Towards Nonmonotonic Reasoning on Hierarchical Knowledge

Pascal Hitzler

Artificial Intelligence Institute, Department of Computer Science
Dresden University of Technology, Dresden, Germany
phitzler@inf.tu-dresden.de, www.wv.inf.tu-dresden.de/~pascal/

Technical Report WV-02-09

Abstract

W.C. Rounds and G.-Q. Zhang have recently proposed to study a form of disjunctive
logic programming generalized to algebraic domains [RZ01]. This system allows reasoning with
information which is hierarchically structured and forms a (suitable) domain. We extend this
framework to include reasoning with negative information, i.e. the implicit or explicit absence of
bits of information. These investigations will naturally lead to a form of default reasoning which
is strongly related to logic programming with answer sets or stable models, which has recently
created much interest amongst artificial intelligence researchers concerned with knowledge
representation and reasoning.

1 Introduction

In [RZ01], Rounds and Zhang propose to study a form of clausal logic generalized to algebraic
domains, in the sense of domain theory [SHLG94, AC98]. In essence, they propose to interpret
finite sets of compact elements as clauses, and develop a theory which links corresponding
logical notions to topological notions on the domain. Amongst other things, they establish a
sound and complete resolution rule and a form of disjunctive logic programming in domains,
based on material implication. A corresponding semantic operator turns out to be Scott-
continuous.

In this report, we will extend this paradigm to include reasoning with default negation. We
are motivated by the gain in expressiveness through the use of negation in artificial intelligence
paradigms related to nonmonotonic reasoning. This approach, using ideas from default logic
[Rei80], treats negation as a meta-logical supplement: The negation of an item is believed if
there is no reason to believe the item itself. This perspective on negation has recently led
to the development of applications in the form of nonmonotonic reasoning systems known as
answer set programming (cf. [Lif99, MT99] for accounts of this).

The paper is structured as follows. In Section 2 we review and study Rounds’ and Zhang’s
clausal logic and resolution in algebraic domains, as laid out in [RZ01]. We will also provide an
equivalent system which is simpler and easier to work with. In Section 3, we move on to study
logic programming in algebraic domains as proposed in [RZ01]. In particular, we will adjoin a
form of default negation to this programming paradigm. The exposition will naturally lead to
establishing a form of well-founded semantics for these programs, as well as a notion of stable

models, both very strongly related to their counterparts in the classical logic programming
paradigm.

The emphasis of this report is to propose definitions and constructions, not to present deep
results, although we have taken care to include just enough examples and results as to justify
the constructions. Proofs have been omitted, and can be found in [Hit02], which is available
from the author’s web page.

Acknowledgements. I'm very grateful for discussions with Achim Jung, William C. Rounds,
Anthony K. Seda, Pawel Waszkiewicz, and Guo-Qiang Zhang, some of which took place at a
very pleasant stay at Schloss Dagstuhl, during Seminar 02221, in May 2002.

2 Clausal Logic and Resolution in Algebraic Domains

A partially ordered set is a pair (D,C), where D is a nonempty set and C is a reflexive,
antisymmetric, and transitive relation on D. A subset X of a partially ordered set is directed
if for all z,y € X there is z € X with z,y C z. An ideal is a directed and downward closed
set. A complete partial order, cpo for short, is a partially ordered set (D,C) with a least
element L, called the bottom element of (D,C), and such that every directed set in D has a
least upper bound, or supremum, | | D. An element ¢ € D is said to be compact or finite if
whenever ¢ C | | L with L directed, then there exists e € L with ¢ C e. The set of all compact
elements of a cpo D is written as K(D). An algebraic cpo is a cpo such that every e € D is
the directed supremum of all compact elements below it. For a,b € D we write a ¥ b if a and
b are inconsistent, i.e. if there does not exist a common upper bound of ¢ and b.

