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Abstract. With the increasing interest in expressive ontologies for the Semantic
Web, it is critical to develop scalable and efficient ontology reasoning techniques
that can properly cope with very high data volumes. For certain application do-
mains, approximate reasoning solutions, which trade soundness or completeness
for inctreased reasoning speed, will help to deal with the high computational com-
plexities which state of the art ontology reasoning tools have to face. In this paper,
we present a comprehensive overview of the SCREECH approach to approximate
reasoning with OWL ontologies, which is based on the KAON2 algorithms, fa-
cilitating a compilation of OWL DL TBoxes into Datalog, which is tractable in
terms of data complexity. We present three different instantiations of the Screech
approach, and report on experiments which show that the gain in efficiency out-
weighs the number of introduced mistakes in the reasoning process.

1 Introduction

Scalability of reasoning remains one of the major obstacles in leveraging the full power
of the Web Ontology Language OWL [1] for practical applications. Indeed, large-scale
applications normally use only a fragment of OWL which is very shallow in logical
terms, and thus cannot employ the more sophisticated reasoning mechanisms for ac-
cessing knowledge which is implicit in knowledge bases. While the use of such shallow
techniques already has added value, it would be preferable if the more complex logical
constructors in the language could also be used. Consequently, scalability of OWL rea-
soning needs to be investigated on a broad front in order to advance the state of the art
by several orders of magnitude.

Among the many possible approaches to address scalability, one of them concerns
the use of logic programming for this purpose. This can be traced back to the work
on Description Logic Programs (DLP) [2, 3], which are a naive Horn fragment of
OWL DL.3 Along the same lines lies the OWL DL-fragment Horn-SHIQ [7, 8], which
is based on the sophisticated transformation algorithms implemented in the KAON2-
system4 [8, 9]. Horn-SHIQ is strictly more expressive than DLP and allows, for ex-
ample, the free use of existential role restrictions.
? Research reported in this paper was supported by the EU in the IST project NeOn (IST-2006-

027595, http://www.neon-project.org/)), by the Deutsche Forschungsgemein-
schaft (DFG) under the ReaSem project, and by the the German Federal Ministry of Education
and Research (BMBF) under the Theseus project, http://theseus-programm.de.

3 Some recent developments can be found in [4–6].
4 http://kaon2.semanticweb.org
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Fig. 1. KAON2 approach to reasoning

At the same time, a different effort to leveraging Horn logic for OWL reasoning rests
on the idea of approximate reasoning, which presupposes an application scenario where
speed is so important that it becomes reasonable to allow some incorrect inferences in
order to speed up the reasoning. Our implementation is called SCREECH [10], and it
is based on the idea of approximating an OWL DL knowledge base by Horn clauses.
Initial experiments reported in [10] – and briefly in [11] – have shown that SCREECH
indeed improves runtime in some cases, but further evaluations had been missing so far.

In this paper, we introduce two new variants of the SCREECH approach (in Sections
2 and 3), resulting in three related algorithms, which can be used in combination for
approximate OWL reasoning. We will then report on experiments (in Section 4) which
we performed for all approaches. They show that all three variants of SCREECH indeed
result in significant speed-up under only a very small number of introduced mistakes.

2 The Screech Approach

2.1 The KAON2-Transformation

Reasoning with KAON2 is based on special-purpose algorithms which have been de-
signed for dealing with large ABoxes. They are detailed in [8] and we present a birds’
eyes perspective here, which suffices for our purposes. The underlying rationale of the
algorithms is that algorithms for deductive databases have proven to be efficient in
dealing with large numbers of facts. The KAON2 approach utilises this by transform-
ing OWL DL ontologies to disjunctive datalog, and by the subsequent application of
the mentioned and established algorithms for dealing with disjunctive datalog.

