
Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

PrOM: A Semantic Web Framework for Provenance
Management in Science

Satya S. Sahoo1, Roger Barga2, Amit Sheth1, Krishnaprasad Thirunarayan1, Pascal Hitzler1

1
Kno.e.sis Center

Computer Science and Engineering Department,
Wright State University,
Dayton, OH, USA 45435

{sahoo.2, amit.sheth, t.k.prasad,
pascal.hitzler}@wright.edu

2
Microsoft Research

One Microsoft Way,
Redmond, WA 98052, USA

barga@microsoft.com

ABSTRACT

The eScience paradigm is enabling researchers to collaborate over

the Web in virtual laboratories and conduct experiments on an

industrial scale. But, the inherent variability in the quality and

trust associated with eScience resources necessitates the use of

provenance information describing the origin of an entity.

Existing systems often model provenance using ambiguous

terminology, have poor domain semantics and include modeling

inconsistencies that hinders interoperability. Further, mere

collection of provenance information is of little value without a

well-defined and scalable query mechanism.

In this paper, we present "PrOM", a framework that addresses

both the modeling and querying issues in eScience provenance

management. The theoretical underpinning for PrOM consists of,

(a) a novel foundational ontology for provenance representation

called "Provenir", and (b) the first set of query operators to be

defined for provenance query and analysis. The PrOM framework

also includes a scalable provenance query engine that supports

complex queries (high “expression complexity”) over a very large

real world dataset with 308 million RDF triples. The query engine

uses a new class of materialized views for query optimization that

confers significant advantages (up to three orders of magnitude) in

query performance.

Categories and Subject Descriptors

H.2.m [Miscellaneous], H.2.8 [Database Applications], H.2.1

[Data Models]

Keywords

Provenance framework, eScience, Provenir foundational ontology,

Query operator, Materialized Provenance Views, scalability

1. INTRODUCTION
Scientists, in multiple domains, are leveraging distributed data and

computing resources over the Web to achieve their objectives

faster, more efficiently and on an industrial scale. This eScience

paradigm includes domains such as biology [1], oceanography [2],

and astronomy [3], involving the use of a variety of resources

such as sensors, Web-based computational tools, and data

repositories. In eScience, the lineage of a resource is important

metadata not only for researchers, but also for many analytical

tools in data mining, data integration, and knowledge discovery.

Provenance metadata, from the French word provenir meaning "to

come from," represents the lineage or history of an entity.

Provenance has been studied from multiple perspectives in

computer science, such as database provenance [4], [5] [6], and

scientific workflow provenance [7] [8], but there are many open

research issues in provenance management. An example is the

need for a common representation model for provenance to

facilitate provenance interoperability, provenance integration

across different projects, and enforce consistent use of

terminology. A common provenance model should also closely

reflect domain-specific details (domain semantics) that are

essential to answer end user queries in real world applications.

Ontologies are considered a suitable modeling solution for these

requirements and in addition they also support reasoning to

discover implicit knowledge over large datasets [9] [10].

Ontologies are used in many scientific domains [11] and are

gaining rapid community acceptance, for example the National

Center for Biomedical Ontologies (NCBO)1 lists 166 ontologies in

the life science domain. Provenance ontologies not only reduce

terminological heterogeneity to facilitate interoperability, but also

support discovery of implicit knowledge over large datasets using

reasoning tools. Unfortunately, provenance information varies

across different domains and the creation of a single, all

encompassing provenance ontology is impractical. To address this

challenge, this paper proposes a modular, multi-ontology

approach centered on a foundational ontology for provenance,

called Provenir. The Provenir ontology ensures (a) a common

modeling basis, (b) conceptual clarity of provenance terms, and

(c) use of ontology design patterns for consistent modeling [12].

The Provenir ontology can be extended to create interoperable

domain-specific provenance ontologies and this is demonstrated

in the paper through the creation of an oceanography domain-

specific provenance ontology called Trident.

In addition to provenance representation, a well-defined and

scalable query infrastructure is essential to enable real world

applications to utilize provenance information. Existing

provenance systems often use a generic query mechanism, such as

SQL, or ad hoc implementations that satisfy the requirements of

the given application. In this paper, we argue for a dedicated

provenance query infrastructure that can support provenance

queries efficiently and scale with large datasets. The provenance

literature features a variety of queries often reflecting the

requirements of a specific application [13]. But, to date there has

been no systematic study of provenance query characteristics. We

introduce a classification scheme for provenance queries not only

to categorize provenance queries, but also use the classification

scheme to define a set of specialized query operators. The

provenance query operators are defined in terms of the Provenir

ontology, which enables the query operators to be used with any

domain-specific provenance ontology that extends the Provenir

ontology.

1 http://www.bioontology.org/ Copyright is held by the author/owner(s).

WWW 2010, April 24-30, 2010, Raleigh, North Carolina.

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

The Provenir ontology together with the query operators

constitutes the theoretical underpinning of the PrOvenance

Management (PrOM) framework for eScience. Further, the PrOM

framework includes the implementation of a scalable provenance

query engine over a RDF data store that uses the SPARQL RDF

query language [14] to query provenance information. Provenance

queries from the Neptune oceanography project [2] are used to

evaluate the performance of the provenance query engine

implementation. In the next section, we give an overview of the

Neptune project and the oceanography scenario used as the

running example in this paper.

1.1 Motivating Scenario in Oceanography
The Neptune project [2], led by the University of Washington, is

an ongoing initiative to create a network of instruments widely

distributed across, above, and below the seafloor in the northeast

Pacific Ocean. We consider a simulated scenario, illustrated in

Figure 1, involving data collection by ocean buoys (containing a

temperature sensor and an ocean current sensor), and data

processing by a scientific workflow that creates visualization

charts as output.

