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Abstract 
We demonstrate the separation of the complexity class NP from its subclass P. 

 

Preliminaries 
Preliminary definitions and background can be found in [Sudkamp, 2006], and the following are taken 
from [Sudkamp, 2006]. 

[Sudkamp, 2006, Section 8.7]: Every nondeterministic Turing Machine can be simulated by a 
deterministic Turing Machine. Hence, they give rise to the same notion of computability. 

[Sudkamp, 2006, Definition 8.8.1]: A deterministic (k-tape) Turing Machine enumerates a language L if all 
of the following hold. 

• The computation begins with all tapes blank. 

• With each transition, the tape head on tape 1 (the output tape) remains stationary or moves to 
the right. 

• At any point in the computation, the nonblank portion of tape 1 has the form 
B#u1#u2#...#uk#  or  B#u1#u2…#uk#v 
where u1,u2,… are in L and v is a string over the tape alphabet. 

• A string u will be written on tape 1 preceded and followed by # if, and only if, u is in L. 

[Sudkamp, 2006, Theorem 8.8.6]: A language is recursively enumerable if, and only if, it can be 
enumerated by a deterministic Turing Machine. 

The following is easily shown from the above. We include a proof for completeness. 

Theorem 1 
A language is recursively enumerable if, and only if, it can be enumerated by a nondeterministic Turing 
Machine. 

Proof. 
By the results cited above, a language is recursively enumerable if, and only if, it can be enumerated by a 
deterministic Turing Machine, while deterministic Turing Machines can simulate nondeterministic ones 
(and vice versa).  qed. 

Results 
We now proceed to the new results. 



Theorem 2 
Every set of non-negative integers is recursively enumerable. 

Proof. 
Let S be an arbitrary set of non-negative integers. Let L be the language containing exactly those strings 
over {0,1} which are binary representations of a number in S. 

Now consider the following (1-tape) nondeterministic Turing Machine M, where q0 is the start state, 
and B stands for a blank read from the tape. 

 

 

 

Obviously, there is a computation of M which produces L (and therefore S). By Theorem 1 we have that 
L, and therefore S, is recursively enumerable. Since S was chosen arbitrarily, any set of non-negative 
numbers is recursively enumerable. qed. 

Corollary 1 
The set of all subsets of the non-negative integers is countable. 

Proof. 
Since every Turing Machine can be described by a finite string (or, use Gödel numbering), the set of all 
Turing Machines is countable. Since every subset of the non-negative integers can be enumerated by a 
Turing Machine (Theorem 2), the set of all these subsets must be countable.  qed. 

Corollary 2 
The theoretical foundations of Computer Science are contradictory. 

Proof. 
Georg Cantor has shown (using a diagonalization argument) that the set of all subsets of the non-
negative integers is uncountable, which contradicts Corollary 1.   qed. 

Corollary 3 
P ≠ NP. 

Proof. 
Since the theoretical foundations of Computer Science are contradictory, the statement follows 
immediately.   qed. 
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