing� in terms of T � some form of
tractability in relation to the process of determiningM �

The classic example of this is provided by de�nite or positive logic programs� In this
case� the syntax is simply the Horn�clause subset of �rst order predicate logic together
with SLD�resolution as the theorem prover� Thus� a de�nite program P consists of
�nitely many clauses of the form A� A�� � � � � An in which A and all the Ai are atoms�
and n � �� the case n � � is an abuse of notation indicating an empty antecedent or
body i�e� a unit clause or fact A �� Here� M is the least Herbrand model MP � T
is the immediate consequence operator TP � and the requisite connection between the
components is established by the following well�known theorem of Apt� Kowalski and
van Emden� see ����� in which lfpTP � denotes the least �xed point of TP �

Theorem ��� For any de�nite program P � we have MP � lfpTP � � TP � ��� �
fA � BP �P j� Ag � fA � BP �P � Ag�

It is worth drawing attention to the fact that the proof of this theorem depends
on the lattice�continuity� and hence monotonicity� of TP and on an application of the
Knaster�Tarski theorem the �xed�point theorem for complete partial orders��

Despite the rather restricted syntax� it turns out that any partial recursive com�
putable� function can be computed by some de�nite program P � so that the class of
de�nite programs is computationally adequate� Nevertheless� there is a lot of current
interest in the question of making de�nite programs more expressive and more �exible
for programming purposes� and also in the question of modelling uncertain and non�
monotonic reasoning etc� Such questions involve many technicalities� but in essence
can be categorized under the following broad headings� i� The extension of the syn�
tax of de�nite programs� ii� The enlargement of the set of truth values one uses to
include� say� three� four� many or even in�nitely�many truth values� iii� Changing the
underlying logic to permit non�classical logics�

In this paper� the extension of syntax we undertake is to include negated atoms in the
bodies of clauses� so that we consider normal logic programs i�e� programs which consist
of �nitely many clauses of the form A� A�� � � � � Ak���B�� � � � ��Bl�� In such a clause�
the symbols A� all the Ai and all the Bj are atoms� k�� l� � � and the commas stand for
conjunction i�e� A�� � � � � Ak���B�� � � � ��Bl� denotes A� � 	 	 	 � Ak� � �B� � 	 	 	 � �Bl��
Moreover� the symbol ��� denotes the logical connective of material implication� It
is worth noting that this change to the syntax does indeed give a considerable gain
in expressiveness� and this point is discussed in ���� As far as issues ii� and iii� are
concerned� we make no change and therefore we con�ne ourselves in this paper to just
the two truth values true and false� and deal only with classical �rst order logic�

Even such a simple change as that we have just made to the syntax leads to the
following problem�

Problem ��� �� The operator TP is no longer monotonic and therefore the Knaster�
Tarski theorem is no longer applicable� yet it remains a central problem to �nd pre��xed
points and �xed points of TP �
�� Some form of Theorem ��� should still apply in the new context�
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One way round the �rst of these problems is to de�ne powers of the operator TP
in such a way as to recover monotonicity� this is the way adopted in ��� and it will be
further discussed in this paper in x�� An alternative approach is to consider the extent
to which the methods of Topology and Analysis can be used as a substitute for the
Knaster�Tarski theorem� Indeed� work already undertaken in this direction includes the
use of lattice topologies ��� ��� the use of metrics and the Banach contraction mapping
theorem �	�� see also ���� the use of metrics for multi�valued mappings in the case of
disjunctive logic programs ����� the use of the Rutten�Smyth �xed�point theorem for
non�expansive operators on quasi�metric spaces �����

The present paper is concerned with this alternative approach� and our main ob�
jective is to explore the use of elementary ideas from topological dynamics within the
model theory of logic programs P � Thus� we concentrate on the issue �� raised in
Problem ��� and� for reasons which will become clear shortly� do not address �� at all�
In other words� we do not investigate the question of the existence of interpreters and
their completeness and soundness in relation to model theory� Indeed� our speci�c aim
is to use ideas connected with convergence of sequences of iterates to �nd models and
supported models M for P � In fact� the former correspond to pre��xed points of TP
interpretations M satisfying TP M� 
 M�� and the latter correspond to �xed points
of TP M is supported if it satis�es TP M� �M � see ����� and our thinking is based on
the following simple observation�

Observation ��� Suppose P is a normal logic program and I is an interpretation for
P � If the sequence of iterates T n

P I��n�N of I converges in the Cantor topology Q see
x�� to some M it need not so converge�� then M is a model for P but not necessarily
a supported model� If� further� TP is continuous in the Cantor topology it need not
be�� then M is a supported model or �xed point of TP �

Note ��� A similar fact holds for de�nite logic programs in relation to the Scott topol�
ogy� Suppose P is a de�nite program and I an interpretation for P � Then the greatest
limitM in the Scott topology of the sequence T n

P I��n�N of iterates of I is a model for
P � If� further� the sequence of iterates is monotone increasing it need not be if I �� ���
then M is a �xed point of TP � The proof of this follows from ���� Theorem �� and ����
Lemma �� and employs the fact that TP is always Scott continuous for any de�nite P �
Indeed� taking I as � permits one to recover the classical �xed�point theory for de�nite
programs P � but this will not be discussed further here�

Observation ��� will be proved in x�� but for the moment we note that it raises the
following question�

Question ��� �� Can one provide conditions necessary� su�cient or both necessary
and su�cient� for the convergence of sequences T n

P I��n�N of iterates in the Cantor
topology in terms of the syntax of P � In particular� can one do this when I is ��
�� How general is Observation ��� as a means of �nding pre��xed points and �xed
points of TP �

In this paper� we propose to consider this question and to formulate answers to it
in terms of level mappings l and inequalities between the values lA� and lAi�� lBj�
in each ground instance A � A�� � � � � Ak���B�� � � � ��Bl� of every clause in a normal
logic program P � where l takes values in an arbitrary countable ordinal �� Thus� in x�
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we establish preliminaries and notation and formulate our main de�nition� Brie�y� P
is called �� level�decreasing� respectively� �� strictly level�decreasing� respectively� ��
semi�strictly level�decreasing if one has� respectively� the following inequalities holding
for all i� j� �� lA� � lAi�� lBj�� �� lA� � lAi�� lBj�� �� lA� � lAi�� lA� � lBj��
In fact� see x� below� the class of programs de�ned by �� coincides exactly with the
class of locally strati�ed programs de�ned by Przymusinski in ���� and in others of his
many papers� see in particular ���� �	�� However� the terminology we adopt is more
suited to our purposes since we intend to distinguish between the conditions �� and
�� quite carefully� and the term �locally strati�ed� does not do this� As a matter
of fact� the class of programs de�ned by Condition �� is too general and will not be
considered here in detail for the same reasons that it is not considered in ����� see x��
Przymusinski ���� �	� has discussed the existence of suitable interpreters for locally
strati�ed programs and related them to model theory� For this reason� as already men�
tioned� we do not consider procedural semantics at all� Indeed� our results are entirely
model�theoretic and may be summarized as follows� In x� we examine the class de�ned
by Condition ��� It turns out that in this case TP is strictly contracting in the sense of
Priess�Crampe and Ribenboim ���� �
� relative to a generalized ultrametric we de�ne in
terms of l� and which necessitates thinking of a Scott domain as a spherically complete
generalized ultrametric space� We show� on using the �xed�point theorem of ���� �
��
that in this case P has a unique supported model which coincides with the perfect
model of ����� This improves the results of Przymusinski to the extent that he showed
uniqueness only of the perfect models� In particular� if l takes values in �� then TP is
a contraction mapping relative to the ultrametric introduced by Fitting in �	�� We fur�
ther explore this class in x�� brie�y relating it to ideas of current interest in dynamical
systems and computing being developed by Edalat in ��� and by us in more detail in
����� Nevertheless� though of interest� the case � � � is too restrictive and it is essential
to consider arbitrary countable ordinals � for two reasons� First� doing this allows us
to include arbitrary locally strati�ed programs within our framework� Second� one can
show then that the class of strictly level�decreasing programs can compute all partial
recursive functions� see ����� which is not the case if one is con�ned to ��valued level
mappings� some examples of programs which are strictly level�decreasing with respect
to level mappings taking values in ordinals greater than � are given in Example �����
Finally� in x�� we examine semi�strictly level�decreasing programs in depth� In this
analysis we recover the perfect model semantics of ����� However� what is new here
is that our approach is very simple and constructive� see Construction ���� and our
methods are rather di�erent from those employed in ����� Moreover� we establish recur�
sion equations� see Corollary ���� which show very precisely how the iterates involved
in the construction evolve� Finally� we note that another simpli�cation obtained by
this approach is that we work only with the ordinary iterates of TP rather than with
more complicated concepts such as the powers introduced in ��� and de�ned in x� for
convenience�

It is worth emphasizing the fact that the class of locally strati�ed programs forms
a considerably larger class of programs than the strati�ed programs� containing� as it
does� programs such as the �even numbers� program� see Example ����� and others
considered by Fitting in �	� which are not strati�ed� Even the partial answer we give
to Question ��
 in this paper shows� therefore� that the ideas it embodies are a very
general means indeed of �nding models and supported models for logic programs�
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� Preliminaries and Notation

It will be convenient �rst to establish some preliminary concepts and de�nitions which
will be used throughout the paper� Our notation is standard and follows ����� In�
deed� all unde�ned concepts relating to logic programming can be found in ����� Thus�
throughout the paper� P will denote an arbitrary normal logic program as de�ned in the
Introduction� whose underlying �rst order language will be denoted by L� We denote by
BP the Herbrand base of P i�e� the set of all ground or variable�free atoms in L� In fact�
we shall usually suppose that L contains at least one function symbol of positive arity�
so that BP will usually be an in�nite set� This assumption is not necessary� but without
it topological considerations become rather trivial� Needless to say� all the results we es�
tablish apply in full generality whether or not L contains such a function symbol� Next�
we let IP denote the set of all Herbrand interpretations for P � as usual each Herbrand
interpretation will be identi�ed in a natural way with a subset of BP � so that IP is the
power set PBP � of BP � We use the notation groundP � to denote the set of all ground
instances of clauses in P i�e� the set of all instances A � A�� � � � � Ak���B�� � � � ��Bl�

of each clause in P in which A�Ai� Bj belong to BP or� equivalently� contain no vari�
able symbols� see ���� As already noted� one of the most important concepts in the
subject is that of the immediate consequence operator TP � IP  IP � This we de�
�ne next by� TP I� � fA � BP � there is a clause A � A�� � � � � Ak���B�� � � � ��Bl� �
groundP � such that I j� A� � 	 	 	 � Ak� � �B� � 	 	 	 � �Bl�g� Notice that in classical
two�valued logic� the statement I j� A� � 	 	 	 � Ak� � �B� � 	 	 	 � �Bl� is equivalent to
the statement �A�� � � � � Ak� � I and B�� � � � � Bl� �� I��

Finally� we let l denote a level mapping so that l is simply a mapping l � BP  ��
where � denotes an arbitrary countable ordinal� In fact� � will be regarded as the set
of all ordinals n such that n � � i�e� the set of ordinals n such that n � �� As usual�
if n � m � � is the successor of m� then we write m � n � � for the predecessor m of
n� We call l an ��level mapping in case � � �� and also use the notation N for the set
of natural numbers including zero�� We let Ln � fA � BP � lA� � ng� for n � �� and
put L� � �� If A � BP and lA� � n� we say that the level of A is n� We call an ��level
mapping l �nite if Ln is �nite for each n � N � Without loss of generality� we suppose
always that the smallest value taken by l is zero�

Note that IP can be naturally identi�ed with �BP � where � denotes the set f�� �g�
It can� therefore� be endowed with two well�known and important topologies� First�
endow � with the Scott topology� Then� as is well�known� the product topology on
IP coincides with the Scott topology on IP � viewed as a complete lattice� and it is
this fact that underpins the observation made in Note ���� Second� endow � with the
discrete topology� Then the product topology in this case makes IP homeomorphic to
the Cantor set� We shall denote this topology on IP by Q and refer to it as the Cantor
topology on IP � Further details of these facts can be found in �����

There is a simple criterion for convergence of sequences in Q� Again� this can be






found in ����� but we include it here for completeness and in a slightly more compre�
hensive form� see ���� Proposition ��� Typically� we denote sequences in IP by In�n�N
or by In��

Proposition ��� A sequence In� in IP is convergent i� for every A � BP either A

eventually belongs to In or A eventually does not belong to In �meaning that for all large
enough n� A � In respectively A �� In	� If In� is convergent� then its limit I is the set
fA � BP �A eventually belongs to Ing�

Using this proposition we can prove Observation ����
Proof of Observation ���� Let In denote T n

P I� and suppose that In� converges in Q

to M � For the �rst part� we must show that TP M� 
 M � Let A � TP M�� Then by
de�nition of TP � there is a clause A � A�� � � � � Ak���B�� � � � ��Bl� � groundP � such
that� for all i� j� we have Ai � M and Bj �� M � Since In� converges to M in Q� there
is� by Proposition ��� applied k� � l�� times� an n� � N such that� for all n � n� and
for all i� j� we have Ai � In and Bj �� In� From this and the de�nition of TP it follows
that A � In for all n � n� � � and in turn it now follows from Proposition ��� again
that A �M �

Next� if TP is continuous in Q� then a simple argument using the uniqueness of
limits in Q� which is Hausdor�� shows that TP M� �M as required�

Finally� taking P to be the following program�

ro� �

po�� �ro�

psx��� px�

qo�� px�

and taking I � � we �nd that In� converges in Q to M � fro�� qo�g� yet TP M� �
fro�g so that M is not supported�

Of course� in the example just considered� TP is not continuous in Q� Indeed�
necessary and su�cient syntactic conditions for continuity of TP were established in
����� However� we will not make much use of continuity of TP in this work� except
in certain of the examples we discuss� and it will be enough to note that a su�cient
condition for continuity is for P to contain no local variables� see ���� Corollary �� a
variable symbol� y is local if it occurs in the body of a clause but not in the head� For
example� y is a local variable in the clause px�� py���

Level mappings as de�ned above have been used in a number of places in the liter�
ature on Logic Programming� where they have usually taken values in �� For example�
they have appeared in the study of termination problems� see ��� 
�� in completeness
problems� and in �	� to de�ne metrics� We are now in a position to use them to formulate
the main de�nition which we propose to consider in response to Question ��
� and it will
become apparent as we proceed that this paper builds on the work of ��� 	� ��� ��� �	��

De�nition ��� Let P be a normal logic program� let l � BP  � be a level mapping
and let A� A�� � � � � Ak� ��B�� � � � ��Bl� denote a typical clause in groundP �� We call
P �
�� Level�decreasing �with respect to l	 if the inequalities lA� � lAi�� lBj� hold for all
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i and j in each clause in groundP ��
�� Strictly level�decreasing �with respect to l	 if the inequalities lA� � lAi�� lBj� hold
for all i and j in each clause in groundP ��
�� Semi�strictly level�decreasing �with respect to l	 if the inequalities lA� � lAi� and
lA� � lBj� hold for all i and j in each clause in groundP ��

As noted earlier in the Introduction� semi�strictly level�decreasing programs coincide
exactly with the locally strati�ed programs de�ned in ����� Indeed� if l � BP  � is
a level mapping and we set Hn � l��n� for each ordinal n � �� then in this way we
set up a one�to�one correspondence between level mappings l and local strati�cations
fHn�n � �g� Of course� Class �� is a strict subclass and Class �� a strict superclass
of the locally strati�ed programs� In fact� this latter class of programs� Class ��� can
be disposed of immediately as being too general� and it will not be considered further�
For example� it contains the program�

po��

pso�� �

px�� �px�

and in this case TP has no �xed points at all� Since TP is continuous here� it follows
from Observation ��� that the sequence T n