A birds’ eyes perspective on the KAON2 approach is depicted in Figure 1. KAON2
can handle SHIQ(D) ontologies, which corresponds roughly to OWL DL without
nominals. The TBox, together with a query are processed by the sophisticated KAON2-
transformation algorithm which returns a disjunctive datalog program. This, together
with an ABox, is then fed into a disjunctive datalog reasoner which eventually returns
an answer to the query.
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In some cases, e.g. when querying for instances of named classes, the query does
not need to be fed into the transformation algorithm but instead needs to be taken into
account only by the datalog reaoner. This allows to compute the disjunctive datalog pro-
gram offline, such that only the disjunctive datalog engine needs to be invoked for an-
swering the query. All experiments we report on have been performed this way, i.e. they
assume an offline transformation of the TBox prior to the experiments.

The program returned by the transformation algorithm is in general not logically
equivalent to the input TBox. The exact relationship is given below in Theorem 1 due
to [8]. Note that statement (b) suffices for our purposes. It also shows that the KAON2
datalog reasoning engine can in principle be replaced by other (sound and complete)
reasoning engines without changing the results of the inference process.

Theorem 1. Let K be a SHIQ(D) TBox and D(K) be the datalog output of the
KAON2 transformation algorithm on input K. Then the following claims hold.

(a) K is unsatisfiable if and only if D(K) is unsatisfiable.
(b) K |= α if and only if D(K) |= α, where α is of the form A(a) or R(a, b), for A a

named concept and R a simple role.
(c) K |= C(a) for a nonatomic concept C if and only if, for Q a new atomic concept,

D(K ∪ {C v Q}) |= Q(a).

Convenient access to the KAON2 transformation algorithm is given by means of the
KAON2 OWL Tool5 dlpconvert,6 which can also produce F-Logic [12] serialisations
which can be used with F-Logic engines like OntoBroker.

2.2 Approximate OWL-Reasoning with SCREECH

Due to the inherent high complexity of reasoning with ontologies, it is to be expected
that some application settings will defy even the smartest approaches for achieving
sound and complete scalable algorithms. The method of choice for dealing with such
situations is to use approximate reasoning, which trades correctness for time, but in a
controlled and well-understood way [13]. Approximate Reasoning is indeed recently
receiving rising attention from Semantic Web researchers, due to the obvious suitable
use cases in this application domain. For some recent work, see e.g. [14–19].

The SCREECH approach for instance retrieval is based on the fact that data com-
plexity is polynomial for non-disjunctive datalog, while for OWL DL it is coNP com-
plete even in the absence of nominals [7]. SCREECH utilises the KAON2 algorithms,
but rather than doing (expensive) exact reasoning over the resulting disjunctive datalog
knowledge base, it does approximate reasoning by treating disjunctive rules as if they
were non-disjunctive ones, i.e. the disjunctive rules are approximated by Horn rules.

We will first describe the basic variant of SCREECH, which was introduced in [10],
and which we call SCREECH-ALL here. SCREECH-ALL is complete, but may be un-
sound in cases. Its data complexity is polynomial. Two other variants of SCREECH,
SCHREECH-NONE and SCREECH-ONE, will be described in Section 3.

5 http://owltools.ontoware.org/
6 http://logic.aifb.uni-karlsruhe.de/wiki/Dlpconvert
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SCREECH-ALL uses a modified notion of split program [20] in order to deal with
the disjunctive datalog. Given a rule

H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

as an output of the KAON2 transformation algorithm, the derived split rules are defined
as:

H1 ← A1, . . . , Ak . . . Hm ← A1, . . . , Ak.

For a given disjunctive program P its split program P ′ is defined as the collection of all
split rules derived from rules in P . It can be easily shown that for instance retrieval tasks,
the result obtained by using the split program instead of the original one is complete
but may be unsound. As the following proposition shows, this is even the case if all
integrity constraints, i.e. rules of the form

← B1, . . . , Bn

are removed from the split program.

Proposition 1. Consider a SHIQ(D) knowledge base K that is logically consistent,
let D(K) denote a disjunctive datalog program obtained by applying KAON2 to K,
and let P be the logic program obtained from D(K) by SCREECH-ALL. Then P has a
least Herbrand model which satisfies any atomic formula that is true in some minimal
Herbrand model of D(K).