A set U C D is said to be Scott open, or just open, if it is upward closed and for any
directed L C D we have | |L € U if and only if U N L # (. The Scott topology on D is the
topology whose open sets are all Scott open sets. An open set is compact open if it is compact
in the Scott topology. A coherent algebraic cpo is an algebraic cpo such that the intersection of
any two compact open sets is compact open. We will not make use of many topological notions
in the sequel. So let us just note that coherency of an algebraic cpo implies that the set of
all minimal upper bounds of a finite number of compact elements is finite, i.e. if ¢1, ..., ¢, are
compact elements, then the set mub{cy,...,¢,} of minimal upper bounds of these elements is
finite. As usual, we set mub(® = {1}, where L is the least element of D.

In the following, (D,C) will always be assumed to be a coherent algebraic cpo. We will
also call these spaces domains. All of the above notions, except perhaps that of coherency, are
standard and can be found e.g. in [SHLG94, AC98].

2.1 Definition Let D be a coherent algebraic cpo with set K(D) of compact elements. A
clause is a finite subset of K(D). We denote the set of all clauses over D by C(D). If X is
a clause and w € D, we write w = X if there exists x € X with z C w, i.e. X contains an
element below w. A theory is a set of clauses, which may be empty. An element w € D is a
model of a theory T, written w =T, if w = X for all X € T or, equivalently, if every clause
X € T contains an element below w. A clause X is called a logical consequence of a theory T,
written T = X, if w |= T implies w |= X. If T = {E}, then we write £ = X for {E} E X.
Note that this holds if and only if for every w € E there is x € X with C w. For two theories
T and S, we say that T = S if T = X for all X € S. In order to avoid confusion, we will
throughout denote the empty clause by {}, and the empty theory by 0. A theory T is closed
if T = X implies X € T for all clauses X. It is called consistent if T [~ {} or, equivalently, if
there is w with w = T.

A main technical result from [RZ01], where the notions from Definition 2.1 were introduced,
shows that the set of all consistent closed theories over D, ordered by inclusion, is isomorphic
to the collection of all non-empty Scott-compact saturated subsets of D, ordered by reverse
inclusion. This result rests on the Hofmann-Mislove theorem, and we refer the reader to [RZ01]
for details. It follows as a corollary that a theory is logically closed if and only if it is an ideal,’
and also that a clause is a logical consequence of a theory T if and only if it is a logical
consequence of a finite subset of T'. The latter is a compactness theorem for clausal logic in
algebraic domains.

2.2 Example In [RZ01], the following running example was given. Consider Kleene’s strong
three-valued logic in the propositional case?, with the usual (knowledge)-ordering on the set
T = {f,u, t} of truth values given by u < f and u < t. This induces a pointwise ordering on
the space TV of all interpretations (or partial truth assignments), where V is the (countably
infinite) set of all propositional variables in the language under consideration. The partially
ordered set TY is a coherent algebraic cpo3. Compact elements in TV are those interpretations
which map all but a finite number of propositional variables to u. We denote compact elements
by strings such as pq7r, which indicates that p and ¢ are mapped to t and r is mapped to f.

We note that {e | e = ¢} is upward-closed for any formula ¢. A clause in T” is a formula,
in disjunctive normal form, e.g. {pq7,pq,r} translates to (p AgA —-r)V (=pAq)Vr.

In [RZ01], a sound and complete resolution rule, called clausal hyperresolution, was given
as follows, where {Xy,...,X,} is a clause set and Y a clause, and mub{a,,...,a,} denotes
the set of all minimal upper bounds of all the a;’s, which is a finite set of compact elements
by algebraic coherence, i.e. a clause.

X Xy ... X, a; € X; for 1 < < n; mub{ai,...,a,} EY
YuUiL, (Xi\{ai})

This rule is sound in the following sense: Whenever w |= X; for all ¢, then for any admissible
choice of the a; and Y in the antecedent, we have w =Y U7, (X; \ {a;}).

For completeness, it is necessary to adjoin to the above clausal hyperresolution rule a
special rule which allows the inference of any clause from the empty clause. We indicate this
rule as follows.

(hr)

{, Yec)
Y
With this addition, given a theory T and a clause X with T' = X, we have that T' +* X, where
F* stands for a finite number of applications of the clausal hyperresolution rule together with
the special rule.
Furthermore, [RZ01, Remark 4.6] shows that binary hyperresolution, together with (spec),
is already complete, i.e. the system consisting of the binary clausal hyperresolution rule

(spec)

X1 Xo; a1 € X1 ao € Xo; mub{ai, a2} FY
Y U(Xy\ {a1}) U (X2 {a2})

together with the special rule is sound and complete.