P I�� can never converge in Q for any I� It
was precisely in order to limit �recursion through negation� that strati�ed programs
were introduced by Apt� Blair and Walker� see ��� and Van Gelder ����� and extended to
locally strati�ed programs by Przymusinski in ����� and why the condition lA� � lBj�
is imposed in �� and �� of De�nition ����

� Strictly Level�Decreasing Logic Programs

The topology Q is of course metrizable� and indeed the following ultrametric d generates
Q whenever we choose a �nite level mapping l � BP  � see ������ if I� � I�� put
dI�� I�� � �� otherwise� put dI�� I�� � ��n� where I� and I� di�er on some A � BP

such that lA� � n� but agree on all atoms of lower level� This metric was introduced
by Fitting in �	� where three problematic programs were discussed the �even numbers�
program� a �game� program and also a �transitive closures of graphs� program�� In
each case� it was shown that TP is a contraction mapping and hence� by applying
the Banach contraction mapping theorem� that each program has a unique supported
model� Fitting also discussed a class of programs called �acceptable� by Apt and
Pedreschi and encountered in discussions of termination problems in logic programming�
see ��� 
�� Indeed� the de�nition of a strictly level�decreasing program relative to an
��level mapping is implicit in Fitting!s discussion of acceptable programs� although
not explicitly given by him in �	�� Notice that the programs just mentioned are not
strati�ed so that the methods of ��� are not applicable to them� It was precisely for
this reason that Fitting introduced the metric d and applied the Banach contraction
mapping theorem to discuss their semantics�

It turns out� see Theorem ���� that if P is strictly level�decreasing with respect to an
��level mapping l� then TP is a contraction mapping relative to the metric d determined
by l� and hence that the Banach contraction mapping theoremmay be applied to obtain
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a unique supported model for P � In fact� the main objective of this section of the paper�
x�� is to establish a completely general version� Theorem ��	� of Theorem ���� This result
e�ectively disposes of the class of strictly level�decreasing programs and improves on
the results of ����� as already noted in the Introduction� in that we show uniqueness
of supported models and not just of perfect models it emerges that perfect models
are supported in fact�� To obtain these results we make use of the �xed�point theorem
of Priess�Crampe and Ribenboim ���� �
� in place of the Banach contraction mapping
theorem which is not directly applicable in this case�� This necessitates showing that
every domain can be turned into a generalized ultrametric space which is spherically
complete in the sense of ���� �
�� and the next few results are devoted to establishing
the details of these facts�

De�nition ��� See ���� �
�� Let X be a set and let " be a partially ordered set with
least element �� We call the pair X� d� a generalized ultrametric space if d � X�X  "
is a function satisfying the following conditions for all x� y� z � X and � � "�
�� dx� y� � � if and only if x � y�
�� dx� y� � dy� x��
�� If dx� y� � � and dy� z� � �� then dx� z� � ��

For � �� � � " and x � X� the set B�x� � fy � X� dx� y� � �g is called a ��
ball or just a ball in X� A generalized ultrametric space is called spherically complete
if� for any chain C of balls in X i�e� for any set of balls which is totally ordered by
inclusion�� we have

T
C �� �� A function f � X  X is called strictly contracting if

dfx�� fy�� � dx� y� for all x� y � X with x �� y�

The following theorem was given in ���� and in more general form in ��
��

Theorem ��� Let X� d� be a spherically complete generalized ultrametric space and
let f � X  X be strictly contracting� Then f has a unique �xed point�

In order to apply this theorem� we intend to show �rst that every Scott domain can
be made into a spherically complete generalized ultrametric space�

Let D�v� denote a Scott domain with set DC of compact elements� see ���� for
terms and notation� For a countable ordinal �� let "� be the set f����� � �g of
symbols ��� with ordering ��� � ��� if and only if 	 � ��

De�nition ��� Let r � DC  � be a function� called a rank function� and denote ���

by �� De�ne dr � D �D "��� by

drx� y� � inff���� c v x if and only if c v y for every c � DC with rc� � �g�

Then D� dr� is called the generalized ultrametric space induced by r�

Notice that the de�nition just made is closely related to ���� Example 
� which in
turn was employed in �����

It is straightforward to verify that D� dr� is indeed a generalized ultrametric space�
and we proceed to show next that D� dr� is spherically complete� It will be necessary
to impose one standing condition on the rank function r namely that� for each x � D

and for each ordinal � � �� the set fc � approxx�� rc� � �g is directed whenever it
is non�empty� In what follows it will simplify matters to denote the ball B���x� by
B�x��

	



Lemma ��� Let B�x� 
 B�y�� Then the following statements hold�
�
	 fc � approxx�� rc� � 	g � fc � approxy�� rc� � 	g�
��	 B� � supfc � approxx�� rc� � �g and B� � supfc � approxy�� rc� � 	g both
exist�
��	 B� v B��

Proof� Since x � B�x�� we have x � B�y� and hence drx� y� � ��� � Therefore� the
�rst statement follows immediately from the de�nition of dr�

Since the set fc � approxx�� rc� � 	g is bounded by x� for any x and 	� the second
statement follows from the consistent completeness of D�

For the third statement� suppose �rst that B�x� � B�y�� Then we immedi�
ately have 	 � � by ���� ����� since "� is totally ordered� Therefore� B� � supfc �
approxy�� rc� � 	g � supfc � approxx�� rc� � 	g v supfc � approxx�� rc� �

�g � B�� and so B� v B� as required� Now suppose that B�x� � B�y� � B� say� If
� � 	� then it is immediate that B� � B�� So suppose �nally that � �� 	 and suppose
in fact that � � 	� so that B� v B�� with a similar argument if it is the case that 	 � ��
We intend to show again that B� � B�� for which it su�ces to obtain drB�� B�� � ��
By de�nition of dr� B� and B�� we see that B� and B� are both elements of the ball
B in question� Suppose that drB�� B�� �� �� Then there is a compact element c� such
that the statement �c� v B� i� c� v B�� is false� Since B� v B�� it must be the case
that c� �v B� and c� v B�� By ���� ����� any point of a ball is its centre� and so
we can take y to be B� in the equation established in Part ��� We therefore obtain
B� � supfc � approxB��� rc� � 	g� If fc � approxB��� rc� � 	g is empty� then
B� and B� are both equal to the bottom element of D and we are done� so suppose
fc � approxB��� rc� � 	g �� �� Since c� v B�� there is� by the condition imposed on
r� a compact element c� with rc�� � 	 such that c� v c� v B�� But then c� �v B�

otherwise we would have c� v c� and c� v B� leading to the contradiction c� v B�� But
now we have a compact element c� with rc�� � 	 and for which c� �v B� and c� v B��
and this contradicts the fact that drB�� B�� � ���� Hence� B� � B� as required�

Theorem ��� Under the standing condition on r� D� dr� is spherically complete�

Proof� By the previous lemma� every chain B�x��� of balls in D gives rise to a chain
B�� in D in reverse order� Let B � supB�� Now let B�x�� be an arbitrary ball in the
chain� It su�ces to show that B � B�x��� Since B� � B�x��� we have drB�� x�� �
���� But dr is a generalized ultrametric and so it su�ces to show that drB�B�� � ����
For every compact element c v B�� we have c v B by construction of B� Now let c v B

with c � DC and rc� � �� We have to show that c v B�� Since c is compact and
c v B� there exists B� in the chain with c v B�� If B�x�� 
 B�x��� then B� v B� by
Lemma ��� and therefore c v B�� If B�x�� � B�x��� then � � 	� and since c v B��
c is an element of the set fc � approxx��� rc� � �g � fc � approxx��� rc� � �g�
Since B� is the supremum of the latter set� we have c v B� as required�

To apply these results to logic programming� we regard IP as a domain� under set
inclusion� whose set of compact elements is the set IC of all �nite subsets of BP � see
���� for related results� We note also that in the special case of the domain IP � results
similar to Theorem ��
 were obtained in ��
��

De�nition ��	 Let P be a normal logic program and let l � BP  � be a levelmapping�
We de�ne the rank function rl induced by l by setting rlI� � maxflA��A � Ig for
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every I � IC� with I non�empty� and taking rl�� � �� The generalized ultrametric
obtained from a rank function in this way will be denoted by dl�

Notice that the condition imposed on r is trivially satis�ed by rl� and the following
proposition will make it easier to calculate distances which depend on rl�

Proposition ��
 Let P be a normal logic program� let l � BP  � be a level mapping
for P and let I� J � IP � Then dlI� J� � inff���� I � L� � J � L�g�

Proof� Immediate by the observation that� for every I � IP � I � supffAg�A � Ig�

Our main result in this section is the following theorem�

Theorem ��� Let P be a normal logic program which is strictly level�decreasing with
respect to a level mapping l � BP  �� Then TP is strictly contracting with respect to
the generalized ultrametric dl induced by l� Therefore� TP has a unique �xed point and
hence P has a unique supported model�

Proof� Let I�� I� � IP and suppose that dlI�� I�� � ����
Case �� � � ��
Let A � TP I�� with lA� � �� Since P is strictly level�decreasing� A must be the head
of a unit clause in groundP �� From this it follows that A � TP I�� also� By the same
argument� if A � TP I�� with lA� � �� then A � TP I��� Therefore� TP I�� � L� �
TP I�� � L�� and hence we have

dlTP I��� TP I��� � ��� � ��� � dlI�� I��

as required�
Case �� � � ��
In this case� I� and I� di�er on some element of BP with level �� but agree on all
ground atoms of lower level� Let A � TP I�� with lA� � �� Then there is a clause
A � A�� � � � � Ak� ��B�� � � � ��Bl� in groundP �� where k�� l� � �� such that for all k� j
we have Ak � I� and Bj �� I�� Since P is strictly level�decreasing and I��L� � I��L��
it follows that for all k� j we have Ak � I� and Bj �� I�� Therefore� A � TP I��� By
the same argument� if A � TP I�� with lA� � �� then A � TP I��� Hence we have
TP I�� � L��� � TP I�� � L���� and it follows that

dlTP I��� TP I��� � ������� � ��� � dlI�� I��

as required�
Thus� TP is strictly contracting� Therefore� by Theorem ���� TP has a unique �xed

point and therefore P has a unique supported model as claimed�

It is worth noting that the proof of Theorem ���� as given in ���� �
�� is not construc�
tive and does not provide the means of actually �nding the �xed point� By contrast�
the results of x� and of Corollary ���� in particular� give constructions for the �xed
point obtained by Theorem ��	�

In the case that l is an ��level mapping� the argument given in the proof of The�
orem ��	 can be given in exactly the same form with respect to the ultrametric d in�
troduced by Fitting and de�ned earlier� In this case� the Banach contraction mapping
theorem is su�cient to obtain the �xed point which results� and we have the following
theorem�
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Theorem ��� Suppose P is strictly level�decreasing with respect to an ��level mapping
l� Then TP is a contraction with respect to the ultrametric d with contractivity factor�

� �
�� Therefore� TP has a unique �xed point and hence P has a unique supported model�

Staying with ��level mappings for a moment� Fitting noted in �	� that when the
Banach contraction mapping theorem applies� the �xed point it produces is obtained
by considering iterates T n

P I� for any I � IP � and that the sequence of iterates must
close o� by the �rst in�nite ordinal so that one does not need to enter the trans�nite
in this case�� In particular� with I � � we see that limT n

P �� is a supported model�
Moreover� Fitting noted that all the standard semantics for P e�g� perfect model�
stable model etc�� must coincide when TP has a unique �xed point� Therefore� we have
more generally the following corollary of Theorem ��	 and Theorem ����

Corollary ��� Suppose that P is strictly level�decreasing with respect to an arbitrary
level mapping l � BP  �� Then all semantics for P coincide with the perfect model
semantics of 
�� which is the unique minimal supported model for P �

Example ���� �� Take P to be the following program�

qo�� �px���psx��

po��

psx��� �px�

and de�ne l � BP  � � � by lpsno��� � n and lqsno��� � � for all n � N � Then
P is strictly level�decreasing and the unique supported model given by Theorem ��	 is
the set fps�no���n � Ng�
�� This time take P to be as follows�

po� o� �

psy�� o�� �py� x���py� sx��

py� sx��� �py� x�

and de�ne l � BP  �� by lpsko�� sjo��� � �k � j� where �k denotes the kth limit
ordinal� Then P is strictly level�decreasing and its unique supported model is the set
fpo� s�no���n � Ng � fpsn��o�� s�k��o��� k� n � Ng�

Example ���� Take P to be the �even numbers� program�

po��

psx��� �px�

with the ��level mapping l de�ned by lpsno��� � n� Then Theorem ��� applies to this
program with contractivity factor �

�� and produces the set fpo�� ps�o��� ps�o��� � � �g
of even numbers as the unique �xed point of TP �

�This terminology is that of M� Barnsley� �Fractals Everywhere� Academic Press� Inc�� San Diego�

�����
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Example ���� Consider the following program P �

pso�� � �qo�

px�� rx�

rx�� px�

qo��

The set fqo�� psno��� rsno��g is a �xed point of TP for every n� Therefore� TP can
never satisfy the hypothesis of Theorem ��	� In fact� this program is semi�strictly level�
decreasing� but is never strictly level�decreasing for any level mapping because of the
cycle created by the second and third clauses� Such a cycle would be prohibited in
a strictly level�decreasing program� and this example shows that a semi�strictly level�
decreasing program need not have a contractive immediate consequence operator�

Question ���� To what extent is the converse of Theorem ��	 true� An answer to this
question would set limits to the applicability of generalized ultrametrics determined by
level mappings�

In fact� the strict converse of Theorem ��	 is false� as shown by the following example�

Example ���� Take P as follows�
px��

px�� psx��

qo��

qsx��� qx�

In this case� TP is a contraction with contractivity factor �
�
when we take l to be the

��level mapping� lpsno��� � lqsno��� � n for all n � N � But because of the second
clause� P is never strictly level�decreasing with respect to any level mapping� However�
removing the second clause to obtain a program P � changes nothing i�e� TP � TP � so
that P and P � are subsumption equivalent as de�ned by Michael Maher in ����� Thus�
the previous question is modulo equivalences of this sort�

The results just discussed suggest connections between computational logic and
dynamical systems� and we propose to brie�y consider three of these next� This material
is being included here in x�� but it is not assumed in what follows that P is necessarily
strictly level�decreasing with respect to any level mapping�

First� let us �x a listing BP � fA�� A�� A�� � � �g of BP and use it to determine the ��
levelmapping l for the present� so that lAn� � n for all n� Setting �Ai � �i � � � f�� �g
for all i� allows us to make the further identi�cation of IP with

Q�
i���i in which I � IP

corresponds to the sequence � � ��� ��� ��� � � ��� where �i � � if Ai � I and equals �
otherwise� Fitting!s metric now coincides with one often used in symbolic dynamics�
d�� 	� � � if � � 	� otherwise d�� 	� � ��n� where n � � is the smallest integer
such that �n �� 	n and where of course � � ��� ��� ��� � � �� and 	 � 	�� 	�� 	�� � � �� are
elements of

Q�
i���i� Furthermore� under this identi�cation� TP is conjugate to a sort of

shift operator SP on
Q�
i���i�
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Example ���	 As an example of the foregoing comments� the program P��

px�� psx��

corresponds to the shift a�� a�� a�� � � �� � a�� a�� a	� � � �� and therefore models chaotic
behaviour to the same extent that this shift does this notice that TP� and equivalently
SP� has periodic points of every period�� The program P��

psx��� px�

corresponds to the shift a�� a�� a�� � � �� � �� a�� a�� � � ��� The program P	�

po��

psx��� px�

corresponds to the shift a�� a�� a�� � � �� � �� a�� a�� a�� � � ��� And the program P� of
Example �����

po��

psx��� �px�

corresponds to the mapping a�� a�� a�� � � �� � �� �� a�� �� a�� �� a�� � � ���

For our second observation� we impose the mild condition that P contains at least
one unit clause� It follows then that TP �� �� �� and that we can choose the listing
mentioned in the previous paragraph to satisfy the additional condition that A� � TP I�
for every I � IP � Note that P is otherwise arbitrary and� in particular� we do not impose
the condition on P that TP be continuous in Q for what follows� Embed BP into the
unit interval ��� �� by de�ning iA�� � � and iAn� � ��n for n � �� Thus� BP becomes a
compact metric space� Let VP denote the subspace of IP consisting of all those elements
of IP which contain A�� and endow VP with the subspace topology of IP � By virtue of
Proposition ���� VP is itself closed and hence compact� and moreover each element of
VP is a non�empty closed subset of BP � In fact� the topology of VP as a subspace of IP
coincides with that induced by the Hausdor� metric determined by the metric on BP �
so that VP is a closed subspace of Vietoris space� see ���� Finally� because A� � TP I�
for all I � IP � we see that VP is an invariant set under TP � Thus� TP � VP  VP is an
abstract dynamical system� abstract in the sense that TP need not be usually is not�
induced by a point map on BP � Since I� � TP I� belongs to VP for any I � IP � iterates
of I enter and stay within VP � Thus� any model or �xed point which can be found by
means of convergent sequences of iterates can be so found within VP �

Example ���
 The previous discussion raises the question of syntactic conditions un�
der which TP is a contraction relative to the Hausdor� metric� For example� the �natural
numbers� program P as follows�

po��

psx��� px�

has the property that TP is such a contraction with the obvious listing of BP � On the
other hand� the �even numbers� program of Example ���� does not have this property�
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For our third and �nal observation� suppose that P � P� � � � � � Pn is a partition
of P into n sub�programs in which the de�nition of each predicate symbol is contained
in one of the Pi the de�nition of a predicate symbol p is the set of all clauses in P in
which the predicate symbol p occurs in the head�� We can then write TP as the union

Sn
i��TPi� in the sense that for all I � IP we have TP I� � 

Sn
i��TPi�I� �

Sn
i��TPiI��

In this representation� each of the TPi is to be thought of as a mapping of IP into itself
rather than as a mapping of IPi into itself�

By means of Proposition ��� we have the following result�

Proposition ���� Suppose that P is partitioned as above� Then the following two
statements hold�
�
	 TP is continuous in Q at a point I � IP i� each of the TPi is continuous in Q at I�
��	 Suppose that each of the TPi in the representation above is a contraction relative to
Fitting�s metric d with contractivity factor ci � ��ni � say� Then TP is a contraction
relative to d with contractivity factor c � maxfci� i � �� � � � � ng� Conversely� if TP
is a contraction with factor of contractivity c relative to d� then each of the TPi is a
contraction relative to d with contractivity factor � c�

Thus� whenever TP is continuous in Q� fIP �TP�� � � � � TPng is an iterated function
system which is in fact hyperbolic under the conditions of Proposition ���	 ���

Example ���� The program in Example ���� gives rise to an iterated function system
which is never hyperbolic for any choice of level mapping l� In the program P �

qo��

qs	x��� px�

po��

ps�x��� �px�

the de�nition of q has contractivity factor �

 � and the de�nition of p has contractivity

factor �
� � Therefore� P determines a hyperbolic iterated function system with contrac�

tivity factor �
�
�

Supposing� �nally� that TP is continuous in Q� let F IP � denote the set of non�empty
compact subsets of IP endowed with the Hausdor� metric dh induced by d� where d is
the metric determined by a �nite ��level mapping l� Then� in the standard way� TP
induces a map FP � F IP �  F IP � de�ned by FP A� � fTP I�� I � Ag which is a
contraction with contractivity factor c if TP is such on IP � Thus� F IP � is the space of
fractals over IP and FP is induced from the iterated function system fIP �TP� � � � � � TPng�

These three comments are suggestive of interesting connections between computa�
tional logic on the one hand and dynamical systems on the other� In fact� it is ongoing
work of the authors to investigate certain notions of dynamical systems� such as attrac�
tors� from the point of view of computational logic� and vice�versa� In particular� these
ideas are being developed with a view to relating this work to that of Edalat ��� in the
context of uncertain probabilistic� reasoning�

��



� Semi�Strictly Level�Decreasing Logic Programs

In this section� we take up the study of the class of programs de�ned by �� of the
De�nition ��� or� in other words� of the class of locally strati�ed programs� P � This
study will be conducted� of course� from our current point of view of attempting to
answer Question ��
� and our main results� as already mentioned in the Introduction�
concern a constructive approach to the perfect model semantics of �����

We begin the details with an example showing that Condition �� of De�nition ���
is not� by itself� a necessary one for convergence in Q of sequences of iterates�

Example ��� Take the program P as follows�

px�� px���psx��

po��

It is clear that P is never semi�strictly level�decreasing with respect to any levelmapping
l� However� the sequence of iterates T n

P ��� becomes constant� after the �rst iterate�
with value fpo�g� Hence� this sequence trivially converges in Q to the value fpo�g�
which is a �xed point of TP � Note� in fact� that TP is continuous in Q in this case�

This example shows that ��� and therefore of course ��� in De�nition ��� does not
provide an entirely general answer to Question ��
� not even when TP is continuous in Q
and not even for the case I � �� As a matter of fact� Example ���� shows that �� does
not provide a su�cient condition either for convergence in Q of sequences of iterates
not even when P is strati�ed� and Example ���� is strati�ed� since the iterates of �
in this case oscillate between the sets fqo�� pso��g and fqo�� rso��g� Nevertheless�
when levels are carefully controlled as in Construction ��� below� �� does provide a
su�cient condition for convergence and this fact is used at an important point in the
proof of Lemma ��
 below�

Our approach is closer in spirit to ��� than it is to ����� In fact� we will make
comparisons on several occasions between our results and those of ���� It therefore will
be convenient for the reader if we recall next the notion of strati�cation as de�ned in
��� and to record the basic facts and notation used in the construction of the modelMP

discussed there�
Let P denote a normal logic program� Then P is said to be strati�ed if there is

a partition P � P� � � � � � Pm of P such that the following two conditions hold for
i � �� � � � �m�
�� If a predicate symbol occurs positively in a clause in Pi� then its de�nition is
contained within

S
j�iPj �

�� If a predicate symbol occurs negatively in a clause in Pi� then its de�nition is
contained within

S
j�iPj �

We adopt the convention that the de�nition of a predicate symbol p occurring in
P is contained in P� whenever its de�nition is empty� Thus� each predicate symbol
occurring in P is de�ned but it may have empty de�nition� in particular� P� itself may
be empty�

In order to treat non�monotonic operators� the powers of an operator T mapping a
complete lattice into itself were de�ned as follows�
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T ��I� � I

T � n� ��I� � T T �nI�� � T �nI�
T ��I� �

S�
n��T �nI��

Of course� T � nI� is not equal to T nI� unless T is monotonic� Indeed� the
sequence T �nI�� is always monotonic increasing� However� this concept can be used
to construct a minimal supported model MP for any strati�ed program P as follows�
put M� � ��M� � TP� ��M��� � � � �Mm � TPm ��Mm���� Finally� let MP � Mm�

��� The Case of Arbitrary Level Mappings

We commence with the following simple proposition which in fact is ���� Proposition

�� However� we include a proof since we need certain details later�

Proposition ��� Every strati�ed logic program is semi�strictly level�decreasing�

Proof� Let P � P� � � � � � Pm be a strati�cation of P � We de�ne an ��level mapping
l by lA� � i if A is a ground atom whose predicate symbol p� say� in L is de�ned in
Pi��� It is clear that P is semi�strictly level�decreasing with respect to l�

Notice that the level mapping de�ned in the proof just given is not� in general� �nite
and we will take up this issue later on�

De�nition ��� Let P denote a normal logic program and let l � BP  � denote a
level mapping� where � � �� For each n satisfying � � n � �� let P�n� denote the set
of all clauses in groundP � in which only atoms A with lA� � n occur� We de�ne
T�n� � PLn�  PLn� by T�n�I� � TP�n�I�� The mapping T�n� is called the immediate
consequence operator restricted at level n�

Thus� the idea formalized by this de�nition is to �cut�o�� at level n�

Construction ��� Let P be a semi�strictly level�decreasing normal logic program and
let l � BP  � denote a level mapping� where � � �� We construct the trans�nite
sequence In�n�� inductively as follows� For each m � N � we put I���m� � Tm