Especially, P entails all atomic formulae that are true in all (minimal) models of
D(K), i.e. SCREECH-ALL is complete for instance retrieval on consistent SHIQ(D)
knowledge bases.

Proof. First, note that we can restrict to propositional programs obtained as the (finite)
ground instantiations of the relevant datalog programs. Hence it suffices to consider
propositional models.

The fact that P has a least Herbrand model is a standard conclusion from the fact
that P is a definite logic program. To show the rest of the claim, consider any minimal
Herbrand model M of the ground instantiation of D(K) (note that K has some Her-
brand model by consistency, and that some of those must be minial since only finitely
many ground interpretations exist). Define a ground program QM as follows:
QM = {Hi ← B1∧ . . .∧Bm ∈ P | M |= B1∧ . . .∧Bm andM |= Hi, 1 ≤ i ≤ n)}.

We claim that QM is a definite program with least Herbrand model M. Clearly
QM is definite (thus has some least Herbrand model), and hasM as a Herbrand model.
But obviously any Herbrand model of QM that is strictly smaller thanM would also
satisfy all rules of D(K), thus contradicting the assumed minimality ofM.

Now clearly QM is a subset of the screeched program P , and hence any Herbrand
model of P must be greater or equal to the least Herbrand modelM of QM. SinceM
was arbitrary, this shows the claim. ut

It is possible to also deal with nominals, i.e. with OWL DL (aka SHOIN (D)) ap-
proximately. This was mentioned in [10], but for our purposes it will suffice to consider
SHIQ knowledge bases only, which covers a significant portion of OWL DL.

Putting the pieces together, SCREECH-ALL utilises the following subsequent steps
for approximate ABox reasoning for SHIQ.



Approximate Reasoning with Screech 5

serbian t croatian v european

eucitizen v european

german t french t beneluxian v eucitizen

beneluxian ≡ luxembourgian t dutch t belgian (1)

serbian(ljiljana) serbian(nenad) german(philipp) french(julien)

chinese(yue) german(peter) german(stephan) mongolian(tuvshintur)

indian(anupriya) belgian(saartje) german(raphael) chinese(guilin)

Fig. 2. Example ontology

1. Apply transformations as in the KAON2 system in order to obtain a negation-free
disjunctive datalog program.

2. Obtain the split program as described above.
3. Do reasoning with the split program, e.g. using the KAON2 datalog engine.

Given a TBox K, the split program obtained from K by steps 1 and 2 is called
the screeched version of K. The first two steps can be considered to be preprocessing
steps for setting up the intensional part of the database. ABox reasoning is then done in
step 3. The resulting approach has the following theoretical features:

– It is complete with respect to OWL DL semantics.
– Data complexity is polynomial.

A prototype implementation of our approach is available as the SCREECH-ALL
OWL approximate reasoner.7 It is part of the KAON2 OWL Tools. We can convert
a SHIQ ontology into a disjunctive datalog program, e.g. by using the KAON2 OWL
Tool dlpconvert with the -x switch. SCREECH-ALL then accesses the results of
the translation through the KAON2 API, creates the corresponding split programs and
serializes them as Horn logic programs in Edinburgh Prolog syntax or in F-Logic [21,
22] syntax. We need to mention, however, that in general support for concrete domains
and other features like integrity constraints is not necessarily implemented in off-the-
shelf logic programming systems. In these cases, concrete domains etc. cannot be used.
The KAON2 OWL Tool ded, for example, performs a language weakening step by
removing all concrete domains, and may come in handy in such situations.

2.3 A Simple Example

We demonstrate the approach on a simple OWL DL ontology. It contains only a class
hierarchy and an ABox, and no roles, but this will suffice to display the main issues.

7 http://logic.aifb.uni-karlsruhe.de/screech
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The ontology is shown in Figure 2, and its intended meaning is self-explanatory.
Note that line (1) translates into the four clauses

luxembourgian(x) ∨ dutch(x) ∨ belgian(x)← beneluxian(x), (2)
beneluxian(x)← luxembourgian(x),
beneluxian(x)← dutch(x),

and beneluxian(x)← belgian(x).

