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Abstract. We report on a recent advance in integrating Rules and
OWL. We discuss a recent proposal, known as nominal schemas, which
realizes a seamless integration of Datalog rules into the description logic
SROIQ which underlies OWL 2 DL. We present extensions of the stan-
dardized OWL syntaxes to incorporate nominal schemas, reasoning al-
gorithms, and a first naive implementation. And we argue why this ap-
proach goes a long way towards overcoming the present paradigm split.
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1 Introduction

The desire to integrate the Web Ontology Language OWL [28] with rule-based
knowledge representation formalisms has produced a significant number of re-
search contributions on the topic. The importance of the research is probably
best understood by looking at the current version of the Semantic Web Layer
Cake.1 It shows OWL as an alternative to the Rule Interchange Format RIF
[15], with a unifying logic as an overarching formalism integrating them both.
Some of the past proposals for such a unifying logic have significant theoretical
appeal, and some of them have also been used effectively in applications, but the
Semantic Web research community has yet to form a consensus on the matter.

Why past and current proposals for a unifying logic have not yet received
wide support is not an easy question to answer. There are likely many reasons.
Some of the following issues, however, appear to be relevant. First, some proposed
unifying logics make use of a hybrid syntax, one combining OWL syntax (i.e. a
syntax which focuses on classes and their relationships using class subsumption
axioms) with a distinct rules syntax. In this way, a knowledge base consists of
two different parts, each part fitting one of the two paradigms. Second, some of
the proposals make use of a complicated (and sometimes also hybrid) semantics.
A straightforward extension of semantics would clearly be preferred. Third, the
more straightforward combinations of OWL and rules are undecidable. At least
from the perspective of OWL design criteria, this is highly undesirable.

In this paper, we discuss a recently made proposal for extending OWL with
rules [21] and suggest that it goes some way toward providing a unifying logic

1 http://www.w3.org/2007/03/layerCake.svg



that does not suffer from the above mentioned drawbacks. That is, it uses a
single syntax and semantics, and it is decidable. The proposal is based on ex-
tending description logics with nominal schemas, which are expressions akin to
the variables of DL-safe rules. In [21], the following theoretical results are shown:
– SROIQ, which forms the basis for OWL, remains decidable when extended

with nominal schemas. Indeed, the worst case computational complexity does
not increase.

– Tractable profiles extended with nominal schemas remain tractable.
– Binary Datalog—with the safety restriction that variables refer to named

individuals—is subsumed by the approach, in the sense that the rules can
be translated into an equivalent DL theory making use of nominal schemas.
Furthermore, the semantics is a straightforward and intuitively easy to un-

derstand extension of DL semantics. The proposal is OWL-centric in that it both
attempts to provide a unifying logic from the perspective of design rationales of
OWL and also builds on the DL syntax and semantics underlying OWL.

The purpose of this paper is to add further support to the claim that the
proposed formalism of [21] provides a promising step towards unifying OWL and
rules. Specifically:
1. We provide extensions of the different OWL syntaxes defined by the OWL 2

specification [10].
2. We report on a naive reasoning implementation and performance evaluations,

which indicate that the OWL extension is computationally feasible.
3. We show how the proposed approach covers all of positive Datalog (i.e., not

only the binary fragment), which forms the basis for RIF Core [2].
4. We show how existing algorithms for description logics around OWL can be

extended with relative ease to incorporate nominal schemas.
5. We provide first pointers on how to extend our approach to cover non-

monotonic rules.
The plan of the paper is as follows. In Section 2 we recall earlier results on

nominal schemas and show how we can capture Datalog with this notion. In
Section 3 we show how the different OWL 2 syntaxes can easily be extended
to cover nominal schemas. In Section 4 we report on a first straightforward
implementation of reasoning with nominal schemas, and on an evaluation of
it. In Section 5, we show how existing tableau algorithms can be enhanced for
reasoning with nominal schemas. In Section 6 we discuss the potential of our
approach to cover rules beyond monotonic Datalog. In Section 7, we conclude and
discuss open issues. Supplementary material, including our implementation and
test data, is available from http://wiki.knoesis.org/index.php/NSByGrounding.

2 Integrating OWL and Rules Through Nominal Schema

We briefly recall the technical material from [21], and show how nominal schemas
make it possible to incorporate Datalog. We will refrain from a fully formal
presentation (which can be found in [17, 21]), and instead focus on readability
and intuitive understanding.



From a description logic (DL) perspective, a nominal schema is a kind of
variable nominal (a term used in [20]). I.e., a nominal schema can be used at any
place where a nominal is allowed in the DL under consideration, the difference
being that a nominal schema carries a variable identifier instead of an individual
name. This exact variable identifier can then also appear in other places of the
same axiom, effectively resulting in a binding between these occurrences.

Consider the following example from [17]. It states that somebody has a
conflicting review assignment (paper x) if this person has a paper submitted at
the same event z which is co-authored by one of the authors y of paper x. Each
of {x}, {y}, and {z} is a nominal schema, occurring multiple times in the axiom.

∃hasReviewAssignment.(({x} u ∃hasAuthor.{y}) u ({x} u ∃atVenue.{z}))
u ∃hasSubmittedPaper.(∃hasAuthor.{y} u ∃atVenue.{z}) (1)

v ∃hasConflictingAssignedPaper.{x}

Semantically, nominal schemas can be bound only to nominals, i.e., a class
indicated by a nominal schema can contain only known (named) individuals from
the knowledge base. As such, they are reminiscent of DL-safe rules [27] or more
precisely of DL-safe variables [19, 20]. The formal semantics has been spelled out
explicitly in [21], however the same semantics can be obtained by a transfor-
mational approach which eliminates all nominal schemas by full grounding : We
replace an axiom with nominal schemas by all axioms (without nominal schemas)
which can be obtained by substituting all nominal schemas by nominals. The
above example (1) thus gives rise to all axioms of the form

∃hasReviewAssignment.(({ai} u ∃hasAuthor.{aj}) u ({ai} u ∃atVenue.{ak}))
u ∃hasSubmittedPaper.(∃hasAuthor.{aj} u ∃atVenue.{ak})
v ∃hasConflictingAssignedPaper.{ai}

where ai, aj and ak are individual names. The resulting knowledge base carries
the classical DL semantics.