Figure 1: A simulated oceanography scenario from the

Neptune oceanography project

We consider two scenarios that require the use of provenance

information for analyzing and managing the data in this project:

1. One of the ocean buoys is found to be damaged due to a

recent storm. Hence, all visualization charts created using

data from this ocean buoy, after it was damaged, need to be

discarded and new charts should be created using correct

sensor data. This is a typical provenance related query and

can be addressed using two approaches. In the first approach,

the provenance information of each visualization chart can be

analyzed to locate the relevant set of possibly inaccurate

visualization charts. In the second approach, a set of

constraints can be defined on the provenance information to

retrieve the data entities that satisfy these constraints, for

example “given the identifier of the damaged ocean buoy,

locate all visualization charts that used data from this sensor”

(generated after the ocean buoy was damaged).

2. Another typical scenario involves the comparison of

provenance information associated with given results. For

example, oceanography researchers can query for two

visualization charts that were generated from sensor data

collected under equivalent weather conditions. The user can

define the context for comparison of the provenance

information in terms of wind speed, temperature, and

precipitation.

We use these two scenarios as the running example to motivate

the modeling decisions in the Provenir ontology and also to define

the functional semantics of the provenance query operators. We

also use the data and the associated provenance information from

this scenario to evaluate the performance of the provenance query

engine.

The rest of the paper is organized as follows: In section 2, we

describe the motivation, constituent components, and use of the

Provenir ontology as a foundational model for provenance. In

Section 3, we introduce a classification scheme for provenance

queries and use this classification scheme to define a set of

provenance query operators. In section 4, we describe the

implementation and evaluation results of the provenance query

engine for complex queries over very large real world datasets.

We describe related provenance work in Section 5 and finally

conclude in Section 6.

2. PROVENANCE MODELING
Traditionally in scientific experiments, provenance has been

represented as hand-written notes to keep track of experiment

conditions, results, and project details. ProPreO was one of the

first provenance ontologies developed to model provenance in

high-throughput proteomics experiments [15]. Similar efforts

include the Microarray Gene Expression Data (MGED) ontology

that was created to track provenance in microarray experiments

[16], while the Functional Genomics Investigation Ontology

(FuGO) was created to model provenance in functional genomics.

These multiple projects in provenance management highlight the

need for interoperability of provenance information, which can be

facilitated if the provenance ontologies share a common modeling

basis and uniform use of terms. Foundational upper-level

ontologies have traditionally been used to enforce these consistent

design principles and to facilitate domain ontology

interoperability and integration [12].

In this section, we describe the creation of the provenance upper-

level ontology called Provenir. We also demonstrate that the

Provenir ontology is a well-engineered foundational ontology that

can easily be extended by creating a domain-specific provenance

ontology for the Neptune oceanography project called Trident.

2.1 The Provenir ontology: A Foundational

Model of Provenance
The primary challenge in defining the structure of the Provenir

ontology is to strike a balance between the abstract upper-level

ontologies, such as the Suggested Upper Merged Ontology

(SUMO), and the detailed domain-specific provenance ontologies.

The Provenir ontology represents the set of provenance terms that

are common across domains and can easily be extended by

developers of domain-specific provenance ontologies according to

their requirements. This not only significantly reduces the

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

workload of ontology developers, but also ensures modeling

consistency.

The top-level classes in the Provenir ontology are derived from

two primitive concepts of “occurrent” and “continuant” defined in

philosophical ontology [17]. Continuant represents “… entities

which endure, or continue to exist, through time while undergoing

different sorts of changes, including changes of place” [17] and

occurrent represents “…entities that unfold themselves in

successive temporal phases” [17]. It is easy to see that occurrent

corresponds to the “process” entities used in science, such as

experiment processes and data processing. Other entities can be

categorized into two sub-types of continuants namely, “agents”

such as temperature sensor and “data” such as visualization charts

(examples from the Neptune project described in Section 1.1).

Figure 2: The provenir ontology schema

The three concepts of process2, data, and agent form the

top-level classes in the Provenir ontology (Figure 2). Further, the

explicit modeling of relations as first class entities is an important

characteristic of Semantic Web modeling languages. For the

Provenir ontology we adapted the properties defined in the

Relation ontology (RO) [17] to link provenance terms. The RO

was created by the Open Biomedical Ontologies (OBO) Foundry

and defines a set of ten primitive properties with well-defined

“domain” and “range” values. These properties were mapped to

appropriate Provenir classes with restrictions on their domain and

range values as required for provenance modeling.

For example, the class data is linked to a process as either

input or output value and this is modeled by the relation

“has_participant” (domain: process, range: data).

Similarly, the notion that an agent initiates, modifies or

terminates a process is captured by the relation “has_agent”

(domain: process, range: agent). We note that the class

data is linked to agent only through an intermediary

process, for example a list of peptides (data) is linked to a

mass spectrometer (agent) through the protein analysis

process. The Provenir ontology also differentiates between the

data values that undergo change in a process, for example

2 Ontology classes and relations are denoted using courier new font.

conversion of sensor data to create visualization charts, and

parameter values that influence the behavior of a process

(Figure 2).

The Provenir ontology further classifies parameters along the

well-defined spatial (spatial_parameter), temporal

(temporal_parameter), and thematic

(domain_parameter) dimensions. The geographical location

of a sensor (agent) is an example of spatial_parameter.

The parameter entities are linked to the data and agent

classes by the relation has_parameter. A detailed description

of the Provenir ontology classes and properties appears in [18].

The Provenir ontology is represented in OWL DL, the decidable

profile of the W3C Web Ontology Language (OWL) with a

description logic expressivity of ALCH. This ontology is under

active consideration at the OBO Foundry for listing as a

foundational model of provenance.

The Provenir ontology has been extended to create three domain-

specific provenance ontologies; the ProPreO ontology (described

at the start of this section) has been re-structured to extend the

Provenir ontology. The Parasite Experiment ontology [19] is the

second domain-specific ontology created by extending the

Provenir to model provenance in gene knockout and parasite

strain creation experiments, both ProPreO and the Parasite

Experiment ontology are listed at NCBO. In the next section, we

describe the third domain-specific ontology called Trident that

extends the Provenir ontology to model the provenance

information for the Neptune oceanography project.

