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ABSTRACT 

The eScience paradigm is enabling researchers to collaborate over 

the Web in virtual laboratories and conduct experiments on an 

industrial scale. But, the inherent variability in the quality and 

trust associated with eScience resources necessitates the use of 

provenance information describing the origin of an entity. 

Existing systems often model provenance using ambiguous 

terminology, have poor domain semantics and include modeling 

inconsistencies that hinders interoperability. Further, mere 

collection of provenance information is of little value without a 

well-defined and scalable query mechanism.  

In this paper, we present "PrOM", a framework that addresses 

both the modeling and querying issues in eScience provenance 

management. The theoretical underpinning for PrOM consists of, 

(a) a novel foundational ontology for provenance representation 

called "Provenir", and (b) the first set of query operators to be 

defined for provenance query and analysis. The PrOM framework 

also includes a scalable provenance query engine that supports 

complex queries (high “expression complexity”) over a very large 

real world dataset with 308 million RDF triples. The query engine 

uses a new class of materialized views for query optimization that 

confers significant advantages (up to three orders of magnitude) in 

query performance. 

Categories and Subject Descriptors 

H.2.m [Miscellaneous], H.2.8 [Database Applications], H.2.1 

[Data Models] 

Keywords 

Provenance framework, eScience, Provenir foundational ontology, 

Query operator, Materialized Provenance Views, scalability 

1. INTRODUCTION 
Scientists, in multiple domains, are leveraging distributed data and 

computing resources over the Web to achieve their objectives 

faster, more efficiently and on an industrial scale. This eScience 

paradigm includes domains such as biology [1], oceanography [2], 

and  astronomy [3], involving the use of a variety of resources 

such as sensors, Web-based computational tools, and data 

repositories. In eScience, the lineage of a resource is important 

metadata not only for researchers, but also for many analytical 

tools in data mining, data integration, and knowledge discovery. 

Provenance metadata, from the French word provenir meaning "to 

come from," represents the lineage or history of an entity.  

Provenance has been studied from multiple perspectives in 

computer science, such as database provenance [4], [5] [6], and 

scientific workflow provenance [7] [8], but there are many open 

research issues in provenance management. An example is the 

need for a common representation model for provenance to 

facilitate provenance interoperability, provenance integration 

across different projects, and enforce consistent use of 

terminology. A common provenance model should also closely 

reflect domain-specific details (domain semantics) that are 

essential to answer end user queries in real world applications. 

Ontologies are considered a suitable modeling solution for these 

requirements and in addition they also support reasoning to 

discover implicit knowledge over large datasets [9] [10].  

Ontologies are used in many scientific domains [11] and are 

gaining rapid community acceptance, for example the National 

Center for Biomedical Ontologies (NCBO)1 lists 166 ontologies in 

the life science domain. Provenance ontologies not only reduce 

terminological heterogeneity to facilitate interoperability, but also 

support discovery of implicit knowledge over large datasets using 

reasoning tools. Unfortunately, provenance information varies 

across different domains and the creation of a single, all 

encompassing provenance ontology is impractical. To address this 

challenge, this paper proposes a modular, multi-ontology 

approach centered on a foundational ontology for provenance, 

called Provenir. The Provenir ontology ensures (a) a common 

modeling basis, (b) conceptual clarity of provenance terms, and 

(c) use of ontology design patterns for consistent modeling [12]. 

The Provenir ontology can be extended to create interoperable 

domain-specific provenance ontologies and this is demonstrated 

in the paper through the creation of an oceanography domain-

specific provenance ontology called Trident. 

In addition to provenance representation, a well-defined and 

scalable query infrastructure is essential to enable real world 

applications to utilize provenance information. Existing 

provenance systems often use a generic query mechanism, such as 

SQL, or ad hoc implementations that satisfy the requirements of 

the given application. In this paper, we argue for a dedicated 

provenance query infrastructure that can support provenance 

queries efficiently and scale with large datasets. The provenance 

literature features a variety of queries often reflecting the 

requirements of a specific application [13]. But, to date there has 

been no systematic study of provenance query characteristics. We 

introduce a classification scheme for provenance queries not only 

to categorize provenance queries, but also use the classification 

scheme to define a set of specialized query operators. The 

provenance query operators are defined in terms of the Provenir 

ontology, which enables the query operators to be used with any 

domain-specific provenance ontology that extends the Provenir 

ontology.  

                                                                 

1 http://www.bioontology.org/ Copyright is held by the author/owner(s). 
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The Provenir ontology together with the query operators 

constitutes the theoretical underpinning of the PrOvenance 

Management (PrOM) framework for eScience. Further, the PrOM 

framework includes the implementation of a scalable provenance 

query engine over a RDF data store that uses the SPARQL RDF 

query language [14] to query provenance information. Provenance 

queries from the Neptune oceanography project [2] are used to 

evaluate the performance of the provenance query engine 

implementation. In the next section, we give an overview of the 

Neptune project and the oceanography scenario used as the 

running example in this paper. 

1.1 Motivating Scenario in Oceanography 
The Neptune project [2], led by the University of Washington, is 

an ongoing initiative to create a network of instruments widely 

distributed across, above, and below the seafloor in the northeast 

Pacific Ocean. We consider a simulated scenario, illustrated in 

Figure 1, involving data collection by ocean buoys (containing a 

temperature sensor and an ocean current sensor), and data 

processing by a scientific workflow that creates visualization 

charts as output. 