We indicate the addition of the nominal schema construct to a DL by the
letter V, following established practice. Thus, the DL SROIQ extended with
nominal schemas is called SROIQV. It was shown in [21] that SROIQV has
the same worst-case computational complexity as SROIQ, and that any bi-
nary Datalog rule can be encoded into SROIQV in such a way that ground
entailments are preserved. In fact, it was shown that SROELV suffices for this.2

Naive grounding results in an increase in the number of axioms which is
worst-case exponential in the number of named individuals in the knowledge
base. If k is the number of named individuals in the knowledge base, then axiom
(1) results in k3 axioms without nominal schemas—the number 3 comes from
the fact that the axiom contains 3 distinct nominal schemas. We come back to
this in Section 4.

2 SROEL [18, 20] is essentially the tractable (polynomial) OWL 2 EL profile [25].



It was shown in [21] (with a slight generalization in [17]) that a variant of
SROELV can be obtained, called SROELVn,3 which results only in a poly-
nomial number of new axioms, provided a method of smart grounding is used.
For details, please refer to [17, 21]. For the above example axiom (1), we indeed
obtain only k + 2k2 new axioms through smart grounding [17]. We will again
come back to this in Section 4.

Capturing Datalog with Nominal Schemas The method for capturing
binary Datalog in SROELV from [21] does not carry over directly to general
Datalog, and thus requires modifications, resulting in the following.

Given a Datalog ruleA1, . . . , An → A, whereA and allAi are atomic formulas
of the form p(x1, . . . , xn) with the xi being variables, we translate this rule into
the DL axiom τ(A1)u · · · u τ(An) v τ(A). For an atomic formula p(x1, . . . , xn),
we define τ(p(x1, . . . , xn)) to be the DL class expression ∃U.(∃p1.{x1} u · · · u
∃pn.{xn}), where U is the universal role and p1, . . . , pn are role names used
exclusively for encoding occurrences of the n-ary predicate symbol p. If xi is a
constant, then the corresponding nominal schema becomes a nominal. Due to
space constraints, we omit the proof of the following theorem.4

Theorem 1. The transformation just described converts a set P of Datalog rules
into a SROELV knowledge base K, such that, for any n-ary predicate symbol p in
P and any n-tuple (a1, . . . , an) of constants in P , we have that P |= p(a1, . . . , an)
if and only if K |= > v ∃U.(∃p1.{a1} u · · · u ∃pn.{an}).

3 OWL Syntax

We now show how to represent nominal schemas in the main syntaxes of OWL 2
[28].5 New reserved words are presented to mark the appearance of nominal
schemas in the different syntaxes. Several approaches were considered for the
representation and storage of nominal schemas, such as the use of entities within
the ontology namespace, but this paper proposes the use of string literals. Using
this approach we prevent the possible overlap that could be produced by giving
the same name to two different nominal schemas. If these are declared as entities
and, by error, two of them share the same name they will end up pointing to the
same node in an RDF graph when they most likely refer to different individuals.

The selected approach using the xsd:string datatype is also used in the RIF
XML and RDF syntaxes [3, 15]. Note that the same nominal schema can never

3 n is a natural number which serves as a kind of global bound on the number of
different nominal schemas in an axiom—however the exact definition of SROELVn

is more general, see [17, 21].
4 A full proof can be found in the technical report accompanying this paper, which is

available from http://wiki.knoesis.org/index.php/NSByGrounding.
5 Mapping from Turtle triples to RDF/XML is well defined and so the RDF/XML

based syntax will not be directly addressed.



appear in two different statements of an ontology.6 A nominal schema will only
be related with one single axiom. By using a string type the occurrence of the
nominal schema is exclusively bound to the axiom where it appears and the same
string could be repeated in different axioms along the ontology safely. Even if two
nominal schemas use the same string it will be considered as different occurrences
of a datatype and therefore, they will be two separated nodes in an RDF graph.

Using underscores to mark the appearance of a nominal schema, as for Turtle
blank nodes, was also considered. We rejected this because it could induce errors.
Although in some cases both nominal schemas and blank nodes can represent
individuals in an RDF graph they are completely different concepts. Using the
underscore to mark both could be tricky and would make mappings from and to
Turtle syntax difficult to define. With such a similar syntax the mapping may
produce errors confusing nominal schemas with blank nodes and problems may
arise when we want to move from the Turtle syntax to an RDF Graph.

Functional Syntax The required modifications for the Functional Syntax gram-
mar [26] are very minimal. The reserved word ObjectVariable is used to mark
the appearance of the nominal schema. The nominal schema variable name will
be in parentheses be followed by the expression ’ˆˆxsd:string’.

To realize this, we need to make only two changes to the grammar in [26].
1. Add ObjectVariable as alternative to the ClassExpression rule:

ClassExpression := Class | ObjectIntersectionOf | . . .
| DataExactCardinality | ObjectVariable

2. Add the following production rule to the grammar.

ObjectVariable := ’ObjectVariable(’quotedString’ˆˆxsd:string)’

Although it can be argued whether, conceptually, nominal schemas are class
expressions, their addition in this part of the grammar has been chosen in order
to keep modifications as small as possible.