2.2 Trident ontology: Modeling

Oceanography Provenance
The provenance information for the Neptune project can be

divided into two categories of (a) workflow provenance

corresponding to the components of the scientific workflow, and

(b) domain-specific provenance capturing the domain semantics

such as details of the sensors and ocean buoy. Existing

provenance systems have primarily focused on only workflow

provenance [20] while partially or completely ignoring domain

semantics. For example, in the Neptune oceanography scenario

details describing the sensors and location of ocean buoys are

critical provenance information.

Figure 3: Trident ontology schema extending the Provenir

ontology

The Provenir ontology and its extension in form of the Trident

ontology incorporate both the domain semantics and the

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

workflow-specific provenance. The Trident ontology extends the

Provenir agent class to model the temperature and ocean current

sensors as well as the ocean buoy. Further, the sensors are linked

to specific ocean buoys using the contained_in relation that

enables tracking of sensor data from the damaged ocean buoys.

Figure 3 gives an overview of the Trident ontology schema and

maps its classes to the Provenir ontology.

The formal OWL-based representation of provenance information

in the Trident ontology enables the use of the rich set of Semantic

Web reasoning mechanism [10] for provenance query and

analysis. In the next section, we introduce a dedicated query

infrastructure for provenance.

3. PROVENANCE QUERY and ANALYSIS
The provenance literature discusses a variety of queries that are

often executed using generic or ad-hoc query mechanisms.

Provenance queries in workflow systems focus on execution of

computational process and their input/output values (for example,

the queries featured as part of the Provenance Challenge [13]).

Provenance queries in relational databases trace the history of a

tuple or data entity [21]. In contrast, scientists formulate

provenance queries that incorporate complex domain semantics

using application-specific terminology [22]. But, without a

systematic study to identify and understand provenance query

characteristics, it is difficult to create a dedicated and well-defined

provenance query infrastructure to support this large variety of

queries across multiple domains and projects. In the next section

we define the first classification scheme for provenance queries.

3.1 Provenance Query Classification
We classify provenance queries into three broad categories using

the input parameters and the query results as the classification

metrics.

Category I: Retrieve provenance information: This category of

queries, given a data entity, returns the complete provenance

information that influenced the current state of the data entity. The

retrieval of provenance information of a “HyperCube” object with

identifier “HyperCube85357162234026” is an example of this

category of queries from the Neptune oceanography scenario.

These queries are the most common category of provenance

queries.

Category II: Retrieve data entities that satisfy provenance

constraints: An exact opposite perspective to the first category of

query is to retrieve a set of data entities that satisfy a given set of

constraints defined over the provenance information. A query to

retrieve “chart visualization” files created using data from the

damaged ocean buoy with identifier “oceanBuoy7044” located at

geographical coordinates “475111N:1222118W” between “April

21, 2003 to May 2, 2003” is an example of this category of

queries. This class of queries does not feature frequently in the

provenance literature but is important to identify data entities with

similar provenance characteristics as demonstrated by the

example query to retrieve data from the damaged ocean buoy.

Category III: Operations on provenance information: This

category of queries involves modification or comparison of

provenance information. For example, the accurate comparison of

two sets of ocean temperature observations requires the

comparison of the associated provenance information to verify

that they were created under equivalent experimental conditions

and generated by the same type of sensors.

These three categories of provenance queries have different

sets of input/output values and execution semantics. The creation

of a standard query mechanism to address each category of

provenance query will not only help end-users, but also facilitate

the creation of a practical provenance query infrastructure. In the

next section, we use this provenance query classification scheme

to define a first set of provenance query operators.

3.2 Provenance Query Operators
Our query operators are defined in terms of the Provenir ontology

schema that allows them to be used to query any domain-specific

provenance ontology (that extends the Provenir ontology).

Further, the input, intermediate, and output values of the query

operators are strictly typed using the Provenir ontology classes.

This section describes both functional semantics of the query

operators using the Neptune oceanography example scenario and

the execution semantics using set-theoretic representation.

3.2.1 Retrieval of Provenance Information
1. provenance () - The first query operator is defined to

support Category I provenance queries (Section 3.1) and is a

closure operation on the provenance information. The operator

takes as input any given data entity and returns the complete

provenance information associated with the data entity.

Figure 4: The result graph from the provenance () query

operator

The provenance () query operator defines a pattern constructed in

two steps, namely (a) Initialization phase, and (b) Recursive

phase. In the initialization phase, the individuals of the class

process linked to the input value by property

has_participant (Figure 4) are added. In the recursive

phase, these process individual are used to locate all

individuals of the class process, linked by the property

preceded_by, which is implemented as a transitive closure

function for the <process, preceded_by) class-property pair

of entities. Further, all individuals of the agent, parameter,

and data_collection classes linked to process individuals

are added to the query result (Figure 4). The query operator is

defined formally using set-theoretic representation, where the

notation <s, p, o> stands for a subject, predicate, object triple as

used in the Provenir ontology.

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

In the next section, we introduce the second provenance query

operator to retrieve data entities that share similar provenance

characteristics.

3.2.2 Provenance Context: Retrieval of Data Entities
provenance_context() - This query operator supports the

provenance queries in Category II (Section 3.1). The query

operator takes as input provenance values as constraints and

returns data entities that satisfy the provenance constraints. In

effect, the query input values define a formal “provenance

context” composed of constraint values defined over all available

provenance information. For example, the provenance details such

as ocean buoy identifier-“oceanBuoy7044”, geographical

coordinates- “475111N:1222118W”, and temporal constraints-

“April 21, 2003 to May 2, 2003” form a very specific contextual

structure that is used to identify data entities that satisfy these

provenance constraints. The data entities in the query result have

similar or equivalent provenance and hence can be interpreted

with equal level of trust.

The query operator can be formally defined using the provenance

() query operator (described earlier in Section 3.2.1).