(bhr)

LAn ideal with respect to the Smyth preorder C*, where X C* YV if and only if for every y € Y there exists
some x € X with z C y.

2(Cf. [Fit85] for a discussion of this in the context of logic programming semantics and [Plo78] for a domain-
theoretic context.

3In fact it is also consistently complete.

If the set {a1,...,a,} is inconsistent, then mub{ai,...,a,} = {}. Since {} | {}, clausal
hyperresolution generalizes the usual notion of resolution, given by the following rule.

X1 Xy a1 € X1 ag € Xo; ar Y az
(X1 \{a1}) U (X2\ {az2})

It is our desire to give a sound and complete system which is as simple as possible. Consider
the following rule, which we call simplified hyperresolution. It is easy to see that it is an instance
of (hr) and more general than (r).

(r)

X1 Xy a1 € X7 as € Xy
mub{ai,az} U (X1 \ {a1}) U (X2 \ {a2})
Also note the following rules, the first of which is a special instance of the clausal hy-

perresolution rule, while the second can be obtianed using (hr) and (spec). We call them the
weakening rule and the extension rule, respectively.

(shr)

X; a € X; yCoa X; y € K(D)
{y} U (X \{a}) {yfUX

Indeed, the first rule follows from (hr) since @ € X and {a} = {y}. The second rule follows
from (hr) for X # {}, since {a} = {a,y} for all y € K(D), and from (spec) for X = {}.

(w),

(ext)

2.3 Theorem The system consisting of (shr), (ext) and (w) is complete.

Note that resolution (r) together with (ext) and (w) is not complete. In order to see this,
we refer to Example 2.2. Let T'= {{p},{q}} and X = {pq}. Then T' = X but there is no way
to produce X from T using (r), (w) and (ext) alone. Indeed, it is easy to show by induction
that any X which can be derived from T' by using only (r), (w) and (ext), contains either p or
q, which suffices.

We call the system consisting of the rules (w), (ext) and (shr) the RAD system, from
Resolution in Algebraic Domains. We interpret the RAD rules in the setting of Example 2.2.
We already know that clauses correspond to formulas in disjunctive normal form (DNF), and
theories to sets of DNF formulas. The weakening rule acts on single clauses and replaces a
conjunction contained in a DNF formula by a conjunction which contains a subset of the
propositional variables contained in the original conjunction, e.g. (pAq)Vr becomes pVr. The
extension rule disjunctively extends a DNF formula by a further conjunction of propositional
variables, e.g. (pAq) Vr becomes (pAq)VrV(sAq). The simplified hyperresolution rule finally
takes two DNF formulas, deletes one conjunction from each of them, and forms a disjunction
from the resulting formulas together with the conjunction of the deleted items, e.g. (p Aq) Vr
and —=p V (s Ar) can be resolved to (p Aq) V (r A=p)V (s Ar).

A more abstract interpretation of the RAD system comes from a standard intuition un-
derlying domain theory. Elements of the domain D are interpreted as pieces of information,
and if z C y, this represents that y contains more information than z. Compact elements
are understood as items which are computationally accessible. From this point of view, RAD
gives a calculus for reasoning about disjunctive information in computation, taking a clause,
i.e. a finite set of computationally accessible information items as disjunctive knowledge about
these items. The rules from RAD yield a system for deriving further knowledge from the given
disjunctive information. The weakening rule states that we can replace an item by another
one which contains less information. The extension rule states that we can always extend our
knowledge disjunctively with further bits of information. Both rules decrease our knowledge.

The simplified hyperresolution rule states that we can disjunctively merge two collections of
disjunctive information, while strengthening our knowledge by replacing two of the items from
the collections by an item which contains both pieces of information, and deleting the original
items.

The RAD system alone already deserves a more thorough study. It provides a framework
for reasoning with disjunctive information on a lattice which encodes background knowledge.
The system, however, can be extended naturally by a disjunctive logic programming paradigm,
as presented in the next section.