Manchester Syntax Again, the reserved word ObjectVariable will be used to
mark the appearance of nominal schemas in the Manchester Syntax [13]. As in
the Functional Syntax, the nominal schema variable will be in parentheses and
followed by ’ˆˆxsd:string’. The needed changes to this grammar are the following.
1. Add ObjectVariable as alternative to the atomic rule:

atomic := classIRI | ’{’individualList’}’ | ’(’description’)’

| ObjectVariable

2. Add the following production rule to the grammar.

ObjectVariable := ’ObjectVariable(’quotedString’ˆˆxsd:string)’

6 Put differently, if a nominal schema appears in two different axioms, then the oc-
currences need to be considered distinct.



Turtle RDF Syntax We define the syntax of nominal schemas in Turtle [1]
through a mapping from the Functional Syntax to the triple-notation, as in
[29]. To add nominal schemas syntax to the mappings add the following row to
the mapping from the Functional Syntax to Turtle as specified in [29].

Functional-Style Syntax Triples Generated Main Node
ObjectVariable(”v1”ˆˆxsd:string) :x rdf:type owl:ObjectVariable :x

:x owl:variableId ”v1”

For the converse direction, add the following row to the mapping from Turtle
to the Functional Syntax specified in [29].

RDF/XML Triples Functional Syntax
:x rdf:type owl:ObjectVariable ObjectVariable(”v1”ˆˆxsd:string)
:x owl:variableId ”v1”

4 A Reasoning Implementation via Grounding

We have realized an implementation of nominal schema reasoning using naive
and smart grounding (see Section 2), primarily to obtain a baseline for the
development and testing of more efficient algorithms, and in order to show that
even the grounding approach can be used for small use cases or for initial testing.
We utilize Pellet [31] and the OWL API [12] for implementation and experiments.

For the experiments we selected several ontologies from the TONES reposi-
tory7 and added axioms with nominal schemas. We were particularly interested
in exploring the limit of usefulness of the grounding approach, and therefore var-
ied the number of axioms with nominal schemas as well as the number of nominal
schemas per axiom. Reasoning times (using Pellet after grounding) are averaged
over 100 runs, and load time is reported separately. The reasoning task used in
the experiments was satisfiability checking. We also report on experiments using
smart grounding, and on casting OWL RL into SROELVn.

Testing was performed using a 64-bit Windows 7 computer with an Intel(R)
Core(TM) i5 CPU processor. A Java JDK 1.5 version was used allocating 3GB as
the minimum for the Java heap and 3.5GB as the maximum for each experiment.
The implementation and test data, and some additional evaluation data, are
available from http://wiki.knoesis.org/index.php/NSByGrounding.

Naive Grounding We selected seven ontologies from the TONES repository
with different numbers of individuals for this evaluation. Some of them were
slightly modified, e.g., by randomly populating them with individuals. Basic
metrics are presented in Table 1.

7 http://owl.cs.manchester.ac.uk/repository/



Ont Ind Classes Ann Data Obj no ns 1 ns 2 ns 3 ns

Fam8 5 4 0 1 11 0.01 0.00 0.01 0.00 0.01 0.00 0.04 0.02
Swe9 22 189 1 6 25 3.58 0.08 3.73 0.07 3.85 0.10 10.86 1.11
Bui10 42 686 15 0 24 1.70 0.16 1.50 0.15 2.75 0.26 74.00 6.68
Wor11 80 1842 6 0 31 0.11 0.04 0.12 0.05 1.10 0.55 *11,832.00 *315.00
Tra12 183 445 2 4 89 0.05 0.03 0.05 0.02 5.66 1.76 OOM OOM
FTr13 368 22 2 6 52 0.03 4.28 0.05 5.32 35.53 42.73 OOM OOM
Eco14 482 339 2 8 45 0.04 0.24 0.07 0.02 56.59 13.67 OOM OOM

Table 1. Ontologies used in experiments for naive grounding and naive grounding
experimental results. Ind: individuals, Ann: Annotation Properties, Data: Data Prop-
erties, Obj: Object Properties. For the remaining entries, the first listed number is load
time, the second is reasoning time, both in seconds. * indicates approximate values, we
used only 5 runs for these. OOM indicates out of memory.

In order to understand the effect of several nominal schemas on the runtime,
we added three different types of axioms to the ontologies, (1) an axiom with
only one nominal schema, (2) an axiom with two different nominal schemas, and
(3) an axiom with three different nominal schemas. An example for an added
axiom is

∃prop1.{v1} u ∃prop2.{v1} u ∃prop3.{v2} u ∃prop4.{v2} v Class1.

Since the blow-up obtained from naive grounding is exponential in the number
of nominal schemas, this is already the limit we can manage with non-trivial
ontologies. We will discuss the impact of this further below. Results are presented
in Table 1.

We then investigated the impact of several axioms with nominal schemas on
the performance, by adding 20 axioms with one nominal schema, respectively 10
axioms with 2 nominal schemas. The results can be found in Table 2.

Discussion First of all, it must be noted that grounding is obviously a rather
stupid approach to reasoning with nominal schemas. We provide these figures
as a baseline, and not because we think that reasoning with nominal schemas
should be done this way. Rather, algorithms need to be developed which perform
grounding by need and in an incremental manner, and we are going to further
discuss this in Section 5. Nevertheless, the figures given above show that even the

8 http://www.mindswap.org/ontologies/family.owl
9 http://sweet.jpl.nasa.gov/1.1/data.owl

10 http://www.ordnancesurvey.co.uk/ontology/BuildingsAndPlaces/v1.1/Buildings
AndPlaces.owl

11 http://www.berkeleybop.org/ontologies/obo-all/worm phenotype xp/worm pheno
type xp.obo

12 http://reliant.teknowledge.com/DAML/Transportation.owl
13 http://www.co-ode.org/roberts/family-tree.owl
14 http://reliant.teknowledge.com/DAML/Economy.owl



Ontology Individuals no ns 20×1 ns 10×2 ns

Fam 5 0.01 0.00 0.01 0.00 0.02 0.01
Swe 22 3.58 0.08 3.42 0.08 3.73 0.28
Bui 42 2.70 0.16 2.69 0.25 5.70 3.21
Wor 80 0.11 0.04 0.23 0.28 12.42 6.88
Tra 183 0.05 0.03 0.33 0.15 107.57 43.63
FTr 368 0.03 4.28 0.52 11.33 OOM OOM
Eco 482 0.04 0.24 0.65 0.30 OOM OOM

Table 2. More naive grounding experimental results, the first listed number is load
time, the second is reasoning time, both in seconds. OOM indicates out of memory.

naive grounding approach is not entirely hopeless for small prototype ontologies,
if the number of axioms requiring nominal schemas remains small, and there are
not more than two different nominal schemas per axiom.