3.2.3 Compare and Merge Provenance
The third category of query operators is defined to compare and

merge provenance information. To focus on the semantics of the

query operators, the RDF graph representing provenance metadata

is assumed to be a ground RDF graph [23], that is, it does not

contain any blank nodes. The use of ground RDF graph

corresponds to the modeling approach exemplified by the

Provenir ontology that represents both provenance and data as

“first class citizens” and does not require use of RDF reification

or named graphs to model provenance information.

We use a quadruple consisting of vertices, edges, mapping

function to label vertices and edges, and a mapping function to

map vertices to Provenir classes, to describe a provenance graph.

3. provenance_compare (): Accurate comparison of scientific

results requires the comparison of the associated provenance

information. For example, two ocean visualization charts are said

to be comparable if the associated provenance information (type

of sensors, parameters used in the scientific workflow) are

identical. We use the RDF graph equivalence definition [24] with

the added functionality of “coloring” the nodes and labeling the

edges using the Provenir ontology schema to define equivalence

between two provenance graphs. The formal definition of the

query operator is as follows:

The next query operator enables the merging of provenance

information, for example provenance from different stages of an

experiment protocol can be merged to construct an unified view of

the experiment process.

4. provenance_merge (): The query operator takes as input two

provenance graphs and gives as output a single, merged

provenance graph. The merged graph does not include any

duplicates individuals. A formal definition of the merge operator

is described below.

These query operators enable provenance management systems to

offer a well-defined mechanism to query provenance information

using the Provenir ontology as a foundational model. In the next

section, we describe the implementation of a provenance query

engine that supports the query operators over an RDF data store.

4. PROVENANCE QUERY ENGINE:

IMPLEMENTATION and EVALUATION
The provenance query engine is designed as a Java-based

Application Programming Interface (API) to support the

Definition 4: provenance_merge ()

Input: G1, G2
G1 = (V1, E1, l1, m1)
G2 = (V2, E2, l2, m2)
Output: (V1 ∪ V2, E1 ∪ E2, l, m), where
 l(x) = { l1(x) if x ∈ V1 ∪ E1
 l2(x) if x ∈ V2 ∪ E2 and where
 m: V1 ∪ V2 → Nc : m(x) = * m1(x) if x ∈ V1, m2(x) if x ∈ V2

Definition 3: provenance_compare ()

Input: G1, G2
G1 = (V1, E1, l1, m1)
G2 = (V2, E2, l2, m2)
The two provenance graphs G1 and G2 are equivalent if there are
bijections,
i = V1 → V2 and
j = E1 → E2 such that
∀ (e1, e2) ∈ E1 we have (i(e1), i(e2)) ∈ j(e1, e2) and
∀ x ∈ V1 : m1 (x) = m2 (i(x)) holds.

G = (V, E, l, m)
 E ⊆ V2
 l: V ∪ E → L (L is set of Uniform Resource Identifiers)
 m: V → Nm (Nm is set of Provenir ontology classes)

Definition 2: provenance_context ()

SS: Search Space (set of all available triples)
DataC = {d | (d, rdf:type, data) ∈ SS}
Input: set of triples pc = pcg ∪ pcv,
where pcg describes provenance values directly connected to
data individuals and pcv includes variables in input triples.

Output = {dc | (pcg ⊆ provenance (dc)+ ∩
 {dc | for all (v, x, y) ∈ pcv we have (dc, x, y) ∈ SS+ ∩
 {dc | for all (x, y, v) ∈ pcv we have (x, y, dc) ∈ SS+ ∩
 {dc | (dc, rdf:type, DataC) ∈ SS}

Definition 1: provenance ()

SS: Search Space (set of all available triples)
Proc = {p | (p, rdf:type, process) ∈ SS}
Agent = {a | (a, rdf:type, agent) ∈ SS}
DataC = {d | (d, rdf:type, data) ∈ SS}
Input: dc

IN = {t ∈ SS | t = (s, has_participant, dc)}

P is smallest such that,
P = (*p | ∃ x, y. (P, x, y) ∈ IN} ∪ *p | ∃ x ∈ P. (x, preceded_by, p)})
∩ Proc
A = {a | (p, has_agent, a) ∈ SS ⋀ p ∈ P+ ∩ Agent
D = {d | (p, has_participant, d) ∈ SS ⋀ p ∈ P+ ∩ DataC
OUT = IN ∪ *(p1, preceded_by, p2) ∈ SS | p1, p2 ∈ P+ ∪
 {(p, has_agent, a) ∈ SS | p ∈ P ⋀ a ∈ A+ ∪
 {(p, has_participant, d) ∈ SS | p ∈ P ⋀ d ∈ D+ ∪
 {(p1, part_of, p2) ∈ SS | p1, p2 ∈ P+ ∪
 {(a, has_parameter, pa) ∈ SS | a ∈ A ⋀ pa ∈ D+ ∪
 {(a1, adjacent_to, a2) ∈ SS | a1, a2 ∈A+ ∪
 {(a1, part_of, a2) ∈ SS | a1, a2 ∈A+ ∪
 {(a1, contained_in, a2) ∈ SS | a1, a2 ∈A+ ∪
 {(d1, part_of, d2) ∈ SS | d1, d2 ∈D+ ∪
 {(d1, contained_in, d2) ∈ SS | d1, d2 ∈D+ ∪
 {(d1, transformation_of, d2) ∈ SS | d1, d2 ∈D+ ∪
 {(d1, derives_from, d2) ∈ SS | d1, d2 ∈D}
Note: The definition of the set P is recursive and it is checked that
the set P is well-defined.

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

provenance query operators over a RDF data store. The query

engine described in this section is integrated with an Oracle 10g

(release 10.2.0.3.0) data store, but we note that the query engine

can be used with any RDF data store that supports SPARQL [14]

and inference rules. The Oracle 10g RDF data store uses a SQL

table function (RDF_MATCH) to efficiently query RDF data

[25]. The default Oracle 10g query interface does not support all

SPARQL functions, hence we used the Oracle‟s Jena [26] based

plug-in, which supports the full SPARQL specification.