3 Logic Programming in Algebraic Domains

Following the lead from [RZ01], we now move on to study disjunctive logic programming in
algebraic domains. Our aim is to extend this paradigm with a kind of default negation.

3.1 Definition A (disjunctive logic) program over D is a set P of rules of the form Y + X,
where X, Y are clauses over D. An element e € D is said to be a model of P if for every rule
Y« XinP,ifel= X, thene|=Y. A clause Y is a logical consequence of P if every model
of P satisfies Y. We write cons(P) for the set of all clauses which are logical consequences of
P.If T is a theory, we write cons(T') for the set of all clauses which are logical consequences
of T'. Note that the notions of logical consequence are substantially different for theories and
programs.

The following (clause) propagation® rule, denoted by CP(P), for given program P, was
studied in [RZ01].

Xy ... Xpy @€X; (i=1,...,n); Y« ZecP; mub{ai,...,an} EZ
VUuUL (Xi\{ai})

Applying this rule, we say that Y U [J;_,(X; \ {a;}) is a CP(P)-consequence of a theory T' if
X1,..., X, € T. The following operator is based on the notion of CP(P)-consequence and acts
on logically closed theories. Let T' be a logically closed theory over D and let P be a program
and define

Tp(T) = cons({Y | Y is a CP(P)-consequence of T'}) .
In [RZ01], it was shown that Tp is a Scott-continuous function on the space of all logically
closed theories, i.e. has a least fixed point fix(7p). It was also shown that fix(7p) = cons(P).
3.1 Inference of Negative Information

Using the notation of Example 2.2, consider the program P consisting of the following rules.
This program is in fact a propositional version of the well-known even numbers program,
which can be found e.g. in [Fit94] or [HSOx].

{po} < {L}
{Pns1} < {Pn} for all n € N.

Note that cons()) = cons({{L}}), so we obtain cons(P) = fix(Tp) = cons({{po}}). If we
understand P as a logic program in the classical sense, however, then all major approaches to

“This rule was called the hyperresolution rule determined by P in [RZ01]. We prefer the notion propagation
since in our opinion resolution, when talking about programs, is better thought of as a process which yields the
antecedent from a given consequent.

declarative semantics, e.g. the Clark completion semantics [Cla78] (also known as the supported
model semantics), the Fitting semantics [Fit85] (also called Kripke-Kleene semantics), the
perfect model semantics [Prz88], the stable model semantics [GL88] (also called answer set
semantics, which is motivated by default logic), and the well-founded semantics [GRS91],
agree on M = {{pan} | » € N} as the intended model. We refer to [Sub99] for a survey of
these issues.

One way of justifying the latter model as the intended one would be the following: Since
we obtain {py} as a consequence (in some natural, naive sense) of the program, we are inclined
to dismiss the possibility that {pg} could hold, since it is inconsistent with the knowledge of
{po}. So we infer “not {pg}”, meaning that {pg} can be dismissed as possible consequence. It
follows that there is no way to justify {p;} as a consequence of the program. Common practice
in nonmonotonic reasoning semantics is to therefore conclude “not {p;}”, and to identify this
with {p1}, allowing to conclude {p2}, and so on.

We attempt to lift this line of reasoning to the general setting of logic programs in algebraic
domains. In place of the notion of negation, which is not available in the general setting, we can
try to use inconsistency. From this perspective, and refering again to the above even numbers
program, we can indeed dismiss {Pg} as a possible consequence from the observation that {pg}
can be derived. Again we conclude that there is no way to justify {p;} as a consequence of
the program, hence we obtain “not {p;}”, i.e. the absence of {p;} as a possible conclusion. In
general algebraic domains, however, without a notion of negation, there may be many compact
elements inconsistent with p;. While in the case of the domain TY we can justify to derive py
from the absence of provability of py, i.e. taking py as a kind of default, it is unclear, in the
general case, which of the elements inconsistent with p; should be taken.

In the absence of an involutive notion of negation, we therefore should distinguish between
two kinds of “negation”, as follows. Assume that we believe in some items, i.e. compact
elements of a domain, and that the collection of these items is consistent. We then say (1)
that a compact element is refuted by contradiction if if is inconsistent with a compact element
which belongs to our believe and (2) that a compact element is refuted by default if it is not
believed, and not refuted by contradiction. Let us finally call a compact element refuted, if it
is refuted by contradiction or refuted by default.