 

Figure 1: A simulated oceanography scenario from the 

Neptune oceanography project 

We consider two scenarios that require the use of provenance 

information for analyzing and managing the data in this project: 

1. One of the ocean buoys is found to be damaged due to a 

recent storm. Hence, all visualization charts created using 

data from this ocean buoy, after it was damaged, need to be 

discarded and new charts should be created using correct 

sensor data. This is a typical provenance related query and 

can be addressed using two approaches. In the first approach, 

the provenance information of each visualization chart can be 

analyzed to locate the relevant set of possibly inaccurate 

visualization charts. In the second approach, a set of 

constraints can be defined on the provenance information to 

retrieve the data entities that satisfy these constraints, for 

example “given the identifier of the damaged ocean buoy, 

locate all visualization charts that used data from this sensor” 

(generated after the ocean buoy was damaged).  

2. Another typical scenario involves the comparison of 

provenance information associated with given results. For 

example, oceanography researchers can query for two 

visualization charts that were generated from sensor data 

collected under equivalent weather conditions. The user can 

define the context for comparison of the provenance 

information in terms of wind speed, temperature, and 

precipitation. 

We use these two scenarios as the running example to motivate 

the modeling decisions in the Provenir ontology and also to define 

the functional semantics of the provenance query operators. We 

also use the data and the associated provenance information from 

this scenario to evaluate the performance of the provenance query 

engine. 

The rest of the paper is organized as follows: In section 2, we 

describe the motivation, constituent components, and use of the 

Provenir ontology as a foundational model for provenance. In 

Section 3, we introduce a classification scheme for provenance 

queries and use this classification scheme to define a set of 

provenance query operators. In section 4, we describe the 

implementation and evaluation results of the provenance query 

engine for complex queries over very large real world datasets. 

We describe related provenance work in Section 5 and finally 

conclude in Section 6.  

2. PROVENANCE MODELING 
Traditionally in scientific experiments, provenance has been 

represented as hand-written notes to keep track of experiment 

conditions, results, and project details. ProPreO was one of the 

first provenance ontologies developed to model provenance in 

high-throughput proteomics experiments [15]. Similar efforts 

include the Microarray Gene Expression Data (MGED) ontology 

that was created to track provenance in microarray experiments 

[16], while the Functional Genomics Investigation Ontology 

(FuGO) was created to model provenance in functional genomics. 

These multiple projects in provenance management highlight the 

need for interoperability of provenance information, which can be 

facilitated if the provenance ontologies share a common modeling 

basis and uniform use of terms. Foundational upper-level 

ontologies have traditionally been used to enforce these consistent 

design principles and to facilitate domain ontology 

interoperability and integration [12].  

In this section, we describe the creation of the provenance upper-

level ontology called Provenir. We also demonstrate that the 

Provenir ontology is a well-engineered foundational ontology that 

can easily be extended by creating a domain-specific provenance 

ontology for the Neptune oceanography project called Trident. 

2.1 The Provenir ontology: A Foundational 

Model of Provenance 
The primary challenge in defining the structure of the Provenir 

ontology is to strike a balance between the abstract upper-level 

ontologies, such as the Suggested Upper Merged Ontology 

(SUMO), and the detailed domain-specific provenance ontologies. 

The Provenir ontology represents the set of provenance terms that 

are common across domains and can easily be extended by 

developers of domain-specific provenance ontologies according to 

their requirements. This not only significantly reduces the 
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workload of ontology developers, but also ensures modeling 

consistency. 

The top-level classes in the Provenir ontology are derived from 

two primitive concepts of “occurrent” and “continuant” defined in 

philosophical ontology [17]. Continuant represents “… entities 

which endure, or continue to exist, through time while undergoing 

different sorts of changes, including changes of place” [17] and 

occurrent represents “…entities that unfold themselves in 

successive temporal phases” [17]. It is easy to see that occurrent 

corresponds to the “process” entities used in science, such as 

experiment processes and data processing. Other entities can be 

categorized into two sub-types of continuants namely, “agents” 

such as temperature sensor and “data” such as visualization charts 

(examples from the Neptune project described in Section 1.1). 

 

Figure 2: The provenir ontology schema 

The three concepts of process2, data, and agent form the 

top-level classes in the Provenir ontology (Figure 2). Further, the 

explicit modeling of relations as first class entities is an important 

characteristic of Semantic Web modeling languages. For the 

Provenir ontology we adapted the properties defined in the 

Relation ontology (RO) [17] to link provenance terms. The RO 

was created by the Open Biomedical Ontologies (OBO) Foundry 

and defines a set of ten primitive properties with well-defined 

“domain” and “range” values. These properties were mapped to 

appropriate Provenir classes with restrictions on their domain and 

range values as required for provenance modeling. 

For example, the class data is linked to a process as either 

input or output value and this is modeled by the relation 

“has_participant” (domain: process, range: data). 

Similarly, the notion that an agent initiates, modifies or 

terminates a process is captured by the relation “has_agent” 

(domain: process, range: agent). We note that the class 

data is linked to agent only through an intermediary 

process, for example a list of peptides (data) is linked to a 

mass spectrometer (agent) through the protein analysis 

process. The Provenir ontology also differentiates between the 

data values that undergo change in a process, for example 

                                                                 

2 Ontology classes and relations are denoted using courier new font. 

conversion of sensor data to create visualization charts, and 

parameter values that influence the behavior of a process 

(Figure 2).  