Figure 5: Architecture of Provenance Query Engine

The provenance query engine consists of three functional

components (Figure 5):

a) A Query Composer: The query composer maps the

provenance query operators to SPARQL syntax according to

denotational semantics of the query operators (defined in

Section 3.2).

b) A Function to Compute Transitive Closure over RDF:

SPARQL query language does not support transitive closure

for an RDF <node, edge> combination. Hence we have

implemented a function to efficiently compute transitive

closure using the SPARQL ASK function. The result of this

function is used by the query composer.

c) Query Optimizer using Materialized Provenance Views:

Using a new class of materialized views based on the

Provenir ontology schema called Materialized Provenance

Views (MPV) a query optimizer has been implemented that

enables the query engine to scale with very large RDF data

sets.

In the next sub-section, we describe the SPARQL query composer

and transitive closure function.

4.1 SPARQL Query Composition
In this section, we briefly describe the SPARQL language

structure and the approach used by the query composer to map the

provenance query operator to SPARQL. A SPARQL query is

composed of a set of triples (each triple is of the form, <Subject,

Property, Object>) to form a query pattern called basic graph

pattern (BGP), where any one of the three constituents may be a

variable. For example, <?x, is_president_of,

UnitedStateofAmerica> is a triple pattern with the variable „?x‟.

The BGP is used to find a sub-graph from the RDF store where

the values in the sub-graph may be substituted for the variables in

the BGP resulting in a RDF graph equivalent to the sub-graph

[14]. But, if suitable instantiation of variables in BGP are not

found in the RDF store, no results are returned [14].

The provenance query operators represent the complete result set

by defining exhaustive set of dependencies among data, process,

and agent. However, in real world scenarios the provenance

information available can be incomplete due to application-

specific or cost-based limitations. Hence, a straightforward

mapping of provenance query operators to SPARQL as a BGP is

not desirable. Such a BGP-based query expression pattern may

not return a result in the presence of incomplete provenance

information. The OPTIONAL function in SPARQL can be used to

specify query expression patterns that can succeed with partial

instantiation, yielding maximal “best match” result graph. Hence,

the query composer uses this OPTIONAL function to create a

query expression pattern.

Further, as discussed in Section 3.2, the query composer also

needs to compute the transitive closure over the <process,

preceded_by> combination to retrieve all individuals of the

process class linked to the input value. But, unlike many graph

database query languages such as Lorel or GraphLog, [27],

SPARQL does not provide an explicit function for transitive

closure to answer reachability queries. 3 We now describe the

transitive closure function implemented in the provenance query

engine.

4.1.1 Transitive Closure Function
We had two options in implementing the transitive closure

function, namely a function that is tightly couple to the RDF store

or a generic function. We chose a generic implementation using

the SPARQL ASK function that allows the provenance query

engine to be used over multiple RDF stores. The SPARQL ASK

function allows “application to test whether or not a query pattern

has a solution,” [14] without returning a result set or graph. The

transitive closure functions starts with the process instance (p1)

linked to the input value and then recursively expands the

SPARQL query expression using the ASK function till a false

value is returned. The SPARQL ASK function, in contrast to the

SELECT and CONSTRUCT functions, does not bind the results

of the query to variables in the query pattern. Hence, it is a low-

overhead function for computing transitive closure. The results of

a comparative evaluation of the SPARQL functions along with the

performance evaluation of a straightforward implementation of

the provenance query engine are presented in the next section.

4.2 Evaluation of a Straightforward

Provenance Query Engine Implementation
We use the two standard complexity measures of (a) Query or

Expression Complexity (varying the syntax of the query with

fixed data size), and (b) Data Complexity (vary the data size with

a fixed query expression) [28], to characterize the performance of

the provenance query engine. The evaluation results presented in

this section are for the provenance () query operator, which

represents the majority of provenance queries.

The expression complexity of the SPARQL graph pattern using

the OPTIONAL function is PSPACE-complete [29]. As discussed

earlier in this section (Section 3.2), the SPARQL query pattern for

the provenance () query operator requires the use of OPTIONAL

3
The W3C DAWG postponed a decision on transitive closure in SPARQL

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

function with multiple levels of nesting. The other components

that affect the evaluation of a SPARQL query are the total number

of variables and the number of triples defined in the query pattern.

Hence, to evaluate the expression complexity of the provenance ()

query operator, we use five queries (listed in Table 1) with

increasing number of variables, triple patterns, and nesting levels

using the OPTIONAL function over a fixed dataset size. The five

queries, from the Neptune oceanography project, involve retrieval

of provenance information associated with different data entities.

Table 1. SPARQL query details to evaluate expression

complexity using the provenance () query operator

Query: Retrieve

Provenance of given

Input Value

Number

of

Variables

Number

of

Triples

Nesting

using

OPTIONAL

Q1. codar_mnty_

908294932772185.nc
31 86 4 levels

Q2. NetCDFReader

90829493474170
45 126 5 levels

Q3. HyperCubeSchema

90829493462995
45 126 5 levels

Q4. HyperCube

90829493567757
59 166 6 levels

Q5. ChartDataTable

90829493849637
73 206 7 levels

The data complexity of SPARQL for a fixed graph pattern

expression is LOGSPACE [29]. Using a fixed SPARQL query,

we evaluate the provenance () query operator over 5 different

datasets (listed in Table 2).

4.2.1 Experiment Setup and Dataset
The experiments were conducted using Oracle10g (Release

10.2.0.3.0) DBMS on a Sun Fire V490 server running 64-bit

Solaris 9 with four 1.8 GHz Ultra Sparc IV processors and 8GB of

main memory. The database used an 8 KB block size and was

configured with a 512 MB buffer cache. The timings reported are

mean result from five runs with warm cache.

The dataset for the evaluations was generated from the

oceanography scenario described in Section 1.1. The scientific

workflow was executed using the Trident workflow workbench

[30]. The Trident log file with additional details such as

temperature sensors, ocean current sensors, and ocean buoys, was

used as a template to generate the RDF data.