To understand the expressivity of axioms with two different nominal schemas,
note that such an axiom expresses the knowledge which could otherwise only
be stated using k2 axioms without nominal schemas, where k is the number
of individual names used in the knowledge base. This suffices, for example, to
encode all of OWL RL (but for functionality axioms) in SROELV.

Smart Grounding For completeness of our evaluation, we also tested the smart
grounding approach (see Section 2). We chose different test ontologies for this
purpose since they need to lie in the OWL 2 EL profile for this approach. The
ontologies are listed below; individuals were artificially (randomly) added since
OWL EL ontologies in the TONES repository do usually not sport individuals.

Ontology Classes Annotation P. Data P. Object P. Individuals
Rex15 552 10 0 6 100

Spatial16 106 13 0 13 100
Xenopus17 710 19 0 5 100

As before, we added three different types of axioms to the ontologies: (1) an
axiom with only one nominal schema, (2) an axiom with two different nominal
schemas, and (3) an axiom with three different nominal schemas. All occurrences
of nominal schemas were safe as specified in the smart grounding approach
detailed in [17, 21].18 The results of the evaluation can be found in Table 3.

15 http://obo.cvs.sourceforge.net/*checkout*/obo/obo/ontology/physicochemical/
rex.obo

16 http://obo.cvs.sourceforge.net/*checkout*/obo/obo/ontology/anatomy/caro/ spa-
tial.obo

17 http://obo.cvs.sourceforge.net/*checkout*/obo/obo/ontology/anatomy/gross ana
tomy/animal gross anatomy/frog/xenopus anatomy.obo

18 For example, the first occurrence of each of the nominal schemas {y} and {z} in
axiom (1) is safe, which suffices for smart grounding.



Ontology Individuals No ns 1 ns 2 ns 3 ns

Rex naive 100
0.025 0.009

0.031 0.013 1.689 0.112 OOM OOM
Rex smart 100 0.058 0.023 0.046 0.011 0.053 0.009

Spatial naive 100
0.035 0.029

0.021 0.014 1.536 0.101 OOM OOM
Spatial smart 100 0.018 0.013 0.033 0.007 0.044 0.011

Xenopus naive 100
0.063 0.018

0.070 0.190 1.598 0.112 OOM OOM
Xenopus smart 100 0.099 0.037 0.083 0.018 0.097 0.063

Table 3. Evaluation of the smart grounding approach. The “No ns” column of the
table refers to the time when no axiom was added to the ontology. Each one of the
next pair of columns presents the results for each added axiom. The first column of
each pair in the table refers to loading time and the second one shows the time for
checking knowledge base satisfiability. Each ontology is repeated in two rows showing
the difference of time between the smart grounding approach and the naive grounding
approach.

Discussion The evaluation shows rather clearly that smart grounding signifi-
cantly improves efficiency, i.e., smart grounding appears to scale well if occur-
rences of nominal schemas are safe, in which case the smart grounding approach
yields a clear advantage. Since nominal schemas are rather new, it remains to
be investigated to which extent the use of safe occurrences of nominal schemas
already provides added value to practice.

Casting OWL RL to SROELVn We finally investigated the particular
task of encoding OWL RL ontologies [25] in SROELVn. There are two rea-
sonable ways how to do this. The first interprets OWL RL ontologies (after
the usual normalization) as DL-safe [27] binary datalog rules with equality (i.e.,
such that ground entailments are preserved), and then transforms these rules
into SROELVn, as indicated in [21].19 When this is done, then all but one type
of OWL RL axioms are actually translated into SROELV2 axioms, as each of
these axioms carries at most two different nominal schemas. We have already
seen earlier in this section, that even the naive grounding approach scales rather
well in this case. The single type of axiom which requires three nominal schemas
in this transformation is the functionality declaration of roles.

In the following evaluation, we take a different approach. Any OWL RL
axiom (after normalization) which can be expressed in SROEL (i.e., in OWL
EL) is left unmodified. However, not all OWL RL axioms are part of the OWL
EL language, so we have to find alternatives for those axioms.

For role inverses, i.e. for axioms of the form R− v S, we interpret it as the
DL-safe rule R(x, y)→ S(y, x), encoded in SROELVn as the axiom

∃U.({x} u ∃R.{y}) v ∃U.({x} u ∃S.{y})).

19 The transformation from Section 2 can be used, but the simpler one from [21] suffices.



Our test ontology20 has 39 classes, 8 annotation properties, no data proper-
ties, 15 object properties, and 100 individuals. We use up to five role inverses.
The following table shows the runtimes in seconds, as usual giving first the load
time and then the reasoning time.

1 inverse 3 inverses 5 inverses
OWL RL ontology 0.51 0.00 0.397 0.00 0.61 0.00
translation 3.53 0.46 10.59 1.93 22.03 4.48

For the universal quantifier, i.e. for axioms of the form A v ∀R.C, we inter-
pret it as the DL-safe rule A(x) ∧ R(x, y) → C(y), which can be expressed in
SROELVn as the axiom

∃U.({x} uA) u ∃U.({x} u ∃R.{y}) v ∃U.({y} u C).