The Provenir ontology further classifies parameters along the 

well-defined spatial (spatial_parameter), temporal 

(temporal_parameter), and thematic 

(domain_parameter) dimensions. The geographical location 

of a sensor (agent) is an example of spatial_parameter. 

The parameter entities are linked to the data and agent 

classes by the relation has_parameter. A detailed description 

of the Provenir ontology classes and properties appears in [18]. 

The Provenir ontology is represented in OWL DL, the decidable 

profile of the W3C Web Ontology Language (OWL) with a 

description logic expressivity of ALCH. This ontology is under 

active consideration at the OBO Foundry for listing as a 

foundational model of provenance.  

The Provenir ontology has been extended to create three domain-

specific provenance ontologies; the ProPreO ontology (described 

at the start of this section) has been re-structured to extend the 

Provenir ontology. The Parasite Experiment ontology [19] is the 

second domain-specific ontology created by extending the 

Provenir to model provenance in gene knockout and parasite 

strain creation experiments, both ProPreO and the Parasite 

Experiment ontology are listed at NCBO. In the next section, we 

describe the third domain-specific ontology called Trident that 

extends the Provenir ontology to model the provenance 

information for the Neptune oceanography project. 

2.2 Trident ontology: Modeling 

Oceanography Provenance 
The provenance information for the Neptune project can be 

divided into two categories of (a) workflow provenance 

corresponding to the components of the scientific workflow, and 

(b) domain-specific provenance capturing the domain semantics 

such as details of the sensors and ocean buoy. Existing 

provenance systems have primarily focused on only workflow 

provenance [20] while partially or completely ignoring domain 

semantics. For example, in the Neptune oceanography scenario 

details describing the sensors and location of ocean buoys are 

critical provenance information. 

 
Figure 3: Trident ontology schema extending the Provenir 

ontology 

The Provenir ontology and its extension in form of the Trident 

ontology incorporate both the domain semantics and the 
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workflow-specific provenance. The Trident ontology extends the 

Provenir agent class to model the temperature and ocean current 

sensors as well as the ocean buoy. Further, the sensors are linked 

to specific ocean buoys using the contained_in relation that 

enables tracking of sensor data from the damaged ocean buoys. 

Figure 3 gives an overview of the Trident ontology schema and 

maps its classes to the Provenir ontology. 

The formal OWL-based representation of provenance information 

in the Trident ontology enables the use of the rich set of Semantic 

Web reasoning mechanism [10] for provenance query and 

analysis. In the next section, we introduce a dedicated query 

infrastructure for provenance. 

3. PROVENANCE QUERY and ANALYSIS 
The provenance literature discusses a variety of queries that are 

often executed using generic or ad-hoc query mechanisms. 

Provenance queries in workflow systems focus on execution of 

computational process and their input/output values (for example, 

the queries featured as part of the Provenance Challenge [13]). 

Provenance queries in relational databases trace the history of a 

tuple or data entity [21]. In contrast, scientists formulate 

provenance queries that incorporate complex domain semantics 

using application-specific terminology [22]. But, without a 

systematic study to identify and understand provenance query 

characteristics, it is difficult to create a dedicated and well-defined 

provenance query infrastructure to support this large variety of 

queries across multiple domains and projects. In the next section 

we define the first classification scheme for provenance queries. 

3.1 Provenance Query Classification 
We classify provenance queries into three broad categories using 

the input parameters and the query results as the classification 

metrics. 

Category I: Retrieve provenance information: This category of 

queries, given a data entity, returns the complete provenance 

information that influenced the current state of the data entity. The 

retrieval of provenance information of a “HyperCube” object with 

identifier “HyperCube85357162234026” is an example of this 

category of queries from the Neptune oceanography scenario. 

These queries are the most common category of provenance 

queries. 

Category II: Retrieve data entities that satisfy provenance 

constraints: An exact opposite perspective to the first category of 

query is to retrieve a set of data entities that satisfy a given set of 

constraints defined over the provenance information. A query to 

retrieve “chart visualization” files created using data from the 

damaged ocean buoy with identifier “oceanBuoy7044” located at 

geographical coordinates “475111N:1222118W” between “April 

21, 2003 to May 2, 2003” is an example of this category of 

queries. This class of queries does not feature frequently in the 

provenance literature but is important to identify data entities with 

similar provenance characteristics as demonstrated by the 

example query to retrieve data from the damaged ocean buoy. 

Category III: Operations on provenance information: This 

category of queries involves modification or comparison of 

provenance information. For example, the accurate comparison of 

two sets of ocean temperature observations requires the 

comparison of the associated provenance information to verify 

that they were created under equivalent experimental conditions 

and generated by the same type of sensors. 

These three categories of provenance queries have different 

sets of input/output values and execution semantics. The creation 

of a standard query mechanism to address each category of 

provenance query will not only help end-users, but also facilitate 

the creation of a practical provenance query infrastructure. In the 

next section, we use this provenance query classification scheme 

to define a first set of provenance query operators.   

3.2 Provenance Query Operators 
Our query operators are defined in terms of the Provenir ontology 

schema that allows them to be used to query any domain-specific 

provenance ontology (that extends the Provenir ontology). 