Thus, our approach changes the ontology by treating the disjunctions in line (2) as
conjunctions. Effectively, this means that the rule (2) is replaced by the three rules

luxembourgian(x)← beneluxian(x),
dutch(x)← beneluxian(x),

and belgian(x)← beneluxian(x).

This change affects the soundness of the reasoning procedure. However, in the example
most of the ABox consequences which can be derived by the approximation are still
correct. Indeed, there are only two derivable facts which do not follow from the knowl-
edge base by classical reasoning, namely dutch(saartje) and luxemburgian(saartje). All
other derivable facts are correct.

3 Variants of Screech

We will now introduce two other variants of SCREECH, besides SCREECH-ALL intro-
duced above. These other variants are called SCREECH-NONE and SCREECH-ONE.

SCREECH-NONE is defined by simply removing all disjunctive rules (and all in-
tegrity constraints) after the transformation by the KAON2-algorithm. For the example
from Section 2.3, this means that rule (2) is simply deleted. The resulting reasoning
procedure is sound, but incomplete, on SHIQ knowledge bases.

SCREECH-ONE is defined by replacing each disjuntive rules by exactly one of the
split rules. This selection can be done randomly, but will be most useful if the system
has some knowledge – probably of statistical nature – on the size of the extensions of
the named classes.8 For our example from Section 2.3, when considering rule (2) we
can use the additional knowledge that there are more dutch people than belgians or
luxenbourgians, thus this rule is replaced by the single rule

dutch(x)← beneluxian(x).

We also remove all integrity constraints after the translation. The resulting reasoning
proceedure is neither sound nor complete. We thus obtain the following result.

Proposition 2. Instance retrieval with SCHREECH-NONE is sound but incomplete. In-
stance retrieval with SCHREECH-ONE in general is neither sound nor complete.

8 This was suggested by Michael Sintek.
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Table 1. SCREECH variants and their basic properties

variant description sound complete
SCREECH-ALL use all of the split rules no yes

SCREECH-NONE use none of the split rules yes no
SCREECH-ONE use one of the split rules no no

Proof. Soundness of SCHREECH-NONE is immediate from the fact that calculations
are performed on a subset of the computed clauses, together with monotonicity of the
employed datalog variant. For all other claims it is easy to find counterexamples. ut

The properties of SCREECH are summarised in Table 1.

From a theoretical point of view, it would be satisfying to characterize the described
approximations in terms of extremal bounds in certain logical fragments. However, we
remark that the unsound screech variants do not yield greatest Horn lower bounds in the
sense of [23] w.r.t. the disjunctive datalog program, not even if we modify the definition
to allow only definite Horn rules. As a counterexample for SCREECH-ALL, consider
the program {← C(a), C(a) ∨C(b)←}. Its screeched version is {C(a)←, C(b)←},
but its greatest lower bound in the sense of [23] would be {C(b)←}. Analogously, we
note that SCREECH-ONE yields no greatest lower bound, even if integrity constraints are
included (which obviously makes the procedure complete while still being unsound). To
see this, consider the program {C(a) ←, C(b) ←,← A(a),← B(b), A(x) ∨ B(x) ←
C(x)}. Its (extended) SCREECH-ONE versions are {C(a) ←, C(b) ←,← A(a),←
B(b), A(x) ← C(x)} and {C(a) ←, C(b) ←,← A(a),← B(b), B(x) ← C(x)}, but
its greatest lower bound would be {C(a)←, C(b)←, B(a)←, A(b)←}.

3.1 Expected results

Prior to performing our experiments – which we will report in Section 4 – we formu-
lated the expected outcome from the different variants of SCREECH.

– SCREECH-ONE – assuming the mentioned knowledge about the size of the exten-
sions of atomic classes – compared to SCREECH-ALL should show overall less
errors for some suitable knowledge bases. We also expected SCREECH-ONE to be
quicker than SCREECH-ALL.

– SCREECH-NONE should be quicker than SCREECH-ALL and SCREECH-ONE. We
expected that the number of errors should be comparable with SCREECH-ALL, but
more severe than SCREECH-ONE.