Table 2. SPARQL query details to evaluate expression

complexity using the provenance () query operator

Dataset

Id

Number of

Experiment

Cycles

Number of

Inferred RDF

Triples

Total Number of

RDF Triples

DS1 100 23,620 32,182

DS2 1000 226,671 309,459

DS3 10,000 2,257,096 3,082,184

DS4 100,000 22,560,776 30,808,427

DS5 1,000,000 225,596, 929 308, 069,953

Five datasets corresponding to 100, 1000, 10000, 100000, and 1

million experiment cycles are used (Table 2). The largest dataset

corresponding to 1 million experiment cycles contains about 308

million RDF triples. A rule index [25] was defined for inferencing

over the datasets using standard RDFS rules [31] and a user-

defined rule to infer that, “If the input value of a process (p1) is

the same as the output value of another process (p2), then p1 is

linked to p2 by the property preceded_by”. Table 2 lists the

total number of new RDF triples inferred using the RDFS and

user-defined rules for each of the five datasets.

4.2.2 Transitive Closure Computation using

SPARQL Functions
This experiment compares the performance of transitive closure

computation using the SPARQL “SELECT”, “CONSTRUCT”,

and “ASK” functions. The transitive closure for the five queries,

Q1 to Q5 (in Table 1), is computed using the largest dataset DS5

(in Table 2) of 308 million RDF triples.

Figure 6: Comparison of SPARQL query functions to

compute transitive closure for RDF <node, edge>

The results in Figure 6 show that the ASK function consistently

performs better than both the SELECT and the CONSTRUCT

functions. This is because both SELECT and CONSTRUCT

involve a binding of query results to query pattern variables and

graph pattern respectively. In contrast, the ASK function returns a

Boolean value indicating if a graph corresponding to the query

pattern exists in the RDF store. Hence, the ASK-function based

transitive closure function implemented in the query engine is a

low-overhead solution.

4.2.3 Query Expression Complexity
This experiment characterizes the expression complexity of the

provenance () query operator in SPARQL syntax. The results are

for the total query time, including time for transitive closure,

query composition, and query execution, for the five provenance

queries, Q1 to Q5 (in Table 1). The queries are executed against a

fixed size dataset, DS5 (in Table 2), with about 308 million RDF

triples representing 1 million experiment cycles.

Figure 7: Query expression complexity results with fixed

dataset size of DS5

The results (Figure 7) demonstrate that the query time increases

with increasing expression complexity of the queries. Thus a

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

straightforward implementation of the query engine is unusable

for provenance management systems in eScience projects.

4.2.4 Data Complexity
This experiment characterizes the data complexity of the

provenance () query operator in SPARQL syntax. The query Q5

(in Table 1) with maximum expression complexity is used as the

fixed query for evaluation over varying sizes of RDF datasets (in

Table 2).

Figure 8: Data complexity results with fixed SPARQL query

expression pattern of Q5

Figure 8 illustrates that the data complexity of the provenance ()

query operator is also large and an effective optimization

technique is necessary for use of the provenance query engine in a

practical provenance management system.

Overall, the evaluation results (Section 4.2.3 and Section 4.2.4)

clearly demonstrate that a straightforward implementation of the

provenance query engine cannot scale with both increasing

complexity of provenance query expressions and size of

provenance data. In the next section, we introduce a new class of

materialized views for query optimization to address both these

issues.

4.3 Materialized Provenance View
The provenance queries are graph traversal operations for path

computations. Path computation over graphs is an expensive

operation especially in the case of provenance queries that require

computation of fixed paths, recursive pattern-based paths and

neighborhood retrieval. The results of our evaluation show that

even industrial strength RDF database face severe limitations in

terms of response time for complex provenance queries over large

scientific datasets. To address this we define a new class of

materialized views called materialized provenance views (MPV)

that materializes provenance sub-graphs for selected classes of

input values. We consider two constraints to decide what data

should be materialized, (a) the cost of maintaining the

materialized views, that is, if a materialized view needs to be

recalculated when new RDF triples are added to the database, and

(b) the number and complexity of provenance queries that can be

satisfied by a MPV.

Provenance metadata by definition describes past events and

therefore they are not subject to frequent updates, except in the

presence of errors. Therefore materialized views are a suitable

approach for provenance query optimization. For the second

constraint, we use the Provenir model to identify one logical unit

of provenance information that can be used to satisfy not one but

multiple provenance queries. The provenance graph of the final

output of an experiment cycle, the “Chart Visualization” file

(Figure 9) represents a logical unit of provenance information for

the Neptune oceanography project scenario. This provenance

query engine computes the unit of provenance information using

the Provenir ontology.

Figure 9: A MPV corresponds to one experiment cycle

The MPV (Figure 9) can not only satisfy the provenance query for

“Chart Visualization” files, but also provenance queries for all

entities occurring in that one experiment cycle. A B-tree index is

used to index all instances of the data_collection class that

occur in that experiment cycle. Given an input value, the query

optimizer looks-up the B-tree index to decide if the query can be

satisfied by a MPV or by the underlying database. MPVs are

created using a memoization approach instead of an eager

strategy, since the total sum of MPVs created for all final output

values equals the database itself. In the next section we discuss the

evaluation results using MPV for query optimization.

4.4 Evaluation Results using MPV for Query

Optimization
We use the straightforward implementation (discussed earlier in

Section 4.2.3 and Section 4.2.4) as benchmark to discuss the

performance of the provenance query engine using MPV.

4.4.1 Query Optimization using MPV
In the first experiment, queries from Section 4.2.3 are evaluated

against a MPV.

Figure 10: Comparing expression complexity results with and

without using MPV

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

The MPV used in this experiment corresponds to one experiment

cycle with final output “ChartDataTable90829493849637”; the

MPV contained 86 RDF triples and occupied 12KB. Figure 10

clearly demonstrates the significant reduction in total query time

through the use of MPV. Note that a single MPV is used to satisfy

all provenance queries from Table 1. The percent gain in

performance with MPV as compared to query execution against

the database is listed in Table 3.