Let us again review the above even numbers program. We refuted pg by contradiction, while
we refuted p; by default, leading us to assuming py, i.e. p; was interpreted as the statement
“py is refuted”. It relies entirely on the existence of an involutive negation, that we are able
to identify “p; is refuted” with p;. For algebraic domains, we should be able to abstract from
an involutive negation, and this is facilitated by the following definition.

3.2 Definition Let D be a coherent algebraic domain. An extended clause is a finite set
{(c1,N1),...,(cn, Np)} where for all ¢+ € {1,...,n} we have that N; is a clause in D and
¢ € K(D). We call (¢, N) = (¢,{d1,...,d,}) an extended precondition and abreviate it by
(¢;dy,...,dy), or by c—dy ... —d,. In the latter notation, we omit ¢ if c = L and N # {}. If
N = {} we abreviate (¢, N) by c. Note that (L,{}) can be abbreviated to L, in which case
1 may not be omitted. An extended clause {(c1, N1),...,(cn, Ny)} with N; = {} for all i is
called a trivially extended clause. A (trivially) extended rule is of the form Y + X, where YV
is a clause and X is a (trivially) extended clause. An (eztended disjunctive) program consists
of a set of extended rules.

We note that an extended disjunctive program which consists of trivially extended rules
only, can be identified with a (non-extended) disjunctive logic program.

3.3 Example The following extended program P is a more suitable representation of the
even numbers program above. We use again the notation from Example 2.2.

{po} < {(L,{}H}
{pn+1} < {(L,{pn})} foralln e N

In abbreviated form, this program may be written as

{po} < {L}
{pns1} < {-pn} for all n € N.

We now seek a reasonable notion of logical consequence for this extended program. Consider
some candidate theory T" which forms our belief. We next remove from the program all —p,
for which p,, is not a logical consequence of T', i.e. we consider these p, to be refuted by default.
Then we remove all extended preconditions (¢, N) for which there is p € N with T = {p}.
The remaining program is no longer extended, and we call it P/T. From P/T we can obtain
its set of logical consequences, e.g. as T' = fix (Tp/T). However, since T" is in general different
from T, the set of elements which are refuted by default using 7" is different from the set of
elements refuted by default using 7'. But this means, that we are rather searching for a theory
S with § = fix (Tp/g), or in other words, if we define the operator Dp on theories (i.e. sets of
clauses) by Dp(A) = fix (Tp/ A), then we are searching for fixed points of the operator Dp. It
is in fact easy to see that the desired theory cons({{p2,} | n € N}) is a fixed point of Dp. It
is indeed its unique fixed point, which is rather satisfactory.

The reader familiar with the stable model semantics for logic programming [GL88] may
recognize the constructions made in Example 3.3: It is the original approach to stable models.
This can be carried over to logic programs with disjunctions as consequents of their rules
and containing two kinds of negation, namely classical negation and default negation. Such
programs are called extended disjunctive logic programs, and we refer to [GL91] for the stable
model semantics for these programs, which we will now lift to logic programming on coherent
algebraic domains.

3.4 Definition Let D be a coherent algebraic domain, let P be an extended disjunctive
program, and let T be a theory. We define P/T to be the (non-extended) program obtained
by applying the following two transformations: (1) Delete from P all =d for which d is not a
logical consequence of T'. (2) Delete all extended preconditions (¢, N) for which there is d € N
with T' = {d}. We define the Gelfond-Lifschitz operator or default operator Dp as a function
on theories as Dp(T) = fix (Tp/T). A stable model of P is a fixed point of Dp, i.e. a theory T
such that Dp(T) = fix (Tp/T) =T.

We obtain immediately from the definition that stable models are logically closed. Indeed,
Dp maps logically closed theories to logically closed theories.

In order to justify our terminology, we have to explain what a model of an extended
disjunctive program is.