We furthermore expected, that the parallel execution of the two variants SCREECH-
ALL and SCREECH-NONE should help to determine exact answers in some cases quicker
than using the KAON2 datalog reasoner. This expectation is based on the following fact:
If the extensions of some class C as computed by SCREECH-ALL and SCREECH-NONE
are of the same size, then the computed extensions are actually correct (sound and com-
plete) with respect to the original knowledge base.
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4 Experimental Evaluation

An approximate reasoning procedure needs to be evaluated on real data from practi-
cal applications. Handcrafted examples are of only limited use as the applicability of
approximate methods depends on the structure inherent in the experimental data.

So we evaluated some popular publicly available ontologies. In some cases we had
to cautiously modify them in order to enable KAON2 to perform reasoning tasks on
them, but the general approach was to first use KAON2 for transforming the TBoxes
to disjunctive datalog. Also offline, a screeched version of the TBox was produced. We
then invoked the KAON2 disjunctive datalog engine on both the resulting disjunctive
datalog program and on the screeched version, to obtain a comparison of performance.9

For all our experiments, we used a T60p IBM Thinkpad with 1.9GB of RAM, with
the Java 2 Runtime Environment, Standard Edition (build 1.5.0_09-b03).

Results in a nutshell

We performed comprehensive experiments with GALEN, WINE, DOLCE, and SEM-
INTEC. Before we report in more detail, we list a summary of the results.

– SCREECH-ALL shows an average speedup in the range between 8 and 67%, de-
pending on the queried class and the ontology under consideration, while 38 to
100% of the computed answers are correct. Most interestingly, a higher speedup
usually seemed to correlate with less errors.

– SCREECH-ONE compared to SCREECH-ALL has overall less errors. In most cases,
all correct class members are retrieved. Runtime is similar to SCREECH-ALL.

– SCREECH-NONE compared to SCREECH-ALL shows similar run-time. In most cases,
the extensions are computed correctly – with the exception of WINE, for which we
get 2% missing answers.

– Running SCREECH-ALL and SCREECH-NONE in parallel and comparing the re-
sults, allows the following: If the computed extensions are of the same size, then
we know that all (and only correct) class members have been found. This is the case
for more than 76% of all classes we computed.

GALEN

We first report on our experiments with the OWL DL version of the GALEN Upper
Ontology.10 As it is a TBox ontology only, we populated GALEN’s 175 classes ran-
domly with 500 individuals.11 GALEN does not contain nominals or concrete domains.
GALEN has 673 axioms (the population added another 500).

9 The raw data of the experiments can be found online under
http://logic.aifb.uni-karlsruhe.de/wiki/Screech.

10 http://www.cs.man.ac.uk/∼rector/ontologies/simple-top-bio/
11 Using the pop KAON2 OWL tool.
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Fig. 3. Performance comparison for SCREECH-ALL and KAON2. Top: absolute retrieval times.
Bottom: SCREECH-ALL retrieval times as percentage of KAON2 retrieval times. The ordinate
gives the number of classes for which this percentage was achieved, e.g. for 40 classes the per-
centage was around 75%.

After the TBox translation to disjunctive datalog we obtained ca. 1833 disjunctive
datalog rules,12 ca. 52 of which contained disjunctions.13 The SCREECH-ALL split re-
sulted in 113 new rules, replacing the disjunctive ones. 149 integrity constraints were
also removed.

Figure 3 shows the runtime for each named classe taken by SCREECH-ALL and
KAON2. Note the times for the first retrieved named class in Figure 3 (top), which is
considerably higher for KAON2 than for SCREECH-ALL. The reason for this is that
on the first run KAON2 performs the TBox translation (see Figure 1). The translated

12 The exact numbers differ slightly on different runs, as the KAON2 translation algorithm is
non-deterministic. Here it was between 1737 and 1909.

13 The number of disjunctive rules ranged between 51 and 81 on different runs.
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Table 2. Summary of the three SCREECH versions on GALEN. miss indicates the elements of the
extensions which were not found by the approximation, corr indicates those which were correctly
found, and more indicates those which were incorrectly computed to be part of the extension. time
gives the runtime (in ms) for the respective SCREECH version, while KAON2 gives the runtime
(in ms) using the disjunctive rules. f-meas is the f-measure known from information retrieval,
computed as (2 · precision · recall)/(precision + recall) with precision = corr/(corr + more) and
recall = corr/number of actual instances, corr.class gives the fraction of classes for which the
extension was computed correctly, and time/KAON2 is the ratio between time and KAON2.

Variant miss corr more time KAON2 f-meas corr.class time/KAON2
SCREECH-ALL 0 5187 465 255132 1007527 0.957 0.78 0.25
SCREECH-ONE 5 5182 134 277009 1007527 0.987 0.98 0.27
SCREECH-NONE 10 5177 0 244994 1007527 0.999 0.78 0.24

TBox is then stored, and thus does not need to be repeated for subsequent queries of
extensions of named classes according to Theorem 1.

We then queried all named classes for their extensions using the KAON2 datalog en-
gine, both for processing the disjunctive datalog program and for the various splits. The
relative runtimes by SCREECH-ALL in percentage of KAON2 runtime is displayed
in Figure 3 (right). It shows the distribution of the retrieval times: For 143 classes of
all the queried classes, SCREECH-ALL has 50% time saving while it is 75% for 95
classes. A summary of the results can be seen in Table 2. For 137 of the 175 classes
(i.e. 78%), the computed extensions under SCREECH-ALL and SCREECH-NONE had
the same number of elements, which allows to conclude – without using the disjunctive
rules – that for those classes the extensions were computed correctly. For some classes,
so for the class Physical-occurrent-entity, computing the extension under
SCREECH-ALL saved 99% of the runtime.

While the different versions of SCREECH have about the same runtime, the differ-
ences in the number of introduced errors is remarkable. Indeed, SCREECH-NONE makes
almost no mistakes. The parallel execution of SCREECH-NONE and SCREECH-ALL, as
mentioned, allows to compute the correct extensions of 78% of the classes – and to
know that the computations are correct – in less than a quarter of the time needed by
using the unmodified knowledge base.

DOLCE

DOLCE14 (a Descriptive Ontology for Linguistic and Cognitive Engineering) is a foun-
dational ontology, developed by the Laboratory for Applied Ontology in the Institute of
Cognitive Sciences and Technology of the Italian National Research Council. In full,
it exceeds the reasoning capabilities of current reasoners, hence we used a fraction for
our experiments consisting of 1552 axioms. Since DOLCE is a pure TBox-Ontology,
we randomly populated it with 502 individuals to be able to carry out instance retrieval.

14 http://www.loa-cnr.it/DOLCE.html
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Table 3. Summary of the three SCREECH versions on DOLCE. For the legend, see Table 2.

Variant miss corr more time KAON2 f-meas. corr.class time/KAON2
SCREECH-ALL 0 3697 2256 472941 516064 0.766 0.76 0.92
SCREECH-ONE 0 3697 512 425748 516064 0.935 1.0 0.82
SCREECH-NONE 0 3697 0 397260 516064 1.0 1.0 0.77

The conversion into disjunctive datalog yielded ca. 1774 rules15 of which ca. 71 are
disjunctive.16 The SCREECH-ALL split resulted in 178 new rules, replacing the disjunc-
tive ones. We also removed ca. 189 integrity constraints.17

As before, we queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalog program and for the various
splits. Table 3 summarizes. In SCREECH-ALL, 93 of the 123 classes (i.e. 76%) are
correctly queried, while in SCREECH-ONE 100 classes are correctly queried.

Remarkable under DOLCE is that SCREECH-NONE makes no mistakes, while the
runtime improvement is rather mild. This indicates that the disjunctive knowledge in
DOLCE does not contribute any results.

WINE

The next ontology we tested was the WINE ontology.18 It is a well-known ontology
containing a classification of wines. Moreover, it is one of the rare ontologies with both
an ABox and a nontrivial TBox. It also contains nominals, which we removed in an
approximate way following [10].19 The resulting ontology contains 20762 axioms, in-
cluding functionality, disjunctions, and existential quantifiers. The corresponding ABox
contains 6601 axioms.