Further, the input, intermediate, and output values of the query 

operators are strictly typed using the Provenir ontology classes. 

This section describes both functional semantics of the query 

operators using the Neptune oceanography example scenario and 

the execution semantics using set-theoretic representation. 

3.2.1 Retrieval of Provenance Information 
1. provenance ( ) - The first query operator is defined to 

support Category I provenance queries (Section 3.1) and is a 

closure operation on the provenance information. The operator 

takes as input any given data entity and returns the complete 

provenance information associated with the data entity.  

 

Figure 4: The result graph from the provenance ( ) query 

operator 

The provenance () query operator defines a pattern constructed in 

two steps, namely (a) Initialization phase, and (b) Recursive 

phase. In the initialization phase, the individuals of the class 

process linked to the input value by property 

has_participant (Figure 4) are added. In the recursive 

phase, these process individual are used to locate all 

individuals of the class process, linked by the property 

preceded_by, which is implemented as a transitive closure 

function for the <process, preceded_by) class-property pair 

of entities. Further, all individuals of the agent, parameter, 

and data_collection classes linked to process individuals 

are added to the query result (Figure 4). The query operator is 

defined formally using set-theoretic representation, where the 

notation <s, p, o> stands for a subject, predicate, object triple as 

used in the Provenir ontology.  
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In the next section, we introduce the second provenance query 

operator to retrieve data entities that share similar provenance 

characteristics. 

3.2.2 Provenance Context: Retrieval of Data Entities 
provenance_context() - This query operator supports the 

provenance queries in Category II (Section 3.1). The query 

operator takes as input provenance values as constraints and 

returns data entities that satisfy the provenance constraints. In 

effect, the query input values define a formal “provenance 

context” composed of constraint values defined over all available 

provenance information. For example, the provenance details such 

as ocean buoy identifier-“oceanBuoy7044”, geographical 

coordinates- “475111N:1222118W”, and temporal constraints-

“April 21, 2003 to May 2, 2003” form a very specific contextual 

structure that is used to identify data entities that satisfy these 

provenance constraints. The data entities in the query result have 

similar or equivalent provenance and hence can be interpreted 

with equal level of trust.  

The query operator can be formally defined using the provenance 

() query operator (described earlier in Section 3.2.1). 

 

3.2.3 Compare and Merge Provenance 
The third category of query operators is defined to compare and 

merge provenance information. To focus on the semantics of the 

query operators, the RDF graph representing provenance metadata 

is assumed to be a ground RDF graph [23], that is, it does not 

contain any blank nodes. The use of ground RDF graph 

corresponds to the modeling approach exemplified by the 

Provenir ontology that represents both provenance and data as 

“first class citizens” and does not require use of RDF reification 

or named graphs to model provenance information. 

We use a quadruple consisting of vertices, edges, mapping 

function to label vertices and edges, and a mapping function to 

map vertices to Provenir classes, to describe a provenance graph. 

 

3. provenance_compare ( ): Accurate comparison of scientific 

results requires the comparison of the associated provenance 

information. For example, two ocean visualization charts are said 

to be comparable if the associated provenance information (type 

of sensors, parameters used in the scientific workflow) are 

identical. We use the RDF graph equivalence definition [24] with 

the added functionality of “coloring” the nodes and labeling the 

edges using the Provenir ontology schema to define equivalence 

between two provenance graphs. The formal definition of the 

query operator is as follows: 

 

The next query operator enables the merging of provenance 

information, for example provenance from different stages of an 

experiment protocol can be merged to construct an unified view of 

the experiment process.  

4. provenance_merge ( ): The query operator takes as input two 

provenance graphs and gives as output a single, merged 

provenance graph. The merged graph does not include any 

duplicates individuals. A formal definition of the merge operator 

is described below. 

 

These query operators enable provenance management systems to 

offer a well-defined mechanism to query provenance information 

using the Provenir ontology as a foundational model. In the next 

section, we describe the implementation of a provenance query 

engine that supports the query operators over an RDF data store. 

4. PROVENANCE QUERY ENGINE: 

IMPLEMENTATION and EVALUATION 
The provenance query engine is designed as a Java-based 

Application Programming Interface (API) to support the 

Definition 4: provenance_merge () 

Input: G1, G2 
G1 = (V1, E1, l1, m1) 
G2 = (V2, E2, l2, m2) 
Output: (V1 ∪ V2, E1 ∪ E2, l, m), where 
                 l(x) = { l1(x) if x ∈ V1 ∪ E1 
                                 l2(x) if x ∈ V2 ∪ E2 and where 
                m: V1 ∪ V2 → Nc : m(x) = * m1(x) if x ∈ V1, m2(x) if x ∈ V2 
 

Definition 3: provenance_compare () 

Input: G1, G2 
G1 = (V1, E1, l1, m1) 
G2 = (V2, E2, l2, m2) 
The two provenance graphs G1 and G2 are equivalent if there are 
bijections, 
i = V1 → V2 and 
j = E1 → E2 such that 
∀ (e1, e2) ∈ E1 we have (i(e1), i(e2)) ∈ j(e1, e2) and 
∀ x ∈ V1 : m1 (x) = m2 (i(x)) holds. 