Our test ontology21 has 96 classes, 8 annotation properties, 32 data proper-
ties, 60 object properties and 100 individuals, and was evaluated similarly to the
case for role inverse, with the following results.

1 universals 3 universals 5 universals
OWL RL ontology 0.07 0.00 0.01 0.00 0.02 0.00
translation 1.88 0.36 6.47 0.90 13.85 1.68

Discussion While the increase in runtime is significant, it appears that this trans-
lation can be used for moderate-sized ontologies, even with the naive grounding
approach. At first sight, the casting of OWL RL ontologies into OWL EL on-
tologies seems to be a rather dubious undertaking. However, it can be useful if
an OWL RL ontology is to be used alongside an OWL EL ontology, as reasoning
in SROELVn, which contains both profiles using the above transformation, is
tractable, while a naive combination of the two profiles is not.

5 Dealing with Nominal Schemas in Existing Algorithms

As mentioned in Section 4, reasoning with nominal schemas can be done via
grounding the nominal schemas into known individuals in the knowledge base.
However, both naive grounding and smart grounding essentially do the grounding
up front as a preprocessing phase before the knowledge base satisfiability is
computed. It has been noted in the previous section, also in [21], that one possible
optimization for these approaches is by treating nominal schemas like nominals
in the reasoning process, and then grounding them with concrete individuals
only if this is needed and relevant for deduction steps. In this section, we briefly
sketch a way to realize this delayed or deferred grounding.

We consider adding a delayed grounding rule to a tableau-based algorithm
for deciding concept satisfiability w.r.t. a knowledge base. As an example, we

20 Modified from http://ontology.dumontierlab.com/pharmacogenomics-primitive.
21 Modified from http://org.semanticweb.ontologies/Ontology1225725433367251000.



consider the tableau algorithm for SROIQ [14]. Actually, that tableau algorithm
decides concept satisfiability w.r.t. reduced RBox only, while the TBox and ABox
components of the knowledge base are internalised as part of the input concept
description. Let C0 be an input concept andR be a reduced RBox input. Assume
that oi = {ai}, 1 ≤ i ≤ ` are nominals in C0. The algorithm starts with a set of
tableau nodes {s0, s1 . . . , s`} where L(s0) = {C0}, and L(si) = {oi}, 1 ≤ i ≤ `.
Here, L(s) is the label of node s which is the set of concepts associated with s.
Intuitively, the structure of the tableau gives off a model of C0 and L(s) contains
all concepts to which the individual represented by the node s must belong. The
algorithm proceeds by applying tableau expansion rules whose details can be
seen in [14], until no rule is applicable or a clash occurs. If a clash occurs, then
C0 is not satisfiable w.r.t. R.

The DL SROIQV is obtained from adding nominal schemas to the DL
SROIQ. Hence, given a SROIQV knowledge base, a naive grounding of nomi-
nal schemas will yield a knowledge base in SROIQ whose satisfiability can then
be decided using the tableau algorithm mentioned above. We specify a ground-
ing rule that enables grounding to be done during tableau expansion instead of
doing it up front. For this rule, we first need to define some needed notions. For
every concept C, let Var(C) be the set of all variables appearing as a nominal
schema in C. We say that two concepts C1 and C2 are pairwise connected if
Var(C1) ∩ Var(C2) 6= ∅. A concept C is directly connected if either C = C1 u C2

or C = C1 t C2 where C1 and C2 are pairwise connected. A concept C is im-
mediately ns-propagating if C is in one of the following forms: ∃R.D, ∀R.D,
(≤nR.D), and (≥nR.D), such that D = {x}uD′, ¬{x}uD′, D = {x}tD′, or
D = ¬{x} tD′ for some nominal schema {x}. The grounding rule is as follows.

grounding : if C ∈ L(s), {z} is a nominal schema in C,

C[z/ai] /∈ L(s) for some i, 1 ≤ i ≤ `
then L(s) := L(s) ∪ {C[z/ai]}

Here, C[z/ai] is a concept that is obtained from C by substituting every occur-
rence of the nominal schema {z} in C with the nominal {ai}. In addition, we
need to impose the following restrictions to all tableau expansion rules other
than grounding and Self-Ref-rule: they cannot be applied to the concept C if C
is immediately ns-propagating, or directly connected, or has a nominal schema
{x} that occurs as a top-level conjunct/disjunct. This restriction ensures that
no variable binding due to separate occurrences of nominal schemas is broken.
Secondly, it prevents the propagation of concepts through the tableau structure
which would make a nominal schema (or its negation) occur as a top-level con-
junct/disjunct, i.e., such a propagation only occurs after the nominal schema is
grounded. Note that a nominal schema (or its negation) may still occur already
at the top-level of C0, hence the above restriction makes sure that such a nominal
schema is grounded before any other tableau expansion rule is applied.