Figure 11: Comparing data complexity results with and

without using MPV

Similarly, the results in Figure 11 show significant speed-up in

query time over varying sizes of RDF datasets using the fixed

query, Q5 (Table 1). Table 3 lists the performance improvement

for data complexity using MPV for query optimization.

Table 3: Performance gain for provenance () query operator

using MPV

For Expression Complexity

(gain in %)

For Data Complexity

(gain in %)
Q1 99.98 DS1 98.40

Q2 99.95 DS2 98.42

Q3 99.95 DS3 98.80

Q4 99.91 DS4 99.26

Q5 99.90 DS5 99.90

5. RELATED WORK
Provenance has been studied from multiple perspectives across a

number of domains. In this section, we correlate the provenance

query operators introduced in this paper to existing work in

database and workflow provenance as illustrated in Figure 12.

5.1 Database Provenance
Database provenance or data provenance, often termed as “fine-

grained” provenance [32], has been extensively studied in the

database community. Early work includes the use of annotations

to associate “data source” and “intermediate source” with data

(polygen model) in a federated database environment to resolve

conflicts by Wang et al. [33], and use of “attribution” for data

extracted from Web pages by Lee et al. [34]. More recent work

has defined database provenance in terms of “Why provenance”,

“Where provenance” by Buneman et al. [5], and “How

provenance” by Green et al. [6].

A restricted view of the “Where provenance” identifies each piece

of input data that contributes to a given element of the result set

returned by each database query. “Why provenance” was first

described in [4], and in this paper we use the syntactic definition

of “Why provenance” by Buneman et al. [5] that defines a “proof”

for a data entity. The proof consists of a query, representing a set

of constraints, over a data source with “witness” values that result

in a particular data output. The semantics of the provenance ()

query operator closely relates to both “Where provenance” and

“Why provenance” [5]. To address the limitation of “Why

provenance” that includes “…set of all contributing input tuples”

leading to ambiguous provenance, Green et al. [6] introduced

semiring-based “How provenance.” The provenance () query

operator over a “weighted” provenance model, which reflects the

individual contribution of each component (for example process

loops or repeated use of single source data), is comparable to

“How provenance.”

The Trio project [21] considers three aspects of lineage

information of a given tuple, namely how was a tuple in the

database derived along with a time value (when) and the data

sources used. A subset of queries in Trio, “lineage queries”,

discussed in [21], can be mapped both as provenance () and as

provenance_context () query operators depending on the input

value. The SPIDER system [35] built on top of Clio [36] uses

provenance information modeled as “routes” (schema mappings)

between source and target data to capture aspects of both “Why

provenance” and “How provenance”. Hence, it closely relates to

the semantics of the provenance () query operator.

Figure 12: Mapping provenance query operators with existing

database and workflow provenance

5.2 Provenance in Scientific Workflows
The rapid adoption of scientific workflows to automate scientific

processes has catalyzed a large body of work in recording

provenance information for the generated results. Simmhan et al.

[7] survey different approaches for collection, representation and

management of workflow provenance. The participants in the

provenance challenge [8] collected provenance at different levels

of granularities such as comprehensive workflow system traces in

PASS [37], use of semantic annotations of services by Taverna

[38], and recording of data value details and service invocations in

Karma [20]. Recent work has also recognized the need for

inclusion of domain semantics in the form of domain-specific

provenance metadata [22] along with workflow provenance. The

semantics of these projects can be mapped to the provenance ()

query operator.

The Open Provenance Model (OPM) [39] is a generic graph

model for provenance representation. In contrast to the Provenir

ontology, OPM does not model named relationships as first class

entities and requires use of tags on edges to define roles. Further,

OPM models only causal properties, while the Provenir ontology

models ten fundamental relations, for example located_in

specifies geographical location. The rules for inferencing

proposed in OPM are easily contradicted [40] due to its generic

Kno.e.sis Center, Wright State University Technical Report knoesis-TR-2009, 2009

graph model, in contrast the Provenir ontology is supported by the

well-defined and extensive reasoning features of the Semantic

Web.

6. CONCLUSIONS
This paper introduces PRoM, a Semantic Web provenance

management framework for science, consisting of the Provenir

ontology, a novel provenance query classification scheme, and

provenance query operators. The paper defines a modular

approach to interoperable provenance modeling based on the

Provenir foundational ontology. The Provenir ontology defined in

OWL DL supports modeling of complex domain semantics and

also use of reasoning to query provenance. The provenance query

operators, defined for the first time, support a variety of queries

and enable provenance management systems to offer a dedicated

and well-defined query mechanism.

The paper also discusses the implementation of a provenance

query engine over an RDF database to support the provenance

query operators. The evaluation of a straightforward

implementation of the query engine highlights the need for an

effective query optimization strategy, which is addressed by a new

class of materialized views called MPV. The MPVs are shown to

be highly effective for complex provenance queries over very

large scientific datasets. Specifically, MPV reduce the query times

by approximately three orders of magnitude that enables the use

of the provenance query engine as a practical tool for provenance

management in scientific applications.

7. ACKNOWLEDGMENTS
This work was funded by NIH Grant# 1R01HL087795-01A1.

8. REFERENCES
[1] "MyGrid." http://www.mygrid.org.uk/, retrieved Oct 29, 2009

[2] "Project Neptune." http://www.neptune.washington.edu/, retrieved

Oct 29, 2009

[3]"The Panoramic Survey Telescope and Rapid Response System

(Pan-STARRS)." http://pan-starrs.ifa.hawaii.edu/ retrieved Oct 29,

2009

[4] Y. Cui, et al, "Practical Lineage Tracing in Data Warehouses,"

ICDE, San Diego, California, pp. 367 2000.