3.5 Definition Consider a pair (7, S) of theories, which we call an interpretation, and let
(¢, N) be an extended precondition. We write (7, S) = (¢, N) if T = {c} and for all d € N we
have S [~ {d}. If X is an extended clause, then we write (7, S) = X if (T, S) | C for some
extended precondition C' in X. The pair (7, S) is called a model of P if for every extended rule
Y + X we have that (7, S) = X implies T =Y. An interpretation (7, S) is called consistent
if cons(T') C cons(S). It is called total if T = cons(T") = cons(S) = S.

We can now identify every theory 7" with the total interpretation (cons(7’), cons(T)). From
this point of view, fixed points of the default operator are indeed models, as is easily verified.

3.6 Proposition Let 7" and S be logically closed theories and S C T'. Then Dp(T) C Dp(S),
i.e. Dp(T) is antitonic. In particular, D% is monotonic with respect to set-inclusion on the set
of all logically closed theories.

Since D?D is antitonic, by the well-known Tarski fixed-point theorem, we obtain that D?D
has a least fixed point, Lp = Ifp (D%), and a greatest fixed point, Gp = gfp (D}Q)).

3.7 Proposition We have Lp = Dp(Gp) and Gp = Dp(Lp). Furthermore, (Lp,Gp) is a
consistent model of P.

We call (Lp, Gp) the well-founded model of P, borrowing terminology from nonmonotonic
reasoning [Sub99].

3.8 Theorem For every stable model S we have Lp C S C Dp(Lp). Furthermore, if Lp =
Dp(Lp) for some program P, i.e. if the well-founded model is total, then P has unique stable
model Lp.

It can now easily be shown that the even numbers program from Example 3.3 has a total
well-founded model, and hence a unique stable model.

3.2 Implicit and Explicit Knowledge

Extended disjunctive logic programming in algebraic domains enables us to represent knowl-
edge in a variety of ways. Causal dependence may be encoded in the structure of the domain,
i.e. implicitly, or explicitly by rules consituting a logic program. Likewise, negative informa-
tion may be encoded implicitly in the domain, by facilitating inconsistency, or explicitly by
using default negation. We give an example for this using a new representation of a classical
problem.

3.9 Example We want to represent the following knowledge: (1) Tweety is a penguin. (2)
Bob is a bird. (3) Birds fly or are penguins. (4) Birds always fly, unless the opposite can be
shown. (5) Pengunins don’t fly. (6) Penguins are birds.

We choose to represent (5) and (6) implicitly using the domain, and the remaining
statements by a program. We first describe the domain D. Consider the set of items
A= {p(T),p(B),b(T),b(B), f(T), f(B),n(T),n(B)}, where T stands for “Tweety”, B stands
for “Bob”, p(X) stands for “X is a penguin”, b(X) for “X is a bird”, f(X) for “X can fly”,
n(X) for “X cannot fly”. Now define D to be the set of all subsets ¢ of A which satisfy the
following conditions for all X € {B,T'}: (i) ¢ does not contain both f(X) and n(X). (ii) ¢ does
not contain both b(X) and p(X). (iii) ¢ does not contain both p(X) and n(X). (iv) ¢ does not
contain both p(X) and f(X).

For ¢,d € D let ¢ < d if and only if one of the following holds: (i) ¢ C d, (ii) p(X) € d and
c=(d\p(X))Ub(X) for some X € {B,T}, (iii) p(X) € d and ¢ = (d\ p(X)) Un(X) for some
X € {B,T}. We consider the domain (D, C), where C is the reflexive and transitive closure
of <.

We note that in D, for all X € {B,T}, sets containing both n(X) and f(X) are incon-
sistent, as are sets containing both p(X) and f(X). Now consider the following extended

disjunctive program P

b {b(X)} forall X € {B,T}
X))}« {b(X)-n(X)} forall X € {B,T}

and the interpretation S = cons({p(T),b(T),n(T),b(B), f(B)}). The reader will easily verify
that S is a stable model of P. In particular, we notice that in this model Tweety does not fly,
but Bob does.