G = (V, E, l, m) 
         E ⊆ V2 
         l: V ∪ E → L (L is set of Uniform Resource Identifiers) 
         m: V  → Nm (Nm is set of Provenir ontology classes) 

 

Definition 2: provenance_context () 

SS: Search Space (set of all available triples) 
DataC = {d | (d, rdf:type, data) ∈ SS} 
Input:  set of triples pc = pcg ∪ pcv,  
where pcg describes provenance values directly connected to 
data individuals and pcv includes variables in input triples. 

Output = {dc | (pcg ⊆ provenance (dc)+ ∩ 
                    {dc | for all (v, x, y) ∈ pcv we have (dc, x, y) ∈ SS+ ∩ 
                    {dc | for all (x, y, v) ∈ pcv we have (x, y, dc) ∈ SS+ ∩ 
                    {dc | (dc, rdf:type, DataC) ∈ SS} 

 

Definition 1: provenance () 

SS: Search Space (set of all available triples) 
Proc = {p | (p, rdf:type, process) ∈ SS} 
Agent = {a | (a, rdf:type, agent) ∈ SS} 
DataC = {d | (d, rdf:type, data) ∈ SS} 
Input: dc 

IN = {t ∈ SS | t = (s, has_participant, dc)} 

P is smallest such that, 
P = (*p | ∃ x, y. (P, x, y) ∈ IN} ∪ *p | ∃ x ∈ P. (x, preceded_by, p)}) 
∩ Proc 
A = {a | (p, has_agent, a) ∈ SS ⋀ p ∈ P+ ∩ Agent 
D = {d | (p, has_participant, d) ∈ SS ⋀ p ∈ P+ ∩ DataC 
OUT = IN ∪ *(p1, preceded_by, p2) ∈ SS | p1, p2 ∈ P+ ∪ 
                         {(p, has_agent, a) ∈ SS | p ∈ P ⋀ a ∈ A+ ∪ 
                         {(p, has_participant, d) ∈ SS | p ∈ P ⋀ d ∈ D+ ∪ 
                         {(p1, part_of, p2) ∈ SS | p1, p2 ∈ P+ ∪ 
                         {(a, has_parameter, pa) ∈ SS | a ∈ A ⋀ pa ∈ D+ ∪ 
                         {(a1, adjacent_to, a2) ∈ SS | a1, a2 ∈A+ ∪ 
                         {(a1, part_of, a2) ∈ SS | a1, a2 ∈A+ ∪ 
                         {(a1, contained_in, a2) ∈ SS | a1, a2 ∈A+ ∪ 
                         {(d1, part_of, d2) ∈ SS | d1, d2 ∈D+ ∪ 
                         {(d1, contained_in, d2) ∈ SS | d1, d2 ∈D+ ∪ 
                         {(d1, transformation_of, d2) ∈ SS | d1, d2 ∈D+ ∪ 
                         {(d1, derives_from, d2) ∈ SS | d1, d2 ∈D}  
Note: The definition of the set P is recursive and it is checked that 
the set P is well-defined. 
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provenance query operators over a RDF data store. The query 

engine described in this section is integrated with an Oracle 10g 

(release 10.2.0.3.0) data store, but we note that the query engine 

can be used with any RDF data store that supports SPARQL [14] 

and inference rules. The Oracle 10g RDF data store uses a SQL 

table function (RDF_MATCH) to efficiently query RDF data 

[25]. The default Oracle 10g query interface does not support all 

SPARQL functions, hence we used the Oracle‟s Jena [26] based 

plug-in, which supports the full SPARQL specification.  

 

Figure 5: Architecture of Provenance Query Engine 

The provenance query engine consists of three functional 

components (Figure 5): 

a) A Query Composer: The query composer maps the 

provenance query operators to SPARQL syntax according to 

denotational semantics of the query operators (defined in 

Section 3.2).  

b) A Function to Compute Transitive Closure over RDF: 

SPARQL query language does not support transitive closure 

for an RDF <node, edge> combination. Hence we have 

implemented a function to efficiently compute transitive 

closure using the SPARQL ASK function. The result of this 

function is used by the query composer.  

c) Query Optimizer using Materialized Provenance Views: 

Using a new class of materialized views based on the 

Provenir ontology schema called Materialized Provenance 

Views (MPV) a query optimizer has been implemented that 

enables the query engine to scale with very large RDF data 

sets. 

In the next sub-section, we describe the SPARQL query composer 

and transitive closure function. 

4.1 SPARQL Query Composition 
In this section, we briefly describe the SPARQL language 

structure and the approach used by the query composer to map the 

provenance query operator to SPARQL. A SPARQL query is 

composed of a set of triples (each triple is of the form, <Subject, 

Property, Object>) to form a query pattern called basic graph 

pattern (BGP), where any one of the three constituents may be a 

variable. For example, <?x, is_president_of, 

UnitedStateofAmerica> is a triple pattern with the variable „?x‟. 

The BGP is used to find a sub-graph from the RDF store where 

the values in the sub-graph may be substituted for the variables in 

the BGP resulting in a RDF graph equivalent to the sub-graph 

[14]. But, if suitable instantiation of variables in BGP are not 

found in the RDF store, no results are returned [14]. 

The provenance query operators represent the complete result set 

by defining exhaustive set of dependencies among data, process, 

and agent. However, in real world scenarios the provenance 

information available can be incomplete due to application-

specific or cost-based limitations. Hence, a straightforward 

mapping of provenance query operators to SPARQL as a BGP is 

not desirable. Such a BGP-based query expression pattern may 

not return a result in the presence of incomplete provenance 

information. The OPTIONAL function in SPARQL can be used to 

specify query expression patterns that can succeed with partial 

instantiation, yielding maximal “best match” result graph. Hence, 

the query composer uses this OPTIONAL function to create a 

query expression pattern.  

Further, as discussed in Section 3.2, the query composer also 

needs to compute the transitive closure over the <process, 

preceded_by> combination to retrieve all individuals of the 

process class linked to the input value. But, unlike many graph 

database query languages such as Lorel or GraphLog, [27], 

SPARQL does not provide an explicit function for transitive 

closure to answer reachability queries. 3  We now describe the 

transitive closure function implemented in the provenance query 

engine. 

4.1.1 Transitive Closure Function 
We had two options in implementing the transitive closure 

function, namely a function that is tightly couple to the RDF store 

or a generic function. We chose a generic implementation using 

the SPARQL ASK function that allows the provenance query 

engine to be used over multiple RDF stores. The SPARQL ASK 

function allows “application to test whether or not a query pattern 

has a solution,” [14] without returning a result set or graph. The 

transitive closure functions starts with the process instance (p1) 

linked to the input value and then recursively expands the 

SPARQL query expression using the ASK function till a false 

value is returned. The SPARQL ASK function, in contrast to the 

SELECT and CONSTRUCT functions, does not bind the results 

of the query to variables in the query pattern. Hence, it is a low-

overhead function for computing transitive closure. The results of 

a comparative evaluation of the SPARQL functions along with the 

performance evaluation of a straightforward implementation of 

the provenance query engine are presented in the next section. 

4.2 Evaluation of a Straightforward 

Provenance Query Engine Implementation 
We use the two standard complexity measures of (a) Query or 

Expression Complexity (varying the syntax of the query with 

fixed data size), and (b) Data Complexity (vary the data size with 

a fixed query expression) [28], to characterize the performance of 

the provenance query engine. The evaluation results presented in 

this section are for the provenance () query operator, which 

represents the majority of provenance queries. 

The expression complexity of the SPARQL graph pattern using 

the OPTIONAL function is PSPACE-complete [29]. As discussed 

earlier in this section (Section 3.2), the SPARQL query pattern for 

the provenance () query operator requires the use of OPTIONAL 

                                                                 

3
The W3C DAWG postponed a decision on transitive closure in SPARQL 
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function with multiple levels of nesting. The other components 

that affect the evaluation of a SPARQL query are the total number 

of variables and the number of triples defined in the query pattern. 

Hence, to evaluate the expression complexity of the provenance () 

query operator, we use five queries (listed in Table 1) with 

increasing number of variables, triple patterns, and nesting levels 

using the OPTIONAL function over a fixed dataset size. The five 

queries, from the Neptune oceanography project, involve retrieval 

of provenance information associated with different data entities.  

Table 1. SPARQL query details to evaluate expression 

complexity using the provenance ( ) query operator 

Query: Retrieve 

Provenance of given 

Input Value 

Number 

of 

Variables 

Number 

of 

Triples 

Nesting 

using 

OPTIONAL 

Q1. codar_mnty_ 

908294932772185.nc 
31 86 4 levels 

Q2. NetCDFReader 

90829493474170 
45 126 5 levels 

Q3. HyperCubeSchema 

90829493462995 
45 126 5 levels 

Q4. HyperCube 

90829493567757 
59 166 6 levels 

Q5. ChartDataTable 

90829493849637 
73 206 7 levels 

The data complexity of SPARQL for a fixed graph pattern 

expression is LOGSPACE [29]. Using a fixed SPARQL query, 

we evaluate the provenance () query operator over 5 different 

datasets (listed in Table 2). 

4.2.1 Experiment Setup and Dataset 
The experiments were conducted using Oracle10g (Release 

10.2.0.3.0) DBMS on a Sun Fire V490 server running 64-bit 

Solaris 9 with four 1.8 GHz Ultra Sparc IV processors and 8GB of 

main memory. The database used an 8 KB block size and was 

configured with a 512 MB buffer cache. The timings reported are 

mean result from five runs with warm cache. 

The dataset for the evaluations was generated from the 

oceanography scenario described in Section 1.1. The scientific 

workflow was executed using the Trident workflow workbench 

[30]. The Trident log file with additional details such as 

temperature sensors, ocean current sensors, and ocean buoys, was 

used as a template to generate the RDF data. 

Table 2. SPARQL query details to evaluate expression 

complexity using the provenance ( ) query operator 

Dataset 

Id 

Number of 

Experiment 

Cycles 

Number of 

Inferred RDF 

Triples 

Total Number of 

RDF Triples 

DS1 100 23,620 32,182 

DS2 1000 226,671 309,459 

DS3 10,000 2,257,096 3,082,184 

DS4 100,000 22,560,776 30,808,427 

DS5 1,000,000 225,596, 929 308, 069,953 

Five datasets corresponding to 100, 1000, 10000, 100000, and 1 

million experiment cycles are used (Table 2). The largest dataset 

corresponding to 1 million experiment cycles contains about 308 

million RDF triples. A rule index [25] was defined for inferencing 

over the datasets using standard RDFS rules [31] and a user-

defined rule to infer that, “If the input value of a process (p1) is 

the same as the output value of another process (p2), then p1 is 

linked to p2 by the property preceded_by”. Table 2 lists the 

total number of new RDF triples inferred using the RDFS and 

user-defined rules for each of the five datasets. 

4.2.2 Transitive Closure Computation using 

SPARQL Functions 
This experiment compares the performance of transitive closure 

computation using the SPARQL “SELECT”, “CONSTRUCT”, 

and “ASK” functions. The transitive closure for the five queries, 

Q1 to Q5 (in Table 1), is computed using the largest dataset DS5 

(in Table 2) of 308 million RDF triples. 

 

Figure 6: Comparison of SPARQL query functions to 

compute transitive closure for RDF <node, edge> 

The results in Figure 6 show that the ASK function consistently 

performs better than both the SELECT and the CONSTRUCT 

functions. This is because both SELECT and CONSTRUCT 

involve a binding of query results to query pattern variables and 

graph pattern respectively. In contrast, the ASK function returns a 

Boolean value indicating if a graph corresponding to the query 

pattern exists in the RDF store. Hence, the ASK-function based 

transitive closure function implemented in the query engine is a 

low-overhead solution. 

4.2.3 Query Expression Complexity 
This experiment characterizes the expression complexity of the 

provenance ( ) query operator in SPARQL syntax. The results are 

for the total query time, including time for transitive closure, 

query composition, and query execution, for the five provenance 

queries, Q1 to Q5 (in Table 1). The queries are executed against a 

fixed size dataset, DS5 (in Table 2), with about 308 million RDF 

triples representing 1 million experiment cycles. 

 

Figure 7: Query expression complexity results with fixed 

dataset size of DS5 

The results (Figure 7) demonstrate that the query time increases 

with increasing expression complexity of the queries. Thus a 
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straightforward implementation of the query engine is unusable 

for provenance management systems in eScience projects.  

4.2.4 Data Complexity 
This experiment characterizes the data complexity of the 

provenance ( ) query operator in SPARQL syntax. The query Q5 

(in Table 1) with maximum expression complexity is used as the 

fixed query for evaluation over varying sizes of RDF datasets (in 

Table 2). 

 

Figure 8: Data complexity results with fixed SPARQL query 

expression pattern of Q5 

Figure 8 illustrates that the data complexity of the provenance () 

query operator is also large and an effective optimization 

technique is necessary for use of the provenance query engine in a 

practical provenance management system. 

Overall, the evaluation results (Section 4.2.3 and Section 4.2.4) 

clearly demonstrate that a straightforward implementation of the 

provenance query engine cannot scale with both increasing 

complexity of provenance query expressions and size of 

provenance data. In the next section, we introduce a new class of 

materialized views for query optimization to address both these 

issues. 

4.3 Materialized Provenance View  
The provenance queries are graph traversal operations for path 

computations. Path computation over graphs is an expensive 

operation especially in the case of provenance queries that require 

computation of fixed paths, recursive pattern-based paths and 

neighborhood retrieval. The results of our evaluation show that 

even industrial strength RDF database face severe limitations in 

terms of response time for complex provenance queries over large 

scientific datasets. To address this we define a new class of 

materialized views called materialized provenance views (MPV) 

that materializes provenance sub-graphs for selected classes of 

input values. We consider two constraints to decide what data 

should be materialized, (a) the cost of maintaining the 

materialized views, that is, if a materialized view needs to be 

recalculated when new RDF triples are added to the database, and 

(b) the number and complexity of provenance queries that can be 

satisfied by a MPV. 

Provenance metadata by definition describes past events and 

therefore they are not subject to frequent updates, except in the 

presence of errors. Therefore materialized views are a suitable 

approach for provenance query optimization. For the second 

constraint, we use the Provenir model to identify one logical unit 

of provenance information that can be used to satisfy not one but 

multiple provenance queries. The provenance graph of the final 

output of an experiment cycle, the “Chart Visualization” file 

(Figure 9) represents a logical unit of provenance information for 

the Neptune oceanography project scenario. This provenance 

query engine computes the unit of provenance information using 

the Provenir ontology. 

 

Figure 9: A MPV corresponds to one experiment cycle 

The MPV (Figure 9) can not only satisfy the provenance query for 

“Chart Visualization” files, but also provenance queries for all 

entities occurring in that one experiment cycle. A B-tree index is 

used to index all instances of the data_collection class that 

occur in that experiment cycle. Given an input value, the query 

optimizer looks-up the B-tree index to decide if the query can be 

satisfied by a MPV or by the underlying database. MPVs are 

created using a memoization approach instead of an eager 

strategy, since the total sum of MPVs created for all final output 

values equals the database itself. In the next section we discuss the 

evaluation results using MPV for query optimization. 

4.4 Evaluation Results using MPV for Query 

Optimization 
We use the straightforward implementation (discussed earlier in 

Section 4.2.3 and Section 4.2.4) as benchmark to discuss the 

performance of the provenance query engine using MPV. 

4.4.1 Query Optimization using MPV 
In the first experiment, queries from Section 4.2.3 are evaluated 

against a MPV.  

 

Figure 10: Comparing expression complexity results with and 

without using MPV 
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The MPV used in this experiment corresponds to one experiment 

cycle with final output “ChartDataTable90829493849637”; the 

MPV contained 86 RDF triples and occupied 12KB. Figure 10 

clearly demonstrates the significant reduction in total query time 

through the use of MPV. Note that a single MPV is used to satisfy 

all provenance queries from Table 1. The percent gain in 

performance with MPV as compared to query execution against 

the database is listed in Table 3. 