Since we assume that no two axioms share the occurrences of the same nom-
inal schema, each application of the grounding rule will only affect nominal
schemas which originated from one axiom. Termination and correctness of the



algorithm can be shown by adapting the corresponding proofs for SROIQ [14]
together with the following observation: any SROIQV knowledge base can al-
ways be completely (naively) grounded up front with the grounding rule to obtain
a SROIQ knowledge base which can then be reasoned with using the standard
SROIQ tableau algorithm. Moreover, taking into account the restrictions pre-
sented in the previous paragraph, a sequence of applications of tableau expansion
rules with applications of the grounding rule interleaved in between can be simu-
lated by a sequence of applications of tableau rule applications which is preceded
by completely grounding the knowledge base up front using the grounding rule.
In other words, the above restriction does not prevent the original tableau expan-
sion rules to be applied at all, but rather, it only postpones such an application
until after an appropriate grounding is done. Note that in the worst case, appli-
cations of the grounding rule will introduce exponentially many new concepts
in the labels of tableau nodes. However, this grounding rule can still be incor-
porated without actually increasing the complexity of reasoning. In particular
for SROIQV, the optimal upper bound of complexity for knowledge base sat-
isfiability is based on a reduction of theories of C2, the two-variable fragment of
first-order logic with counting quantifiers [21]. For this setting, without spelling
out the details, a variant of this grounding rule can actually be incorporated into
the translation to C2 formulae. Hence, the following theorem holds:

Theorem 2. Adding the grounding rule to reasoning algorithms for SROIQ
yields a sound and complete algorithm to decide satisfiability of SROIQV. More-
over, the grounding rule does not increase the complexity of reasoning.

In fact, it can be shown that a similar result holds for reasoning in the
tractable SROELVn, i.e., adding a variant of the grounding rule to existing
reasoning algorithms for SROEL still retains tractability. Observe that the
grounding rule as specified above is of non-deterministic nature because it non-
deterministically chooses to which individual names should the grounding be
done. It thus remains to devise a good heuristic in order to achieve a good
performance in practical situations.

To demonstrate the advantage of having delayed grounding instead of ground-
ing all nominal schemas up front, we consider again a knowledge base KB
that contains the axiom (1) from page 3 together with some other axioms, as
listed in Figure 1. Given the knowledge base KB, we ask whether KB en-
tails the existence of a conflicting review assignment, i.e., whether the concept
∀hasConflictingAssignedPaper.⊥ is unsatisfiable w.r.t. KB.

The answer must be yes since a1 and a1000 co-author p0, but a1 has review
assignment on p999 whose authors include a1000. This knowledge base has 2000
individual names. Hence, if we solve this entailment by grounding the first axiom
up front, we would have 8×109 new axioms. On the other hand, with apropriate
delayed groundings, namely grounding x to p999, y to a1000 and z to ISWC, we
could solve the entailment only in three grounding steps, plus a few more tableau
expansion steps.



∃hasReviewAssignment.(({x} u ∃hasAuthor.{y}) u ({x} u ∃atVenue.{z}))
u ∃hasSubmittedPaper.(∃hasAuthor.{y} u ∃atVenue.{z})
v ∃hasConflictingAssignedPaper.{x}

{p0} v ∃hasAuthor.{a1000} u ∃hasAuthor.{a1}
{pi} v ∃hasAuthor.{ai} u ∃hasAuthor.{ai+1}
{ai} v ∃hasSubmittedPaper.{pi−1} u ∃hasSubmittedPaper.{pi}

{a1000} v ∃hasSubmittedPaper.{p999} u ∃hasSubmittedPaper.{p0}
{pj} v ∃AtVenue.{ISWC}
{ak} v ∃hasReviewAssignment.{pk−4} u ∃hasReviewAssignment.{pk−3}
{a1} v ∃hasReviewAssignment.{p999} u ∃hasReviewAssignment.{p998}

Fig. 1. Example for delayed grounding. i = 1, . . . , 999, j = 0, . . . , 999, k = 4, . . . , 1000.

6 Adding Local Closure

We have seen in Theorem 1 that we can capture all of Datalog with nom-
inal schemas. However, while Datalog is one of the most fundamental rules
paradigms, there also exist numerous variants and extensions. Some of those
considered most relevant for the Semantic Web are included or covered in the
Rule Interchange Format RIF [15]. In particular, Horn logic is covered in the
Basic Logic Dialect [3], and some of the key non-monotonic22 rule systems are
covered by the RIF Framework for Logic Dialects [4, Section 3.8].

So, while nominal schemas provide a tight integration of Datalog with OWL
which has not been achieved before, it is fair to ask to what extent the approach
allows to capture other rule paradigms. A comprehensive answer to this question
is beyond the scope of this paper, but we can provide some evidence how a further
reconciliation of the two paradigms might be achieved. We need to restrict this
discussion to certain types of rule approaches, and thus will focus on extensions
with non-montonic negation,23 although we also see scope for other work.

Concerning non-monotonic extensions of Datalog, the primary current para-
digm is based on the so-called stable model semantics24 [8], which has given rise
to answer set programming [23] as a major knowledge representation paradigm.
This now begs the question how to extend SROELV (or other description logics

22 Non-monotonicity refers to the fact that in such logics it is possible that the ad-
dition of new axioms causes the withdrawal of previously drawn conclusions. Non-
monotonicity is closely related to the closed world assumption [9], and thus to the
discussion of local closure for description logics around OWL.

23 Since our approach is OWL-centric, i.e., decidability is important, undecidable rule
languages such as RIF BLD [3] or logic programming with negation as failure and
function symbols [11] are of limited interest in the context of this work.

24 Note that a major alternative, the well-founded semantics [7], is closely related to
the stable model semantics [11].



featuring nominal schemas) in such a way that the stable model semantics (or
generalizations thereof) can be completely captured by introducing some form
of local closed world modeling.25 It would appear to be rather evident that this
can be accomplished in some way, however a solution would be preferred which
is intuitively appealing and easy to explain to users and developers.

We argue in [16, 30] that circumscription [24] provides such an intuitively
appealing approach, and indeed we have developed a version of circumscription
for description logics which overcomes major drawbacks of an earlier approach
[5]; in particular, our modification features minimization (closure) of roles while
staying decidable, while the approach from [5] is restricted to the closure of
classes. In a nutshell, our approach—which we call grounded circumscription—
makes it possible for the modeler to “close” an arbitrary choice of roles and
classes, with the intuition that extensions of such classes or roles contain only
those (pairs of) known individuals which are essentially required to be in those
extensions. Another advantage of the circumscription approach is that it does
not require the addition of any new syntax to the ontology language, as the
closure information can be separated from the actual knowledge base, and the
latter can be expressed as usual.