[5] P. Buneman, et al., "Why and Where: A Characterization of Data

Provenance," ICDT, 2001, pp. 316 - 330

[6] T. J. Green, et al., "Provenance Semirings," in Symposium on

Principles of database systems (PODS), 2007, pp. 675–686.

[7] Y. L. Simmhan, et al., "A survey of data provenance in e-science"

SIGMOD Rec., vol. 34, pp. 31 - 36 September 2005.

[8] "IPAW 2008." http://www.sci.utah.edu/ipaw2008/, retrieved Oct

29, 2009

[9]"OWL Web Ontology Language Overview," D. L. McGuinness,

van Harmelen, F., (Eds) W3C Recommendation, 2004.

[10] J. Arnold, et al., "Metabolomics," in Handbook of Industrial

Mycology NY: Marcel Dekker, 2004, pp. 597-633.

[11] D. Georgakopoulos, et al., "An Overview of Workflow

Management: From Process Modeling to Infrastructure for

Automation," Distributed and Parallel Databases (DAPD), 3(2), pp.

119-153, 1995.

[12] D. Oberle, et al., "DOLCE ergo SUMO: On Foundational and

Domain Models in SWIntO (SmartWeb Integrated Ontology),"

Journal of Web Semantics: Science, Services and Agents on the World

Wide Web, 5 (3), pp. 156-174, 2007.

[13] "Provenance Challenge ".

http://twiki.ipaw.info/bin/view/Challenge/ retrieved Oct 29, 2009

[14] "SPARQL Query Language for RDF," E. Prud'hommeaux,

Seaborne, A.,(Eds), W3C Recommendation, 2006.

[15] S. S. Sahoo, et al., "Knowledge modeling and its application in

life sciences: a tale of two ontologies," WWW, Scotland, 2006, pp.

317-326.

[16] P. L. Whetzel, et. al, "Development of FuGO: An Ontology for

Functional Genomics Investigations," OMICS: A Journal of

Integrative Biology vol. 10, pp. 199-204, 2006.

[17] B. Smith, et al., "Relations in biomedical ontologies," Genome

Biol, vol. 6, p. R46, 2005.

[18] S. S. Sahoo, et al., "Where did you come from...Where did you

go?" An Algebra and RDF Query Engine for Provenance ", Wright

State University Technical Report, 2009.

[19] S. S. Sahoo, et al., "Ontology-driven Provenance Management in

eScience: An Application in Parasite Research," ODBASE 09,

Vilamoura, Algarve-Portugal, 2009 (to appear).

[20] Y. L. Simmhan, et al., " Karma2: Provenance management for

data driven workflows," International Journal of Web Services

Research, vol. 5, Issue 2 pp. 1-22, 2008.

[21] J. Widom, "Trio: A System for Integrated Management of Data,

Accuracy, and Lineage," in Second Biennial Conference on

Innovative Data Systems Research (CIDR '05), Pacific Grove,

California, 2005.

[22] S. S. Sahoo, et al., "Semantic Provenance for eScience:

Managing the Deluge of Scientific Data," IEEE Internet Computing,

vol. 12, pp. 46-54, 2008.

[23] P. Hayes, "RDF Semantics," B. McBride, Ed., W3C

Recommendation 2004.

[24] G. Klyne, et al., "Resource Description Framework (RDF):

Concepts and Abstract Syntax," W3C Recommendation, 2004.

[25] E. I. Chong, et al., "An efficient SQL-based RDF querying

scheme," VLDB, Trondheim, Norway, 2005, pp. 1216-1227.

[26] B. McBride, "Jena: A Semantic Web Toolkit," IEEE Internet

Computing, vol. 6, pp. 55-59, Nov. 2002.

[27] R. Angles, et al., "Survey of graph database models," ACM

Comput. Surveys, vol. 40, pp. 1-39, Feb. 2008.

[28] M. Vardi, "The Complexity of Relational Query Languages," in

14th Ann. ACM Symp. Theory of Computing (STOC ’82), 1982, pp.

137-146.

[29] J. Pérez, et al., "Semantics and Complexity of SPARQL," in Int'l

Semantic Web Conf. (ISWC '06), Athens, GA, 2006, pp. 30-43.

[30] "Trident Workflow Workbench."

 http://www.microsoft.com/mscorp/tc/trident.mspx, retrieved Oct 29,

2009

[31] "RDF Vocabulary Description Language 1.0: RDF Schema",

Brickley, D., Guha, R.V., (Eds.) W3C Recommendation

[32] W. C. Tan, "Provenance in Databases: Past, Current, and Future,"

IEEE Data Eng. Bull., vol. 30, pp. 3 -12 2007.

[33] Y. R. Wang, et al., "A Polygen Model for Heterogeneous

Database Systems: The Source Tagging Perspective," VLDB, 1990,

pp. 519–538.

[34] T. Lee, et al., "Multimodal Integration of Disparate Information

Sources with Attribution," in Entity Relationship Workshop on

Information Retrieval and Conceptual Modeling, 1997.

[35] B. Alexe, et al., "SPIDER: a Schema mapPIng DEbuggeR. ,"

VLDB, 2006, pp. 1179–1182.

[36] L. M. Haas, et al., "Clio Grows Up: From Research Prototype to

Industrial Tool," SIGMOD, Baltimore, MD, 2005, pp. 805–810.

[37] D. A. Holland, et al., "PASSing the provenance challenge,"

Concurrency and Control: Practice and Experience, vol. 20, pp. 531-

540, 2008.

[38] J. Zhao, et al., "Mining taverna's semantic web of provenance,"

Journal of Concurrency and Computation:Practice and Experience, ,

20 (5), pp. 463 - 472 2007.

[39] "Open Provenance Model."

 http://twiki.ipaw.info/bin/view/Challenge/OPM, retrieved Oct 29,

2009

[40] Y. L. Simmhan, "FeedbackonOPM,"

http://twiki.ipaw.info/pub/Challenge/OpenProvenanceModelWorksho

p/FeedbackonOPM.pptx, retrieved Oct 29, 2009.