The translation procedure into disjunctive datalog produces altogether ca. 554 rules,20

among them 24 disjunctive ones. The SCREECH-ALL split resulted in 48 new rules, re-
placing the disjunctive ones. We removed 3 integrity constraints after the translation.

As before, we queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalog program and for the various
splits. A summary of the results can be seen in Table 4. For 130 of the 140 classes (83%),
under SCREECH-ALL we obtained 1353 incorrect extensions, while under SCREECH-
ONE 132 classes are correct queried. Under SCREECH-NONE, the number of the classes
correctly queried is 126, and totally 697 extensions were missing.

WINE is the only ontology we tested for which SCREECH-NONE resulted in mildly
significant number of mistakes. However, recall is still at 0.977, i.e. very good. Con-
sidering the fact that WINE was created to show the expressiveness of OWL DL, it is
15 1774–1788
16 71–73
17 188–190
18 http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62
19 We used the TBox after that processing as baseline, since we are interested in the comparion

of the different versions of SCREECH.
20 526–572
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Table 4. Summary of the three SCREECH versions on WINE. For the legend, see Table 2.

Variant miss corr more time KAON2 f-meas. corr.class time/KAON2
SCREECH-ALL 0 30627 1353 588562 707476 0.978 0.93 0.83
SCREECH-ONE 0 30627 615 494456 707476 0.990 0.94 0.70
SCREECH-NONE 697 29930 0 504914 707476 0.988 0.90 0.71

Table 5. Summary of SCREECH on SEMINTEC – note that all three versions of SCREECH coin-
cide, since no disjuntive rules are produced by the translation. For the legend, see Table 2.

Variant miss corr more time KAON2 f-meas. corr.class time/KAON2
SCREECHA-ALL 0 51184 0 31353 94981 1.0 1.0 0.33
SCREECH-ONE 0 51184 0 32200 94981 1.0 1.0 0.33
SCREECH-NONE 0 51184 0 32032 94981 1.0 1.0 0.33

remarkable that all three SCREECH versions show a very low amount of errors, while
runtime increases by 28.6–34.5%. For some classes – e.g. for Chianti, over 91% of
the runtime was saved using SCREECH-ALL.

SEMINTEC

We also considered an ontology, the translation of which turned out to not contain
proper disjunctive rules. Nevertheless, removing integrity constraints is supposed to
result in improving runtime behaviour (while in this case even preserving soundness).

So, the last ontology we considered is from the SEMINTEC project21 at the uni-
versity of Poznan and concerns financial services. Its TBox contains 130702 axioms of
comparably simple structure, apart from some functionality constraints which require
equality reasoning. The ABox contains 71764 axioms. The TBox translation generated
217 rules, all of them being Horn, among which were 113 integrity constraints.

As before, we queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalog program and for the various
splits. A summary of the results can be seen in Table 5. As in the case of absence of
disjunctive rules all three variants of SCREECH coincide, for all of the 60 classes, the
extensions were computed correctly.

For SEMINTEC, we achieve a performance improvement of 54% while the com-
putation remains correct. For some classes – in particular for some with very small
extensions, computing the extension under SCREECH-ALL saved about 95% of the run-
time. For some classes with larger extension – like Leasing, 92% of runtime was
saved.

VICODI

Another ontology containing no disjunctive rules is the VICODI ontology. But it has a
large ABox. It also has no integrity constraints. Hence, the knowledge bases generated
21 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
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Table 6. Summary of SCREECH on VICODI – note that all three versions of SCREECH coincide,
since no disjuntive rules are produced by the translation. For the legend, see Table 2.

Variant miss corr more time KAON2 f-meas. corr.class time/KAON2
SCREECH-ALL 0 282564 0 3228 7192 1.0 1.0 0.45
SCREECH-ONE 0 282564 0 3295 7192 1.0 1.0 0.46
SCREECH-NONE 0 282564 0 3346 7192 1.0 1.0 0.47

Table 7. Overview of SCREECH evaluations. Mark that for due to the completeness of SCREECH-
ALL, the recall values are always 100% as well as the precision values for SCREECH-NONE due
to its soundness. Moreover, the three SCREECH variants coincide in the case of the SEMINTEC
ontology.

SCREECH-ALL SCREECH-ONE SCREECH-NONE

ontology
time
saved precision recall

time
saved precision recall

time
saved precision recall

GALEN 74.6% 91.7% 100% 72.5% 97.4% 99.9% 76.5% 100% 99.8%
DOLCE 29.1% 62.1% 100% 17.5% 87.8% 100% 23.0% 100% 100%
WINE 34.5% 95.8% 100% 30.1% 98.0% 100% 28.6% 100% 97.7%
SEMINTEC 69.9% 100% 100% 66.0% 100% 100% 66.2% 100% 100%
VICODI 55.1% 100% 100% 54.1% 100% 100% 53.4% 100% 100%

are the same; as given in Table 3 they resulted in a datalog program with 223 Horn rules.
Like SEMINTEC, for all of the 194 classes, the extensions were computed correctly in
each SCREECH variant. The performance gain for SCREECH-ALL, SCREECH-ONE and
SCREECH-NONE is 55.1%, 54.4% and 53.4%, respectively.

5 Conclusions

Motivated by the obvious need for techniques enhancing the scalability of reasoning
related tasks, we have investigated three variants of the SCREECH approach to approx-
imate reasoning in OWL ontologies.

On the theoretical side, we gave the completeness result for SCREECH-ALL and the
soundness result for SCREECH-NONE, yet a desirable characterisation of the approxi-
mations in terms of extremal bounds following the theory of Horn-approximations was
shown not to hold by providing counterexamples.

However, on the practical side the obtained results were promising: the perfor-
mance improvement is stable over all ontologies which we included in our experiments.
The performance gain varied between 29.1 and 76.5%, while the amount of correctly
retrieved classes was above 76% for all but one of the ontologies – see Table 7. It
is encouraging to see that the approach appears to be feasible even for the sophisti-
cated WINE ontology, and also for the SEMINTEC ontology, although in the latter
case we only remove integrity constraints. Concerning the comparatively bad results on
DOLCE, we note that the results are quite counterintuitive. One would naively expect
that performance improvements go hand-in-hand with loss of precision. However, for
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DOLCE we measured both the least runtime improvement and the worst performance
in terms of correctness. Concerning correctness, we suspect that the comparatively large
number of incorrect answers is caused by the fact that DOLCE uses a large number of
complete partitions of the form A ≡ A1 t · · · t An, where all the Ai are also spec-
ified to be mutually disjoint. It is intuitively clear that this kind of axioms introduces
disjunctive (non-Horn-style and therefore harder to approximate) information on the
one hand and integrity constraints (those being neglected in our approximation) on the
other. However, this does not in itself explain why we did not observe a higher speedup.
This indicates that the properties of ontologies which lead to performance improvement
through screeching must be less straightforward than initially expected. For a clarifica-
tion, more evaluations taking into account a wider range of ontologies with differing
characteristics w.r.t. expressivity, used language features, or statistical measures like
degree of population will lead to substantial hypotheses.

In general, we see a great potential in the strategy to combine various (possibly
approximate) algorithms having known properties as soundness and/or completeness
maybe with respect to differing types of queries. For instance, the proposed “sandwich
technique” can be used to solve instance retrieval tasks in some cases even without call-
ing the more costly sound and complete reasoners. If the sets of individuals IS and IC

retrieved by two algorithms—one of those being sound and the other one complete—
coincide, the result is known to be exact. But even if not, the result is at least partly de-
termined (as all elements of IS are definitely instances and all individuals not in IC are
not) and it might be beneficial to query a sound and complete reasoner for class mem-
bership only for individuals of the set IC \IS of individuals for which class membership
is still undecided. Clearly, the strategy to combine several approximate algorithms will
be especially reasonable if parallel computation architectures are available.
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