Now, in [6, 22] relationships between stable model semantics and circumscrip-
tion have been worked out for logic programming (and thus for Datalog), and
it was shown that the relation is rather tight. Grounded Circumscription over
SROELV or SROIQV should thus subsume a non-monotonic rule paradigm
which is closely related to the stable models approach. Spelling this out in de-
tail, however, would be a different paper, and thus we defer this to future work.

7 Conclusion

We have presented a series of technical results and arguments, which support the
claim that nominal schemas are a significant novel development in the quest to
integrating OWL and rules. We consider this paper a stepping stone in further
investigations into this quest. Naturally, a plethora of open issues remain to be
investigated before a final conclusion can be reached.

– Efficient algorithms need to be developed, implemented and tested to show
that nominal schemas can be reasoned with in a sufficiently efficient way.

– Further rule paradigms remain to be incorporated into the framework in or-
der to achieve a further integration of diverse kinds of rule-based approaches
into the OWL realm.

– Tool support for modeling and usage of nominal-schema-extended OWL re-
mains to be developed.

– Application studies need to be undertaken in order to evaluate the usefulness,
in practice, of the approach.

25 See [16, 17] for a brief survey of existing approaches to local closed world extensions
of description logics.
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(eds.) Proc. 12th European Conf. on Logics in Artificial Intelligence (JELIA’10).
LNAI, vol. 6341, pp. 234–246. Springer (2010)
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A Proof of Theorem 1

A proof of Theorem 1 is provided here. We use a transformation of rules into DL
axioms that is slightly different than the one presented in Section 2—unary and
binary predicates in rules are handled differently than higher arity predicates.
This means that what is proven in Theorem 1 is actually slightly different. The
reason for the modification is that the transformation here directly extends the
one presented in [21], where rules with only unary and binary predicates are
considered. The modified transformation is not problematic, in the sense that it
is clear that the proof here can be readily altered to apply to rules translated as
indicated in Section 2.

In the following, RB is a set of Datalog rules defined over a signature
〈NI , NP , NV 〉, where NI is a set of constants, NP is a set of n-ary predicates,
and NV is a set of variables. Each rule has the form A1, . . . , An → A, where A
and each Ai is of the form p(t1, . . . , tn), with p ∈ NP and each ti ∈ NI ∪NV . We
allow > and ⊥ to occur in NP , and they have their usual meaning. We will use
NP,i (NP,>i) to refer to the set of predicates of NP with arity i (greater than i).

We briefly recount the semantics for Datalog. An interpretation I for RB
consists of a domain of discourse ∆I together with a function .I such that for
each a ∈ NI , aI ∈ ∆I , and for each n-ary predicate p ∈ NP , pI is a subset of
an n-ary relation over ∆I . A variable assignment Z for I maps each variable
v ∈ NV to some element of ∆I : Z(v) ∈ ∆I . Assignments must also satisfy
the following restriction: if Z(v) = d, then there exists an a ∈ NI such that
aI = d. This ensures that the rules of RB are DL-safe, i.e., that variables only
refer to named individuals in the domain of discourse. For an arbitrary term in
NI ∪ NV , tI,Z = tI if t is a constant, and tI,Z = Z(t) if t is a variable. If I
is an interpretation and Z an assignment, I and Z satisfy p(t1, . . . , tn), written

I, Z |= p(t1, . . . , tn), if and only if (tI,Z1 , . . . , tI,Zn ) ∈ pI . For a set {A1, . . . , An}
of atomic formulas, I, Z |= {A1, . . . , An} if and only if I, Z |= Ai for each Ai.
For a rule B → H, I, Z |= B → H if and only if I, Z 6|= B (that is, I and Z
do not satisfy B) or else I, Z |= H. Interpretation I is a model of formula X if
and only if I, Z |= X for each assignment Z. A datalog program RB entails X,
written RB |= X, if and only if each model of RB is a model of X.

RB can be embedded into an equisatisfiable SROELV knowledge base dl(RB)
over signature 〈NI , NC , NR, NV 〉, where NC is a set of concept symbols and NR

is a set of role symbols. Here, NC = NP,1 and NR = NP,2 ∪ {U} ∪S, where U is
the universal role and S is a special set of roles defined as follows: If p ∈ NP,>2

has arity k, then p1, . . . , pk ∈ S are unique binary predicates associated with p;
S is the set of all such predicates. The semantics for SROELV knowledge bases,
which extends the usual description logic semantics with features to accommo-
date nominal schemas, is fully described in [21].

The rules for creating dl(RB) are given below. C and R refer to unary and
binary predicates of RB, while p refers to a higher arity predicate.

1. dl(C(t)) := ∃U.({t} u C);
2. dl(R(t, u)) := ∃U.({t} u ∃R.{u});



3. dl(p(t1, . . . , tk)) := ∃U.(∃p1.{t1} u . . . u ∃pk.{tk});
4. dl(A1, . . . , An → H) := dl(A1) u . . . u dl(An) v dl(H);
5. dl(RB):={dl(r)|r ∈ RB}.

Given an interpretation I for RB, we define a family fam(I) of interpreta-
tions based on I. Without loss of generality, we assume that I is defined over a
countably infinite domain of discourse. fam(I) is the set of all interpretations J
which satisfy all of the following conditions.

1. ∆J := ∆I .
2. For each tuple (d1, . . . , dk) ∈ pI , we assign an element e in ∆J to the tuple.
3. For each constant a ∈ NI , aJ := aI .
4. For each C ∈ NP,1, CJ := CI .
5. For each R ∈ NP,2, RJ := RI .
6. For each p ∈ NP,>2, if (d1, . . . , dk) ∈ pI , then (e, di) ∈ pJi , where e is a

domain element associated with (d1, . . . , dk) according to point 2 above.