Let us now analyse how knowledge is represented in Example 3.9. The sentences (1) to
(4) are certainly being represented by the clauses of the program P, while (5) and (6) are
satisfactorily represented by the structure of the underlying domain. We can regard (5) and (6)
as background knowledge, and thus obtain a conceptually clean way of distinguishing between
background or domain knowledge, and the explicit knowledge given by the program rules.
Likewise, negated knowledge is treated. “Flying” and “not flying” are opposite properties,
and can not hold of a single object at the same time. This knowledge is encoded in the
structure of the domain, by making them inconsistent. Default negation was used explicitly
in the program, and in the tradition of default logic was used for representing rules which
“normally” hold, i.e. to which there may be exceptions.

4 Conclusions and Further Work

We introduced reasoning with default negation to domain theory, in the form of logic program-
ming in coherent algebraic domains. Many possible lines of investigation open up from our
first observations, and we want to name just a few. All these matters are under investigation
by the author.

(1) Logic of domains. In the recent past, it became apparent that extended disjunctive
logic programming, and its appropriate semantics, provides a very powerful tool for knowledge
representation and reasoning, see eg. [Lif99, MT99]. It is therefore reasonable to expect that
the well-established research area concerned with the relationships and the interplay between
logic and domain theory could profit from extensions along these lines. Generalized approaches
to the well-founded and the stable semantics, as in [DMT00], could lead the way. For the
approach presented here it would be fortunate if the restriction to algebraic domains could be
disposed of, mainly because e.g. the interval domain, and the subsumption lattice NCAdW97],
fail to be algebraic.

(2) Domain-theory based logic programming. In classical logic programming, as imple-
mented for example in Prolog, the use of negation is still unsatisfactory from a theoretical
point of view, and it will probably remain so, since it can be argued that negation, as gen-
erally implemented in these systems, is not a clean declarative concept. Investigations on
logic programming in algebraic domains may at some stage lead to a clean programming
paradigm, including negation, which may be as powerful and applicable as modern Prolog
systems. How this can be achieved is yet unclear, but first steps along these lines have al-
ready been performed, e.g. in [KRZ98]. Yet another line of research may be concerned with
the machine learning paradigm known as inductive logic programming (ILP), see [MdR94],
which still lacks a broad theoretical foundation. How this paradigm could be connected to
domain theory proper is an open question, in particular since the subsumption lattice, which

features prominently in ILP [NCdW97], fails to be a domain. As we have seen in Example
3.9 above, however, logic programming in algebraic domains provides a very natural way for
a conceptually clean distinction between background knowledge and programs. For a domain-
theory-based ILP paradigm one would attempt to encode the background knowledge in the
domain and learn program rules.

(3) Theoretical foundations of answer set programming and deductive databases. Although
there is a broad base of theoretical work on answer set programming ([Lif99, MT99]) and
deductive databases ([Min97]), domain-theoretic foundations have, to our knowledge, not yet
been studied for these paradigms — apart from some investigations concerning fixed-point
semantics, e.g. [KKM93, HS99, DMT00, Hit01]. Extended disjunctive logic programming as
presented in this report may provide an important link.

(4) Application to reasoning on concept lattices [GW99b, GW99a]. Although concept lat-
tices are structurally different from algebraic domains, we expect that reasoning techniques
developed for the latter can be applied to the former, and indeed the pursuit of possible appli-
cations to concept lattices may also drive the theoretical development on algebraic domains.
We forsee that an important matter which will have to be addressed in order to allow a cross-
transfer is that of paraconsistency, i.e. the research will almost automatically shed light onto
the question how negation should be handled for concept lattices.

References

[AC98] R.M. Amadio and P.-L. Curien. Domains and Lambda- Calculi, volume 46 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, Cam-
bridge, 1998.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322. Plenum Press, New York, 1978.

[DMT00] M. Denecker, V.W. Marek, and M. Truszynski. Approximating operators, stable
operators, well-founded fixpoints and applications in non-monotonic reasoning.
In J. Minker, editor, Logic-based Artificial Intelligence, chapter 6, pages 127-144.
Kluwer Academic Publishers, Boston, 2000.

[Fit85] M. Fitting. A Kripke-Kleene-semantics for general logic programs. Journal of
Logic Programming, 2:295-312, 1985.

[Fit94] M. Fitting. Metric methods: Three examples and a theorem. Journal of Logic
Programming, 21(3):113-127, 1994.

[GL8S] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R.A. Kowalski and K.A. Bowen, editors, Logic Programming. Proceedings of
the 5th International Conference and Symposium on Logic Programming, pages
1070-1080. MIT Press, 1988.

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365-385, 1991.

[GRS91] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620-650, 1991.

10

[GW99a]

[GW99b]

[HitO1]

[Hit02]

[HS99]

[HS0x]

[KKM93]

[KRZ98]

[Lif99)]

[MdR94]

[Min97]

[MT99]

B. Ganter and R. Wille. Contextual attribute logic. In W.M. Tepfenhart and W.R.
Cyre, editors, Conceptual Structures: Standards and Practices, 7th International
Conference on Conceptual Structures, ICCS’99, Blacksburg, Virginia, USA, July
1999, volume 1640 of Lecture Notes in Computer Science, pages 377-388. Springer,
Berlin, 1999.

B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin, 1999.

P. Hitzler. Generalized Metrics and Topology in Logic Programming Semantics.
PhD thesis, Department of Mathematics, National University of Ireland, Univer-
sity College Cork, 2001.

Pascal Hitzler. Resolution and logic programming in algebraic domains: Negation
and defaults. Technical Report WV-02-05, Knowledge Representation and Reason-
ing Group, Department of Computer Science, Dresden University of Technology,
Dresden, Germany, 2002.

P. Hitzler and A.K. Seda. Some issues concerning fixed points in computational
logic: Quasi-metrics, multivalued mappings and the Knaster-Tarski theorem. In
Proceedings of the 14th Summer Conference on Topology and its Applications: Spe-
cial Session on Topology in Computer Science, New York, volume 24 of Topology
Proceedings, pages 223-250, 1999.

P. Hitzler and A.K. Seda. Generalized metrics and uniquely determined logic
programs. Theoretical Computer Science, 200x. To appear.

M.A. Khamsi, V. Kreinovich, and D. Misane. A new method of proving the exis-
tence of answer sets for disjunctive logic programs: A metric fixed-point theorem
for multivalued mappings. In C. Baral and M. Gelfond, editors, Proceedings of the
Workshop on Logic Programming with Incomplete Information, Vancouver, B.C.,
Canada, pages 58-73, 1993.

E. Klavins, W. Rounds, and G.-Q. Zhang. Experimenting with power default rea-
soning. In Proceedings of the AAAI National Conference on Artificial Intelligence,
1998.

V. Lifschitz. Answer set planning. In D. De Schreye, editor, Logic Programming.
Proceedings of the 1999 International Conference on Logic Programming, pages
23-37, Cambridge, Massachusetts, 1999. MIT Press.

S. Muggleton and L. de Raedt. Inductive logic programming: Theory and appli-
cations. Journal of Logic Programming, 19-20:629-679, 1994.

J. Minker. Logic and databases: Past, present, and future. AT Magazine, 18(3):21-
47, 1997.

V.M. Marek and M. Truszczynski. Stable models and an alternative logic program-
ming paradigm. In K.R. Apt, V.W. Marek, M. Truszczynski, and D.S. Warren,
editors, The Logic Programming Paradigm: A 25 Year Persepective, pages 375-398.
Springer, Berlin, 1999.

11

[NCAW97] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-

[Plo78]

[Prz88]

[ReiS0]

[RZ01]

[SHLG94]

[Sub99]

ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, Berlin,
1997.

G. Plotkin. T% as a universal domain. Journal of Computer and System Sciences,
17:209-236, 1978.

T.C. Przymusinski. On the declarative semantics of deductive databases and logic
programs. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 193-216. Morgan Kaufmann, Los Altos, CA, 1988.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

W.C. Rounds and G.-Q. Zhang. Clausal logic and logic programming in algebraic
domains. Information and Computation, 171(2):156-182, 2001.

V. Stoltenberg-Hansen, I. Lindstrom, and R. Griffor. Mathematical Theory of
Domains. Cambridge University Press, 1994.

V.S. Subrahmanian. Nonmonotonic logic programming. IEEE Transactions on
Knowledge and Data Engineering, 11(1):143-152, January/February 1999.

12