����� and
set I� �

S�
m��I���m�� If n � �� where n � �� is a successor ordinal� then for each m � N

we put I�n�m� � Tm
�n�In��� and set In �

S�
m��I�n�m�� If n � � is a limit ordinal� we put

In �
S
m�nIm� Finally� we put I�P � �

S
n��In�

The main technical lemma we need is as follows� For its proof� which is by trans�nite
induction� it will be convenient to put I�n�m� � In for all m � N whenever n is a limit
ordinal� thus statement b� in the lemma makes sense for all ordinals n�

Lemma ��� Let P be a normal logic program which is semi�strictly level�decreasing
with respect to the level mapping l � BP  �� where � � �� Then the following state�
ments hold�
�a	 The sequence In�n�� is monotonic increasing in n�
�b	 For every n � �� where n � �� the sequence I�n�m�� is monotonic increasing in m�
�c	 For every n � �� where n � �� In is a �xed point of T�n��
�d	 If lB� � n and B �� In� where B � BP � then for every m � � with n � m we
have B �� Im and hence B �� I�P �� In particular� if lB� � n and B �� I�n���m� for some
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m � N � then B �� In and hence B �� I�P ��

Proof� It is immediate from the construction that the sequence In�n�� is monotonic
increasing in n� and this establishes a��

The main work is in establishing b� and c�� which we treat simultaneously� To do
this� we need to note the technical fact that� for each n � �� we can partition P�n���

as P�n� � P n�� where P n� denotes the subset of groundP � consisting of those clauses
whose head has level n� Thus� T�n���I� � T�n�I� � TP �n�I� for any I � IP � note that
if A � TP �n�I�� then lA� � n�

Let Pn� be the proposition� depending on the ordinal n� that I�n�m�� is monotonic
increasing in m and that In is a �xed point of T�n�� Suppose that Pn� holds for all
n � �� where � � � is some ordinal� We must show that P�� holds� Indeed� P��
holds since P��� is a de�nite program and the construction of I� is simply the classical
construction of the least �xed point of T���� and therefore we may assume that � � ��
It will be convenient to break up the details of the case when � is a successor ordinal
into a sequence of steps�
Case �� � � k � � is a successor ordinal� Thus� Pk� holds�
Step �� We establish the recursion equations�

I�k����� � Ik

I�k���m��� � Ik � TP �k�I�k���m��

and the �rst is immediate� Putting m � �� we have I�k����� � T�k���Ik� � T�k�Ik� �
TP �k�Ik� � Ik � TP �k�Ik� � Ik � TP �k�I�k������� using the fact that Ik is a �xed point
of T�k�� Now suppose that the second of these equations holds for some m � ��
Then I�k����m������ � T�k���I�k���m���� � T�k�I�k���m���� � TP �k�I�k���m���� � T�k�Ik �
TP �k�I�k���m����TP �k�I�k���m����� and it su�ces to show that T�k�Ik�TP �k�I�k���m��� �
Ik� So suppose that A � T�k�Ik � TP �k�I�k���m���� Thus� there is a clause in P�k�

of the form A � A�� � � � � Ak���B�� � � � ��Bl� where A�� � � � � Ak� � Ik � TP �k�I�k���m��
and B�� � � � � Bl� �� Ik � TP �k�I�k���m��� But then level considerations and the hy�
pothesis concerning P imply that A�� � � � � Ak� � Ik and B�� � � � � Bl� �� Ik� Therefore�
A � T�k�Ik� � Ik and we have the inclusion T�k�Ik � TP �k�I�k���m��� 
 Ik� The reverse
inclusion is demonstrated in like fashion� showing that the second of the recursion equa�
tions holds with m replaced by m� � and hence� by induction on m� that it holds for
all m�
Step �� We have the inclusions TP �k�Ik� 
 TP �k�Ik � TP �k�Ik�� 
 TP �k�Ik � TP �k�Ik �
TP �k�Ik��� � � ��
These inclusions are established by methods similar to those we have just employed and
we omit the details�

It is now clear from this fact and the recursion equations in Step � that I�k���m��� or
I���m��� is monotonic increasing in m� Since monotonic increasing sequences converge
to their union in Q� see ���� Proposition ��� and I�k���m� is an iterate of Ik� it now follows
from Observation ��� that Ik�� is a model for P�k����
Step �� If B � BP and lB� � k� then B � Ik�� i� B � Ik�
Indeed� if B � Ik� then it is clear from the recursion equations of Step � that B � Ik���
On the other hand� if B �� Ik� then it is equally clear from the recursion equations and
level considerations that� for every m � N � B �� I�k���m� and hence that B �� Ik��� as
required�
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Step �� Ik�� is a supported model for P�k����
To see this� suppose that A � Ik�� �

S�
m��I�k���m�� Then there is m� � N such

that A � I�k���m��� � Tm��
�k���Ik� for all m � m�� Thus� A � T�k���T

m�

�k���Ik�� �
T�k���I�k���m���� Hence� there is a clause A� A�� � � � � Ak���B�� � � � ��Bl� in P�k��� such
that each Ai � I�k���m�� and no Bj � I�k���m��� But lBj� � k for each j since P is semi�
strictly level�decreasing� Since Bj �� I�k���m��� we now see from the recursion equations
that Bj �� Ik� From the result in Step � we now deduce that� for each j� Bj �� Ik���
Since it is obvious that each Ai belongs to Ik��� we obtain that A � T�k���Ik���� Thus�
Ik�� 
 T�k���Ik��� and therefore Ik�� is a supported model for P�k���� or a �xed point
of T�k���� as required�

Thus� P�� holds when � is a successor ordinal�
Case �� � is a limit ordinal�
In this case� it is trivial that I���m�� is monotonic increasing in m� Thus� we have
only to show that I� is a �xed point of T��� i�e� a supported model for P���� and we
show �rst that I� is a model for P���� Let A � T���I��� Then there is a clause
A� A�� � � � � Ak���B�� � � � ��Bl� in P��� such that A�� � � � � Ak� � I� and B�� � � � � Bl� �� I��
Indeed� by the de�nition of P��� and the hypothesis concerning P � there is n� � �

such that the clause A � A�� � � � � Ak� ��B�� � � � ��Bl� belongs to P�n��� Since the se�
quence In�n�� is monotone increasing and I� �

S
n��In� there is n� � � such that

A�� � � � � Ak� � In� and B�� � � � � Bl� �� In� � Choosing n� � maxfn�� n�g� we have A �
A�� � � � � Ak���B�� � � � ��Bl� � P�n�� and also A�� � � � � Ak� � In� and B�� � � � � Bl� �� In��
Therefore� on using the induction hypothesis we have A � T�n��In�� � In� 
 I�� Hence�
T���I�� 
 I�� as required�

To see that I� is supported� let A � I�� By monotonicity of In�n�� again and the
identity I� �

S
n��In� there is a successor ordinal n� � � such that A � In for all

n such that n� � n � �� In particular� we have A � In� �
S�
m��I�n��m�� Therefore�

there is m� � N such that A � I�n��m���� � T�n��T
m�
�n��

In������ Consequently� there is a
clause A � A�� � � � � Ak���B�� � � � ��Bl� in P�n�� such that A�� � � � � Ak� � Tm�

�n��
In���� �

I�n��m�� 
 In� 
 I� and B�� � � � � Bk� �� I�n��m��� But lBj� � n� � � for each j and so
no Bj belongs to In��� by Step � of the previous case� Therefore� by this step� no Bj

belongs to In� and by iterating this we see that� for every m � N � no Bj belongs to
In��m� Therefore� no Bj belongs to I�� Hence� we have A � T�n��I�� 
 T���I�� or in
other words that I� 
 T���I��� as required�

It now follows that Pn� holds for all ordinals n� and this completes the proof of b�
and c�� In particular� we see that the recursion equations obtained in Step � hold for
all ordinals k� and we record this fact in the corollary below� Indeed� all that is needed
to establish these equations is the fact that each Ik is a �xed point of T�k�� and to note
that the proof just given shows also that I�P � is a �xed point of TP � In turn� d� of the
lemma now follows from this observation by iterating Step ��

The proof of the lemma is therefore complete�

It can be seen here� and it will be seen again later� that the importance of d�
is the control it gives over negation in the manner illustrated in the proof just given
that Ik�� is a supported model for P�k���� It is also worth noting that the construction
produces a monotonic increasing sequence by means of a non�monotonic operator� and
that Lemma ��
 plays a r#ole here similar to that played by ��� Lemma ��� in ����
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Corollary ��	 Suppose the hypotheses of Lemma ��� all hold� Then�
�
	 For all ordinals n and all m � N we have the recursion equations

I�n����� � In

I�n���m��� � In � TP �n�I�n���m���

��	 If P is in fact strictly level�decreasing� then for every ordinal n � � we have
I�n���m� � In�TP �n�In� for all m � N � and therefore the iterates stabilize after one step�

Proof� That �� holds has already been noted in the proof of Lemma ��
� For ���
it su�ces to prove that TP �n�In� � TP �n�In � TP �n�In��� So suppose therefore that
A � TP �n�In � TP �n�In��� Then there is a clause A � A�� � � � � Ak���B�� � � � ��Bl� in
P n� such that A�� � � � � Ak� � In�TP �n�In� and B�� � � � � Bk� �� In�TP �n�In�� From these
statements and by level considerations� we have A�� � � � � Ak� � In and B�� � � � � Bk� �� In�
Therefore� A � TP �n�In� so that TP �n�In�TP �n�In�� 
 TP �n�In�� The reverse inclusion
is established similarly to complete the proof�

Statement �� of this corollary makes the calculation of iterates very easy to perform
in the case of strictly level�decreasing programs� and an illustration of this is to be found
in Example �����

Theorem ��
 Suppose that P is a normal logic program which is semi�strictly level�
decreasing with respect to the level mapping l � BP  �� Then I�P � is a minimal
supported model for P �

Proof� That I�P � is a supported model for P follows from the proof of Lemma ��
� and so
it remains to show that I�P � is minimal� To do this� we establish by trans�nite induction
the following proposition� �if J 
 I�P � and TP J� 
 J � then In 
 J for all n � �� where
n � ��� and this clearly su�ces� Indeed� T���J� 
 TP J� 
 J and therefore J is a
model for P���� But� as already noted in proving Lemma ��
� I� is the least model for
P��� by construction� since P��� is de�nite� Therefore� I� 
 J and the proposition holds
with n � ��

Now assume that the proposition holds for all ordinals n � � for some ordinal � � ��
where � � �� we show that it holds with n � ��
Case �� � � k � � is a successor ordinal� where k � ��
We have Ik 
 J � We show by induction on m that I�k���m� 
 J for all m� Indeed�
with m � � we have I�k����� � Ik 
 J � Suppose� therefore� that I�k���m�� 
 J for
some m� � �� Let A � I�k���m���� � T�k���T

m�
�k���Ik��� Then there is a clause A �

A�� � � � � Ak���B�� � � � ��Bl� in P�k��� such that A�� � � � � Ak� � Tm�
�k���Ik� � I�k���m�� and

B�� � � � � Bl� �� I�k���m��� But lBj� � k for each j� Applying Lemma ��
 d� we see that
no Bj belongs to I�P � and consequently no Bj belongs to J because J 
 I�P �� Since
I�k���m�� 
 J by assumption� we have A�� � � � � Ak� � J � Therefore� A � T�k���J� 

TP J� 
 J � and from this we obtain that I�k���m���� 
 J as required to complete the
proof in this case�
Case �� � is a limit ordinal�
In this case� I� �

S
n��In and In 
 J for all n � � by hypothesis� Therefore� I� 
 J as

required�
Thus� the result follows by trans�nite induction�

��



The following de�nition is due to Przymusinski and is to be found in �����

De�nition ��� Suppose that P is a locally strati�ed normal logic program� and let l
denote the associated level mapping� Given two distinct models M and N for P � we
say that N is preferable to M if� for every ground atom A in N nM � there is a ground
atom B in M n N such that lA� � lB�� Finally� we say that a model M for P is
perfect if there are no models for P preferable to M �

Notice that the requirement lA� � lB� is dual to the requirement A � B relative
to the priority relation � de�ned in �����

Theorem ��� Suppose that P is a normal logic program which is semi�strictly level�
decreasing with respect to a level mapping l � BP  �� where � is a countable ordinal�
Then I�P � is a perfect model for P and indeed is the only perfect model for P �

Proof� Suppose that there is a model N for P which is preferable to I�P � and therefore
distinct from I�P ��� we will derive a contradiction�

First note that N n I�P � must be non�empty� otherwise we have N 
 I�P �� But this
inclusion forces equality of N and I�P � since I�P � is a minimal model for P � and therefore
N and I�P � are not distinct� This means that there is a ground atom A in N n I�P ��
which can be chosen so that lA� has minimum value� let B be a ground atom in
I�P � nN corresponding to A in accordance with the de�nition above� and which satis�es
lA� � lB��

Next we note that T���N� 
 TP N� 
 N � since N is a model for P � Hence� N is
a model for P���� which implies that I� 
 N since I� is the least model for the de�nite
program P���� Therefore� B can be chosen so that B � In� n N � with minimal n� � ��
Now n� cannot be a limit ordinal� otherwise we would have In� �

S
m�n�

Im� from which
we would conclude that B � ImnN for somem � n� contrary to the choice of n�� Thus�
n� must be a successor ordinal and� therefore� B can be chosen so that B � I�n��m�� nN �
where m� is such that I�n��m�� n N � � whenever m� � m�� indeed� since I� 
 N � we
must have n� � � and m� � � also� Consequently� B � T�n��I�n��m����� n N showing
that there is a clause B � C�� � � � � Ck���D�� � � � ��Dl� in P�n�� with the property that
each Ci � I�n��m���� and no Dj � I�n��m����� Since lDj� � n� � � for each j� we see
that none of the Dj belong to I�P � by Lemma ��
 d�� But all the Ci� if there are any�
must belong to N by the choice of the numbers n� and m�� Moreover� there must be
at least one Dj and indeed at least one belonging to N � For if there were no Dj or we
had each Dj �� N � then we would have B � TPn� N� 
 TP N� 
 N � using again the
fact that N is a model for P � But this leads to the conclusion that B � N � which is
contrary to B � I�P � n N � Thus� there is a D � Dj � N n I�P �� for some j� satisfying
lD� � lB� � lA�� Since A was chosen in N n I�P � to have smallest level� we have a
contradiction�

This contradiction shows that I�P � must be a perfect model for P as required� The
last statement in the theorem concerning uniqueness of I�P � now follows from ���� The�
orem ��� and therefore the proof is complete�

Since it is shown in ���� that perfect models are independent of the local strati�ca�
tion� we also have the following result�

��



Corollary ��� If P is a normal logic program which is semi�strictly level�decreasing
with respect to two level mappings l� and l�� then the corresponding models I�P�� and
I�P�� are equal�

It also follows from ���� Theorem �� and Theorem ��� above that I�P � coincides with
the model MP of ��� when P is strati�ed� However� for the sake of completeness we
next present a proof of this fact using the methods established thus far� To do this� it
will be convenient to introduce the concept T � nI� for a mapping T � IP  IP and
I � IP � In fact� T �nI� is de�ned inductively as follows�
T ��I� � I

T � n� ��I� � T T �nI�� � I

T ��I� �
S�
n��T �nI��

Theorem ���� Let P be a strati�ed normal logic program with level mapping de�ned
as in the proof of Proposition ���� Then I�P � � MP �

Proof� As usual� we take the strati�cation to be P � P� � � � � � Pm and we will show
by induction that Ik � Mk for k � �� � � � �m and that Ik � Mm for k � m� From this
we clearly have I�P � � Mm � MP as required�

With the de�nition of the level mapping we are currently using and with the con�
ventions we have made regarding the strati�cation� we note �rst that the equalities
P�k� � groundP��P�� � � ��Pk� and P k��� � groundPk� both hold for k � �� � � � �m�
where P k� is as de�ned in the proof of Lemma ��
�

Now P��� � groundP�� is de�nite� even if empty� and so it is immediate that TP� �
iM�� � TP� � iM�� for all i and that I� � M�� So suppose next that TPk��

� iMk� �
TPk��

� iMk� for all i and that Ik�� � Mk�� for some k � �� Then TPk��
� �Mk��� �

Mk�� � TPk��
� �Mk��� and also I�k����� � Ik�� � Mk�� � TPk��

� �Mk���� So now
suppose that TPk��

�mMk��� � TPk��
�mMk��� and that I�k���m� � TPk��

�mMk���
for some m � �� Then TPk��

� m � ��Mk��� � TPk��
TPk��

�mMk���� �Mk�� and
TPk��

� m� ��Mk��� � TPk��
TPk��

�mMk���� � TPk��
�mMk���� and it is clear that

TPk��
� m���Mk��� 
 TPk��

� m� ��Mk���� For the reverse inclusion� we note that
under our present hypotheses we have TPk��

� m���Mk��� � TPk��
TPk��

�mMk�����
TPk��

� mMk��� and so it su�ces to show that TPk��
� mMk��� 
 TPk��

TPk��
�

mMk���� �Mk�� or in other words that I�k���m� 
 TP �k���I�k���m�� � Ik��� Since this
latter set is equal to I�k���m��� by the recursion equations of Corollary ���� the inclusion
we want follows from the monotonicity of the sets I�k���m� relative to m� We conclude�
therefore� that TPk��

� m� ��Mk��� � TPk��
� m� ��Mk����

Finally� I�k���m��� � Ik�� � TP �k���I�k���m�� � Mk�� � TPk��
TPk��

� mMk���� �
Mk�� � TPk��

TPk��
�mMk���� � TPk��

� m � ��Mk��� � TPk��
� m� ��Mk���� by

the conclusions of the previous paragraph� Therefore� I�k���m��� � TPk��
� m���Mk����

From this we obtain� by induction� the equality I�k���m� � TPk��
�mMk��� for all m

and with it the equality Ik�� � Mk�� as required�

The details of the induction proof just given also establish the following proposition�

Proposition ���� Let P � P� � � � � � Pm be a strati�ed normal logic program� Then
we have TPk��

� iMk� � TPk��
� iMk� for all i and k � �� � � � �m� ��
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Example ���� �� Consider again the program in Example ����� We have already
noted that the sequence of iterates T n

P ��� does not converge in Q and that this pro�
gram is strati�ed with strata P� � fqo� �g and P� � fpso�� � �qo�� px� �
rx�� rx�� px�g�� A straightforward computation using the de�nitions made earlier
in connection with strati�ed programs shows that M� � TP� ���� � fqo�g and that
MP � M� � TP� ��M�� � fqo�g� On the other hand� the level mapping l given in the
proof of Proposition ��� is� in this case� de�ned by lqt�� � � and lpt�� � lrt�� � �
for all ground terms t� Thus� it turns out that I���m� � fqo�g for all m � � so that
I� � fqo�g� Further straightforward computations show that I���m� also equals fqo�g
for all m and hence that I�P � � I� � fqo�g �MP in accordance with Theorem �����
�� Consider the following program P �

qo��

qs�x��� qx�

px�� �qx�

ps�x��� �px�

px�� px�

This program is not strati�ed but it is semi�strictly level�decreasing with respect to the
level mapping l in which lqsno��� � � and lpsno��� � n � � for all n� In fact�
I� is the set fqs�no���n � Ng� Part � of Corollary ��� applies to the sub�program
of P consisting of the set �de�nition of p remove the clause px� � px��� This
observation simpli�es the computation of I�P � which in fact is the set I��fpsno���n �
N�n not a multiple of �g�

Note ���� For an arbitrary normal logic program P whether strati�ed or not�� let
MP denote TP � ���� as de�ned earlier� By Lemma � of ���� MP is a model for P �
Thus�
�� Apply this to the �even numbers� program� Example ����� which is not strati�ed�
Then MP is the set BP � which is a model for P but is not a �xed point of TP � Here of
course I�P � is the set fps�no���n � Ng of even numbers� and clearly I�P � �MP �

�� For the Example ���� ��� which again is not strati�ed� MP is the set I��fpsno���
n � Ng� This is a �xed point of TP � but is not minimal since I�P � � MP � Now
partition P into �strata� P � P� � P�� where P� � fqo� �� qs�x�� � qx�g and
P� � fpx�� �qx�� ps�x��� �px�� px�� px�g� and letM� � TP� ��M��� where
M� � TP� ����� as de�ned earlier� Then M� is the set I� � fps

no���n � N�n �� �g
which is another �xed point of TP � and we have I�P � �M� �MP �
�� Taking P as in Example ���� �� but removing the clause px� � px�� we obtain
that MP is the set I� � fpsno���n � Ng and that M� is the set I� � fpsno���n �
N�n �� �g� Both of these sets are models for P � but neither is a �xed point of TP
nor a minimal model� Indeed� the only �xed point of TP is the set I� � fpsno���n �
N�n not a multiple of �g� Of course� the uniqueness of the �xed point just noted is a
consequence of the fact that P is in fact strictly level�decreasing with respect to an
obvious level mapping�
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��� The Case of Finite Level Mappings

As can be seen from Example ���� ��� the sets In de�ned in Construction ��� need
not be �nite� and this is true whether or not P is strati�ed� The question therefore
arises as to whether or not it is possible to �nd a sequence Jn� of �nite sets Jn�
possibly iterates of some I� which converges in Q to I�P �� In particular� this question
was prompted by the Prolog program written by Hitzler in ��� in order to calculate
iterates and sequences of approximations� and which provided partial motivation for
this study� To �nish� we brie�y record the facts which show that the answer to these
questions is in the a�rmative when P is semi�strictly level�decreasing with respect to
a �nite level mapping l and is also strati�ed by P � P� � � � � � Pm� say� We make
the following construction in which� in order to ease notation� we write T �n�

i in place of
TPi��n� for all i and n�

Construction ���� We construct the sequence Jn� in IP as follows� i� P� is de�nite

and Ln is �nite for every n� Hence� for each n� the sequence T �n�
� �k���k�N is monotonic

increasing with k and is� therefore� eventually constant with value Jn��� say� ii� By

Lemma �� of ���� we see that for each n the sequence T
�n�
i�� � kJn�i��k�N is monotonic

increasing with k� where i � �� � � � �m � �� Hence� it too is eventually constant with
value Jn�i��� say� on using the �niteness of the Ln again� Finally� we put Jn � Jn�m�

The proof of the following theorem may be found in �����

Theorem ���	 Let P be a normal logic program which is strati�ed and is semi�strictly
level�decreasing with respect to a �nite level mapping l� Then the sequence Jn�n�N as
de�ned in Construction ��
� converges in Q to MP �

Remark ���
 We close by comparing the complexities of the di�erent approaches dis�
cussed in the present paper� at least for ��level mappings�
i� For strictly level�decreasing programs� it su�ces to compute the sequence T n

P ��� to
obtain the unique supported model for the program� and therefore only a single limit
is involved�
ii� Construction ���
 for programs which are strati�ed and semi�strictly level�decreasing
with respect to a �nite level mapping requires one to compute the single sequence Jn��
Moreover� each member of this sequence is itself obtained by a �nite computation�
Again� therefore� only a single limit is required in this case�
iii� The approach of Apt� Blair and Walker ��� or the use of Construction ��� in the case
of strati�ed programs requires the computation of the limits of �nitely many sequences
TPk��

�nMk���
iv� Using Construction ��� for semi�strictly level�decreasing programs involves the com�
putation of the limit of the sequence In�� where each In is itself obtained by constructing
the sequence I�n�m��m and its limit� So� in this case� at most countably many limits
have to be computed� If the program is semi�strictly level�decreasing with respect to
a �nite level mapping� the sequence I�n�m��m stabilizes after �nitely many steps� and
therefore only a single limit needs to be computed�
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