 

Figure 11: Comparing data complexity results with and 

without using MPV 

Similarly, the results in Figure 11 show significant speed-up in 

query time over varying sizes of RDF datasets using the fixed 

query, Q5 (Table 1). Table 3 lists the performance improvement 

for data complexity using MPV for query optimization. 

Table 3: Performance gain for provenance ( ) query operator 

using MPV 

For Expression Complexity 

(gain in %) 

For Data Complexity 

(gain in %) 
Q1 99.98 DS1 98.40 

Q2 99.95 DS2 98.42 

Q3 99.95 DS3 98.80 

Q4 99.91 DS4 99.26 

Q5 99.90 DS5 99.90 

5. RELATED WORK 
Provenance has been studied from multiple perspectives across a 

number of domains. In this section, we correlate the provenance 

query operators introduced in this paper to existing work in 

database and workflow provenance as illustrated in Figure 12. 

5.1 Database Provenance 
Database provenance or data provenance, often termed as “fine-

grained” provenance [32], has been extensively studied in the 

database community. Early work includes the use of annotations 

to associate “data source” and “intermediate source” with data 

(polygen model) in a federated database environment to resolve 

conflicts by Wang et al. [33], and use of “attribution” for data 

extracted from Web pages by Lee et al. [34]. More recent work 

has defined database provenance in terms of “Why provenance”, 

“Where provenance” by Buneman et al. [5], and “How 

provenance” by Green et al. [6]. 

A restricted view of the “Where provenance” identifies each piece 

of input data that contributes to a given element of the result set 

returned by each database query. “Why provenance” was first 

described in [4], and in this paper we use the syntactic definition 

of “Why provenance” by Buneman et al. [5] that defines a “proof” 

for a data entity. The proof consists of a query, representing a set 

of constraints, over a data source with “witness” values that result 

in a particular data output. The semantics of the provenance () 

query operator closely relates to both “Where provenance” and 

“Why provenance” [5]. To address the limitation of “Why 

provenance” that includes “…set of all contributing input tuples” 

leading to ambiguous provenance, Green et al. [6] introduced 

semiring-based “How provenance.” The provenance () query 

operator over a “weighted” provenance model, which reflects the 

individual contribution of each component (for example process 

loops or repeated use of single source data), is comparable to 

“How provenance.” 

The Trio project [21] considers three aspects of lineage 

information of a given tuple, namely how was a tuple in the 

database derived along with a time value (when) and the data 

sources used. A subset of queries in Trio, “lineage queries”, 

discussed in [21], can be mapped both as provenance () and as 

provenance_context () query operators depending on the input 

value. The SPIDER system [35] built on top of Clio [36] uses 

provenance information modeled as “routes” (schema mappings) 

between source and target data to capture aspects of both “Why 

provenance” and “How provenance”. Hence, it closely relates to 

the semantics of the provenance () query operator. 

 

Figure 12: Mapping provenance query operators with existing 

database and workflow provenance 

5.2 Provenance in Scientific Workflows 
The rapid adoption of scientific workflows to automate scientific 

processes has catalyzed a large body of work in recording 

provenance information for the generated results. Simmhan et al. 

[7] survey different approaches for collection, representation and 

management of workflow provenance. The participants in the 

provenance challenge [8] collected provenance at different levels 

of granularities such as comprehensive workflow system traces in 

PASS [37], use of semantic annotations of services by Taverna 

[38], and recording of data value details and service invocations in 

Karma [20]. Recent work has also recognized the need for 

inclusion of domain semantics in the form of domain-specific 

provenance metadata [22] along with workflow provenance. The 

semantics of these projects can be mapped to the provenance () 

query operator. 

The Open Provenance Model (OPM) [39] is a generic graph 

model for provenance representation. In contrast to the Provenir 

ontology, OPM does not model named relationships as first class 

entities and requires use of tags on edges to define roles. Further, 

OPM models only causal properties, while the Provenir ontology 

models ten fundamental relations, for example located_in 

specifies geographical location. The rules for inferencing 

proposed in OPM are easily contradicted [40] due to its generic 
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graph model, in contrast the Provenir ontology is supported by the 

well-defined and extensive reasoning features of the Semantic 

Web. 

6. CONCLUSIONS 
This paper introduces PRoM, a Semantic Web provenance 

management framework for science, consisting of the Provenir 

ontology, a novel provenance query classification scheme, and 

provenance query operators. The paper defines a modular 

approach to interoperable provenance modeling based on the 

Provenir foundational ontology. The Provenir ontology defined in 

OWL DL supports modeling of complex domain semantics and 

also use of reasoning to query provenance. The provenance query 

operators, defined for the first time, support a variety of queries 

and enable provenance management systems to offer a dedicated 

and well-defined query mechanism. 

The paper also discusses the implementation of a provenance 

query engine over an RDF database to support the provenance 

query operators. The evaluation of a straightforward 

implementation of the query engine highlights the need for an 

effective query optimization strategy, which is addressed by a new 

class of materialized views called MPV. The MPVs are shown to 

be highly effective for complex provenance queries over very 

large scientific datasets. Specifically, MPV reduce the query times 

by approximately three orders of magnitude that enables the use 

of the provenance query engine as a practical tool for provenance 

management in scientific applications. 
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