Observe that any interpretation for dl(RB) can be reduced to one for RB: if
(e, d1) ∈ pJ1 , . . ., (e, dk) ∈ pJk , then (d1, . . . , dk) ∈ pI . And so, for any interpre-
tation J for dl(RB), there is an I for RB such that J ∈ fam(I).

Below, since RB and dl(RB) share variables and since the interpretations
described above are based on a common domain of discourse, we can assume
that the variable assignments are the same for both RB and dl(RB). Also, we
will often write ∆ instead of, e.g., ∆I .

Lemma 1. Let A be an atom in RB, I an interpretation of RB, J ∈ fam(I),
and Z an assignment.
1. I, Z |= A if and only if dl(A)J ,Z = ∆. and
2. I, Z 6|= A if and only if dl(A)J ,Z = ∅.

Proof. As noted in [21], since dl(A) has the form ∃U.C, CJ ,Z 6= ∅ implies
dl(A)J ,Z = ∆, and CJ ,Z = ∅ implies dl(A)J ,Z = ∅, and so dl(A)J ,Z 6= ∅ if and
only dl(A)J ,Z = ∆. Given this, it suffices to show dl(A)J ,Z 6= ∅ iff I, Z |= A.

Suppose I, Z |= A and let d ∈ ∆. If A = C(t), then tJ ,Z ∈ CJ ,Z , and so
clearly d ∈ (∃U.({t}uC))J ,Z . Similarly, if A = R(t, u), then (tJ ,Z , uJ ,Z) ∈ RJ ,
and so clearly d ∈ (∃U.({t} u ∃R.{u}))J ,Z . If, instead, A = p(t1, . . . , tk), then

(tI,Z1 , . . . , tI,Zk ) ∈ pI . By definition of J , (e, tJ ,Z
1 ) ∈ pJ1 ,. . ., (e, tJ ,Z

k ) ∈ pJk for
some e ∈ ∆. As such, d ∈ (∃U.(∃p1.{t1} u . . . u ∃pk.{tk}))J ,Z .

Now suppose d ∈ dl(A)J ,Z . If dl(A) is ∃U.({t} u C), then (d, tJ ,Z) ∈ UJ ,Z

and tJ ,Z ∈ CJ ,Z . From this, tI,Z ∈ CI,Z . If dl(A) is ∃U.({t}u∃R.{u})J ,Z , then
(tJ ,Z , uJ ,Z) ∈ RJ ,Z and so (tI,Z , uI,Z) ∈ RI,Z . If instead dl(A) = (∃U.(∃p1.{t1}u
. . . u ∃pk.{tk}))J ,Z , then there is an e ∈ ∆I such that (e, tJ ,Z

1 ) ∈ pJ ,Z
1 , . . .,

(e, tJ ,Z
k ) ∈ pJ ,Z

k , and so (tI,Z1 , . . . , tI,Zk ) ∈ pI,Z . In each case, I, Z |= A. �

Lemma 2. If I is an interpretation for RB and J ∈ fam(I), then I is a model
of RB if and only if J is a model of dl(RB).



Proof. Suppose I is a model of RB, and let Z be an assignment. Suppose B →
H ∈ RB. If I, Z |= H, then dl(H)J ,Z = ∆ by Lemma 1. Similarly, if I, Z 6|= B,
then there exists a Bi ∈ B such that I, Z 6|= Bi. Again by Lemma 1, dl(Bi)

J ,Z =
∅, and so dl(B)J ,Z = ∅. Either way, J , Z |= dl(B → H). Generalizing on Z and
B → H, J models dl(RB).

Now suppose J is a model of dl(RB). Suppose B → H ∈ RB and I, Z |= B
for some assignment Z. For each A ∈ B, I, Z |= A. By Lemma 1, dl(A)J ,Z = ∆I

for each A ∈ B, and so dl(B)J ,Z = ∆I . Since J , Z |= dl(B → H), it must be
that dl(H)J ,Z = ∆I , and so I, Z |= H by Lemma 1. As such, I, Z |= B → H.
Generalizing on Z and B → H, I models RB. �

Theorem 1. Let RB be a set of rules and dl(RB) its SROELV translation. For
any n-ary predicate p in RB and any n-tuple (a1, . . . , ak) of constants in RB,
RB |= p(a1, . . . , ak) if and only if dl(RB) |= > v ∃U.(∃p1.{a1}u · · · u∃pn.{an}).

Proof. Suppose RB |= p(a1, . . . , ak) and let J be a model of dl(RB) and Z a
variable assignment. An interpretation I of RB can be constructed from J . By
Lemma 2, I is a model of RB and consequently of p(a1, . . . , ak). As such, I, Z |=
p(a1, . . . , ak). By Lemma 1, dl(p(a1, . . . , ak))J ,Z = ∆. That is, (∃U.(∃p1.{a1} u
. . .u∃pk.{ak})J ,Z = ∆. From this, J , Z |= > v (∃U.(∃p1.{a1}u . . .u∃pk.{ak}).
Generalizing, J is a model of > v (∃U.(∃p1.{a1} u . . . u ∃pk.{ak}).

Now suppose dl(KB) |= > v (∃U.(∃p1.{a1} u . . . u ∃pk.{ak}) and let I be
a model of RB and Z a variable assignment. Let J ∈ fam(I). By Lemma 2,
J is a model of dl(RB) and consequently of J , Z |= > v (∃U.(∃p1.{a1} u
. . . u ∃pk.{ak}). That is, (∃U.(∃p1.{a1} u . . . u ∃pk.{ak})J ,Z = ∆. By Lemma 1,
I, Z |= p(a1, . . . , ak). Generalizing on Z, I models p(a1, . . . , ak). �


